{"id":1140,"date":"2020-08-26T09:33:00","date_gmt":"2020-08-26T09:33:00","guid":{"rendered":"https:\/\/clinlabint.3wstaging.nl\/key-regulator-of-bone-development-identified\/"},"modified":"2021-01-08T11:09:48","modified_gmt":"2021-01-08T11:09:48","slug":"key-regulator-of-bone-development-identified","status":"publish","type":"post","link":"https:\/\/clinlabint.com\/key-regulator-of-bone-development-identified\/","title":{"rendered":"Key regulator of bone development identified"},"content":{"rendered":"
Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes — a condition known as brachydactyly. The discovery was made by researchers at Penn State University who knocked out the Speckle-type POZ Protein (Spop) in the mouse and characterized the impact on bone development. The research redefines the role of Spop during bone development and provides a new potential target for the diagnosis and treatment of bone diseases such as osteoporosis.
\n\u201cThe Spop protein is involved in Hedgehog signalling — a well-studied cell-tocell communication pathway that plays multiple roles during development,\u201d said Aimin Liu, associate professor of biology at Penn State and the corresponding author of the study. \u201cPrevious studies done in cell culture suggested that Spop negatively regulates or \u2018turns down\u2019 Hedgehog signalling. However, in our study, we show that Spop positively regulates the pathway downstream of a member of the Hedgehog family, a protein called Indian Hedgehog, during bone development. This new understanding adds to our knowledge of the genetic basis of bone development and could open new avenues to study bone disease.\u201d
\nIndian Hedgehog (Ihh) plays an essential role in bone development. It is near the top of a hierarchical cascade of genes that program cells to produce cartilage and bone. Ihh controls gene expression by regulating the activity of the transcription factors — proteins that control the expression of other genes — Gli2 and Gli3. Gli2 acts mainly as an activator of gene expression and Gli3 acts mainly to repress gene expression. The Spop protein tags the Gli proteins to be degraded in the cell. \u201cPrevious studies led to a hypothesis that a loss of Spop function would increase Hedgehog signalling because the Gli activators were no longer being degraded,\u201d said Hongchen Cai, a graduate student at Penn State and an author of the paper. \u201cWe were surprised to see in our study the repressor of gene expression, Gli3, built up in developing bone, but not the activator of gene expression, Gli2. This imbalance led to an overall decrease in Hedgehog signalling.\u201d
\nIn order to study the role of Spop in bone development more closely, the researchers knocked the gene out specifically in the limb. Limbs that lacked Spop had less dense bone, mimicking osteopenia — a human condition characterized by low bone density, but not as severe as osteoporosis. The limbs also had shorter than normal fingers and toes. The researchers also showed that the effects of losing Spop could be mitigated by simultaneously reducing the amount of Gli3 in the limbs. <\/p>\n
Penn State http:\/\/tinyurl.com\/jx3y6nj<\/link>\n","protected":false},"excerpt":{"rendered":"
Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes — a condition known as brachydactyly. The discovery was made by researchers at Penn State University who knocked out the Speckle-type POZ Protein (Spop) in the mouse and characterized the impact on […]<\/p>\n","protected":false},"author":2,"featured_media":0,"comment_status":"closed","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_monsterinsights_skip_tracking":false,"_monsterinsights_sitenote_active":false,"_monsterinsights_sitenote_note":"","_monsterinsights_sitenote_category":0,"footnotes":""},"categories":[35],"tags":[],"class_list":["post-1140","post","type-post","status-publish","format-standard","hentry","category-e-news"],"_links":{"self":[{"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/posts\/1140"}],"collection":[{"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/users\/2"}],"replies":[{"embeddable":true,"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/comments?post=1140"}],"version-history":[{"count":0,"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/posts\/1140\/revisions"}],"wp:attachment":[{"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/media?parent=1140"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/categories?post=1140"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/tags?post=1140"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}