{"id":1447,"date":"2020-08-26T09:34:01","date_gmt":"2020-08-26T09:34:01","guid":{"rendered":"https:\/\/clinlabint.3wstaging.nl\/new-autism-causing-genetic-variant-identified\/"},"modified":"2021-01-08T11:11:11","modified_gmt":"2021-01-08T11:11:11","slug":"new-autism-causing-genetic-variant-identified","status":"publish","type":"post","link":"https:\/\/clinlabint.com\/new-autism-causing-genetic-variant-identified\/","title":{"rendered":"New autism-causing genetic variant identified"},"content":{"rendered":"
Researchers sequenced the genomes of members of 13 families severely affected by autism and compared the sequences to those of healthy controls.
\nThey identified genetic variants that had never before been linked to autism.
\nOne affected gene, CTNND2, plays a critical role in brain development and regulates how many other genes function.
\nUsing a novel approach that homes in on rare families severely affected by autism, a Johns Hopkins-led team of researchers has identified a new genetic cause of the disease. The rare genetic variant offers important insights into the root causes of autism, the researchers say. And, they suggest, their unconventional method can be used to identify other genetic causes of autism and other complex genetic conditions.<\/p>\n
In recent years, falling costs for genetic testing, together with powerful new means of storing and analysing massive amounts of data, have ushered in the era of the genomewide association and sequencing studies. These studies typically compare genetic sequencing data from thousands of people with and without a given disease to map the locations of genetic variants that contribute to the disease. While genome-wide association studies have linked many genes to particular diseases, their results have so far failed to lead to predictive genetic tests for common conditions, such as Alzheimer\u2019s, autism or schizophrenia.<\/p>\n
\u201cIn genetics, we all believe that you have to sequence endlessly before you can find anything,\u201d says Aravinda Chakravarti, Ph.D., a professor in the Johns Hopkins University School of Medicine\u2019s McKusick-Nathans Institute of Genetic Medicine. \u201cI think whom you sequence is as important \u2014 if not more so \u2014 than how many people are sequenced.\u201d<\/p>\n
With that idea, Chakravarti and his collaborators identified families in which more than one female has autism spectrum disorder, a condition first described at Johns Hopkins in 1943. For reasons that are not understood, girls are far less likely than boys to have autism, but when girls do have the condition, their symptoms tend to be severe. Chakravarti reasoned that females with autism, particularly those with a close female relative who is also affected, must carry very potent genetic variants for the disease, and he wanted to find out what those were.<\/p>\n
The research team compared the gene sequences of autistic members of 13 such families to the gene sequences of people from a public database. They found four potential culprit genes and focused on one, CTNND2, because it fell in a region of the genome known to be associated with another intellectual disability. When they studied the gene\u2019s effects in zebrafish, mice and cadaveric human brains, the research group found that the protein it makes affects how many other genes are regulated. The CTNND2 protein was found at far higher levels in foetal brains than in adult brains or other tissues, Chakravarti says, so it likely plays a key role in brain development.<\/p>\n
While autism-causing variants in CTNND2 are very rare, Chakravarti says, the finding provides a window into the general biology of autism. \u201cTo devise new therapies, we need to have a good understanding of how the disease comes about in the first place,\u201d he says. \u201cGenetics is a crucial way of doing that.\u201d\nJohn Hopkins Medicine<\/link>\n","protected":false},"excerpt":{"rendered":"
Researchers sequenced the genomes of members of 13 families severely affected by autism and compared the sequences to those of healthy controls. They identified genetic variants that had never before been linked to autism. One affected gene, CTNND2, plays a critical role in brain development and regulates how many other genes function. Using a novel […]<\/p>\n","protected":false},"author":2,"featured_media":0,"comment_status":"closed","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_monsterinsights_skip_tracking":false,"_monsterinsights_sitenote_active":false,"_monsterinsights_sitenote_note":"","_monsterinsights_sitenote_category":0,"footnotes":""},"categories":[35],"tags":[],"class_list":["post-1447","post","type-post","status-publish","format-standard","hentry","category-e-news"],"_links":{"self":[{"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/posts\/1447"}],"collection":[{"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/users\/2"}],"replies":[{"embeddable":true,"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/comments?post=1447"}],"version-history":[{"count":0,"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/posts\/1447\/revisions"}],"wp:attachment":[{"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/media?parent=1447"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/categories?post=1447"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/tags?post=1447"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}