{"id":1554,"date":"2020-08-26T09:34:41","date_gmt":"2020-08-26T09:34:41","guid":{"rendered":"https:\/\/clinlabint.3wstaging.nl\/researchers-debunk-myth-about-parkinsons-disease\/"},"modified":"2021-01-08T11:11:38","modified_gmt":"2021-01-08T11:11:38","slug":"researchers-debunk-myth-about-parkinsons-disease","status":"publish","type":"post","link":"https:\/\/clinlabint.com\/researchers-debunk-myth-about-parkinsons-disease\/","title":{"rendered":"Researchers debunk myth about Parkinson’s disease"},"content":{"rendered":"
Using advanced computer models, neuroscience researchers at the University of Copenhagen have gained new knowledge about the complex processes that cause Parkinson\u2019s disease. <\/p>\n
The defining symptoms of Parkinson\u2019s disease are slow movements, muscular stiffness and shaking. There is currently no cure for the condition, so it is essential to conduct innovative research with the potential to shed some light on this terrible disruption to the central nervous system that affects one person in a thousand in Denmark. Using advanced computer models, neuroscience researchers at the University of Copenhagen have gained new knowledge about the complex processes that cause Parkinson\u2019s disease.<\/p>\n
Dopamine is an important neurotransmitter which affects physical and psychological functions such as motor control, learning and memory. Levels of this substance are regulated by special dopamine cells. When the level of dopamine drops, nerve cells that constitute part of the brain\u2019s \u2018stop signal\u2019 are activated. <\/p>\n
\u201cThis stop signal is rather like the safety lever on a motorised lawn mower: if you take your hand off the lever, the mower\u2019s motor stops. Similarly, dopamine must always be present in the system to block the stop signal. Parkinson\u2019s disease arises because for some reason the dopamine cells in the brain are lost, and it is known that the stop signal is being over-activated somehow or other. Many researchers have therefore considered it obvious that long-term lack of dopamine must be the cause of the distinctive symptoms that accompanies the disease. However, we can now use advanced computer simulations to challenge the existing paradigm and put forward a different theory about what actually takes place in the brain when the dopamine cells gradually die,\u201d explains Jakob Kisbye Dreyer, Postdoc at the Department of Neuroscience and Pharmacology, University of Copenhagen.<\/p>\n
Scanning the brain of a patient suffering from Parkinson\u2019s disease reveals that in spite of dopamine cell death, there are no signs of a lack of dopamine \u2013 even at a comparatively late stage in the process.<\/p>\n
\u201cThe inability to establish a lack of dopamine until advanced cases of Parkinson\u2019s disease has been a thorn in the side of researchers for many years. On the one hand, the symptoms indicate that the stop signal is over-activated, and patients are treated accordingly with a fair degree of success. On the other hand, data prove that they are not lacking dopamine,\u201d says Postdoc Jakob Kisbye Dreyer.
\n\u201cOur calculations indicate that cell death only affects the level of dopamine very late in the process, but that symptoms can arise long before the level of the neurotransmitter starts to decline. The reason for this is that the fluctuations that normally make up a signal become weaker. In the computer model, the brain compensates for the shortage of signals by creating additional dopamine receptors. This has a positive effect initially, but as cell death progresses further, the correct signal may almost disappear. At this stage, the compensation becomes so overwhelming that even small variations in the level of dopamine trigger the stop signal \u2013 which can therefore cause the patient to develop the disease.\u201d\nUniversity of Copenhagen<\/link>\n","protected":false},"excerpt":{"rendered":"
Using advanced computer models, neuroscience researchers at the University of Copenhagen have gained new knowledge about the complex processes that cause Parkinson\u2019s disease. The defining symptoms of Parkinson\u2019s disease are slow movements, muscular stiffness and shaking. There is currently no cure for the condition, so it is essential to conduct innovative research with the potential […]<\/p>\n","protected":false},"author":2,"featured_media":0,"comment_status":"closed","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_monsterinsights_skip_tracking":false,"_monsterinsights_sitenote_active":false,"_monsterinsights_sitenote_note":"","_monsterinsights_sitenote_category":0,"footnotes":""},"categories":[35],"tags":[],"class_list":["post-1554","post","type-post","status-publish","format-standard","hentry","category-e-news"],"_links":{"self":[{"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/posts\/1554"}],"collection":[{"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/users\/2"}],"replies":[{"embeddable":true,"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/comments?post=1554"}],"version-history":[{"count":0,"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/posts\/1554\/revisions"}],"wp:attachment":[{"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/media?parent=1554"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/categories?post=1554"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/clinlabint.com\/wp-json\/wp\/v2\/tags?post=1554"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}