Over-produced autism gene alters synapses, affects learning and behaviour in mice

A gene linked to autism spectrum disorders that was manipulated in two lines of transgenic mice produced mature adults with irreversible deficits affecting either learning or social interaction.
The findings have implications for potential gene therapies but they also suggest that there may be narrow windows of opportunity to be effective, says principal investigator Philip Washbourne, a professor of biology and member of the University of Oregon’s Institute of Neuroscience.
The research, reported by an 11-member team from three universities, targeted the impacts of alterations in the gene neuroligin 1 — one of many genes implicated in human autism spectrum disorders — to neuronal synapses in the altered mice during postnatal development and as they entered adulthood. One group over-expressed the normal gene, the other a mutated version.
Mice with higher-than-normal levels of the normal gene after a month had skewed synapses at maturity. Many were larger, appearing more mature, than normal. In these mice, Washbourne said, there were clear cognitive problems. ‘Behaviour was just not normal. They didn’t learn very well, and they were slower to learn, but their social behaviour was not impacted.’
Mice over-producing a mutated version of the gene reached adulthood with structurally immature synapses. ‘They were held back in development and behaviour — the way they behave in terms of learning and memory, in terms of social interaction,’ he said. ‘These were adult mice, three months old, but they behaved like normal mice at four weeks old. We saw arrested development. Learning is a little bit better, they are more flexible just like young mice, they learn faster, but their social interaction is off. To us, this looked more like Asperger’s syndrome.
‘So with the same gene, doing two different manipulations — over-expressing the normal form or over-expressing a mutated form — we’ve gone to two different ends of the autism spectrum,’ said Washbourne, whose lab focuses on basic synapse formation and what goes wrong in relationship to autism. Work has been done in both mice and zebra fish.
‘We made these mice so that we can turn the genes on and off as we want,’ Washbourne said. ‘Using an antibiotic, doxycycline, it turns off these altered genes that we inserted into their chromosomes. While on doxycycline, the mice are absolutely normal.’
However, if the inserted gene was turned off after the completion of development, mice still showed altered synapses and behaviour. This result suggests that any kind of gene therapy may have to be applied to individuals with autism early on.
Effects seen in the social behaviour of mice with the mutated gene, he said, are not unlike observations reported by parents of many autistic children. While normal mice prefer to engage with new mice entering their world rather than familiar others, or even a new inanimate object, these mice split their time equally. ‘It’s not a deficit in memory regarding which mouse is which, it’s more a weighting of their interaction. Does that mean they are autistic? I don’t know, but if you talk to parents of autistic children, one of the frustrating things they report is that their children treat complete strangers in exactly the same way that they treat them.’
While the findings provide new insights, Washbourne said, any translation into treatment could be decades away. ‘A problem with autism is there are many different genes potentially involved. It could be that some day, if you are diagnosed with autism, a mouth swab might allow for the identification of the exact gene that is mutated and allow for targeted therapy,’ he said. ‘Genome sequencing already has turned up subtle mutations in lots of genes. Autism might be like cancer, with hundreds of potential combinations of faulty genes.’ University of Oregon

Nearly one-third of children with autism also have ADHD

In a study of the co-occurrence of attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) in early school-age children (four to eight years old), researchers at the Kennedy Krieger Institute found that nearly one-third of children with ASD also have clinically significant ADHD symptoms. The study also found that children with both ASD and ADHD are significantly more impaired on measures of cognitive, social and adaptive functioning compared to children with ASD only.

Distinct from existing research, the current study offers novel insights because most of the children entered the study as infants or toddlers, well before ADHD is typically diagnosed. Previous studies on the co-occurrence of ASD and ADHD are based on patients seeking care from clinics, making them biased towards having more multi-faceted or severe impairments. By recruiting patients as infants or toddlers, the likelihood of bias in the current study is significantly reduced.

‘We are increasingly seeing that these two disorders co-occur and a greater understanding of how they relate to each other could ultimately improve outcomes and quality of life for this subset of children,’ says Dr. Rebecca Landa, senior study author and director of the Center for Autism and Related Disorders at Kennedy Krieger. ‘The recent change to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) to remove the prohibition of a dual diagnosis of autism and ADHD is an important step forward.’

Participants in this prospective, longitudinal child development study included 162 children. Researchers divided the children into ASD and Non-ASD groups. The groups were further categorized by ADHD classification according to parent-reported symptoms of ADHD on the Hyperactivity and Attention Problems subscales of the Behavioral Assessment System for Children-Second Edition, a standard assessment specifically designed to identify the core symptoms of ADHD.

Results revealed that, out of 63 children with ASD in the study, 18 (29%) were rated by their parents as having clinically significant symptoms of ADHD. Importantly, the age range for children in the study (four to eight) represented a younger and narrower sample than has been previously reported in published literature. ‘We focused on young school-aged children because the earlier we can identify this subset of children, the earlier we can design specialized interventions,’ says Dr. Landa. ‘Tailored interventions may improve their outcomes, which tend to be significantly worse than those of peers with autism only.’

Researchers also found that early school-age children with co-occurrence of ASD and ADHD were significantly more impaired than children with only ASD on measures of cognitive and social functioning, as well as in the ability to function in everyday situations. They were also more likely to have significant cognitive delays (61 versus 25 percent) and display more severe autism mannerisms, like stereotypic and repetitive behaviours. The study findings suggest that children with the combined presence of ADHD and ASD may need different treatment methods or intensities than those with ASD only in order to achieve better outcomes.

Dr. Landa and her team recognise that this research supports the need for future prospective, longitudinal studies of attention, social, communication and cognitive functioning from the time that the first red flags of ASD are identified. Such research will lead to important insights about the relative timing of onset and stability of disruption to attention mechanisms and barriers to successful functioning in children with co-occurring ASD and ADHD. Kennedy Krieger Institute

Hormone levels may provide key to understanding psychological disorders in women

Women at a particular stage in their monthly menstrual cycle may be more vulnerable to some of the psychological side-effects associated with stressful experiences, according to a study from UCL.
The results suggest a monthly window of opportunity that could potentially be targeted in efforts to prevent common mental health problems developing in women. The research is the first to show a potential link between psychological vulnerability and the timing of a biological cycle, in this case ovulation.

A common symptom of mood and anxiety problems is the tendency to experience repetitive and unwanted thoughts. These ‘intrusive thoughts’ often occur in the days and weeks after a stressful experience.
In this study, the researchers examined whether the effects of a stressful event are linked to different stages of the menstrual cycle. The participants were 41 women aged between 18 and 35 who had regular menstrual cycles and were not using the pill as a form of contraception. Each woman watched a 14-minute stressful film containing death or injury and provided a saliva sample so that hormone levels could be assessed. They were then asked to record instances of unwanted thoughts about the video over the following days.
There is actually a fairly narrow window within the menstrual cycle when women may be particularly vulnerable to experiencing distressing symptoms after a stressful event.
‘We found that women in the ‘early luteal’ phase, which falls roughly 16 to 20 days after the start of their period, had more than three times as many intrusive thoughts as those who watched the video in other phases of their menstrual cycle,’ explains author Dr Sunjeev Kamboj, Lecturer in UCL’s Department of Clinical, Educational and Health Psychology.
‘This indicates that there is actually a fairly narrow window within the menstrual cycle when women may be particularly vulnerable to experiencing distressing symptoms after a stressful event.’
The findings could have important implications for mental health problems and their treatment in women who have suffered trauma.
‘Asking women who have experienced a traumatic event about the time since their last period might help identify those at greatest risk of developing recurring symptoms similar to those seen in psychological disorders such as depression and post-traumatic stress disorder (PTSD),’ said Dr Kamboj.

‘This work might have identified a useful line of enquiry for doctors, helping them to identify potentially vulnerable women who could be offered preventative therapies,’ continued Dr Kamboj. University College London

New, more accurate test for Down’s syndrome developed

Researchers at King’s College London and King’s College Hospital, part of King’s Health Partners Academic Health Sciences Centre, have developed a new, non-invasive blood test that can reliably detect whether or not an unborn baby has Down’s syndrome. The test can be given earlier in pregnancy and is more accurate than current checks.
Down’s syndrome, also referred to as trisomy 21, is a genetic disorder caused by the presence of all or part of an extra copy of chromosome 21 in a person’s DNA. Current screening for Down’s syndrome and other trisomy conditions includes a combined test done between the 11th and 13th weeks of pregnancy, which involves an ultrasound screen and a hormonal analysis of the pregnant woman’s blood. Methods such as chorionic villus sampling (CVS), which involves taking cell samples from the placenta, and amniocentesis (using a sample of amniotic fluid), are also used to detect abnormalities but they are both invasive and carry a risk of miscarriage.
Several studies have shown that non-invasive prenatal diagnosis for trisomy syndromes using foetal cell free (cf) DNA from a pregnant woman’s blood is highly sensitive and specific, making it a potentially reliable alternative that can be done earlier in pregnancy.
Kypros Nicolaides, Professor of Fetal Medicine at King’s College London and Head of the Harris Birthright Research Centre for Fetal Medicine at King’s College Hospital, and colleagues have now demonstrated the feasibility of routine screening for trisomies 21, 18, and 13 by cfDNA testing. Testing done in 1005 pregnancies at 10 weeks had a lower false positive rate and higher sensitivity for foetal trisomy than the combined test done at 12 weeks. Both cfDNA and combined testing detected all trisomies, but the estimated false-positive rates were 0.1 percent and 3.4 percent, respectively.
‘This study has shown that the main advantage of cfDNA testing, compared with the combined test, is the substantial reduction in false positive rate. Another major advantage of cfDNA testing is the reporting of results as very high or very low risk, which makes it easier for parents to decide in favour of or against invasive testing,’ said Professor Nicolaides.
A second Ultrasound in Obstetrics & Gynecology study by the group, which included pregnancies undergoing screening at three UK hospitals between March 2006 and May 2012, found that effective first-trimester screening for Down’s syndrome could be achieved by cfDNA testing contingent on the results of the combined test done at 11 to 13 weeks. The strategy detected 98 percent of cases, and invasive testing was needed for confirmation in less than 0.5 percent of cases.
The authors conclude that screening for trisomy 21 by cfDNA testing contingent on the results of an expanded combined test would retain the advantages of the current method of screening, but with a simultaneous major increase in detection rate and decrease in the rate of invasive testing. Kings College London

Genes help shape-shifting skin cancer cells to spread

Researchers have identified a set of genes that allow melanoma cells, a type of cancer cell, to change rapidly between two shapes to escape from the skin and spread around the body. This new research – funded by the Wellcome Trust, Cancer Research UK and the US National Institutes of Health – could pave the way for scientists to develop desperately needed drugs for malignant melanoma, the deadliest form of skin cancer, which kills more than 2200 people every year.
The most dangerous aspect of melanoma is its ability to spread, or become malignant, to other parts of the body in the later stages of disease. This most often includes the liver, lungs and brain.
Dr Chris Bakal, a Wellcome Trust research fellow at the Institute of Cancer Research, London, explains: ‘We already knew that metastatic melanoma cells, or cells that are able to spread through the body, have to be able to adopt different shapes so that they can squeeze their way between healthy cells and move around the body.
‘The cells have to become rounded to travel through the bloodstream or invade soft tissues such as the brain, but they take on an elongated shape to travel through harder tissues like bone. But until now, we knew hardly anything about how the cells assume either of these shapes and how they switch between the two.’
To investigate this, researchers at the Institute of Cancer Research, London, and Weill Cornell Medical College in Houston started out by looking at fruit fly cells. They found that under normal conditions, the fruit fly cells grew in five different shapes. By switching off specific genes, they were able to change the mix of shapes among the fruit fly cells and identify several different genes that control a cell’s shape-shifting ability.
When they looked in human melanoma cells, they found that the human versions of these genes had a similar effect. In particular, they noted that switching off a gene called PTEN increased the proportion of cells that were elongated rather than rounded.
PTEN is a gene that is also involved in stopping healthy cells from becoming cancer cells, a so-called ‘tumour suppressor’ gene. This particular gene is switched off in around 1 in 8 melanoma patients and in almost half of melanoma patients who carry a mutation in another cancer gene called BRAF.
‘We think that metastatic melanoma cells lose their PTEN function so that they can increase their shape-shifting ability, which in turn enables them to move to many different tissues within the body. It’s early days, but taken together our findings offer new opportunities to develop drugs to try and stop the spread of melanoma,’ Dr Bakal added.
Dr Julie Sharp, Senior Science Communications Manager at Cancer Research UK, said: ‘This is still early research, but it gives us a better grasp of the way cancer cells behave in the body. By mimicking these conditions, our researchers are learning more about melanoma and bringing us closer to beating it. Wellcome Trust

Epigenetic factor likely plays a key role in fuelling most common childhood cancer

Changes in an epigenetic mechanism that turns expression of genes on and off may be as important as genetic alterations in causing pediatric acute lymphoblastic leukemia (ALL), according to a study led by scientists at St. Jude Children’s Research Hospital.
The results suggest the mechanism called cytosine methylation plays a previously under-appreciated role in the development of leukaemia. Cytosine methylation involves adding or removing methyl groups to cytosine, which is a building block of DNA.
The study is the most comprehensive effort yet to identify and understand genetic and epigenetic factors that work together to cause ALL, the most common childhood cancer. ALL is a cancer of white blood cells known as lymphocytes. Scientists at St. Jude and Weill Cornell Medical College collaborated on the project.
Researchers used a variety of techniques to examine hundreds of thousands of methylation sites across the genome in normal and leukemic lymphocytes, including samples from more than 160 children with ALL. Investigators found that known ALL subgroups, which are defined by chromosomal alterations, have unique methylation profiles. Those profiles correlated with different patterns of gene expression.
‘It is well known that different leukaemia subgroups have distinct patterns of gene expression that are important in the development of leukaemia,’ said Charles Mullighan, MBBS (Hons), MSc, M.D., an associate member of the St. Jude Department of Pathology. Mullighan and Ari Melnick, M.D., Gebroe Professor Hematology/Oncology at Weill Cornell Medical College, are the study’s co-corresponding authors.
‘We have assumed that the underlying genetic changes are important determinants of those gene expression profiles. We now know that changes in methylation state also have key roles in influencing gene expression,’ Mullighan said.
The study used tissue samples from 137 St. Jude patients with B-cell leukaemia and 30 children with T-cell leukaemia. The patients represented all major ALL subgroups.
‘The data show that aberrant epigenetic gene programming can now be considered a hallmark of acute lymphoblastic leukaemia, occurring in all patients regardless of the presence of genetic mutations,’ Melnick said. ‘This offers the opportunity for development of epigenetic targeted therapies for patients with ALL that could be broadly applicable to many patients.’
For comparison, researchers also checked B and T cells from 27 healthy children. Investigators found that leukaemia cells shared a core group of abnormally methylated genes. The genes included ones involved in regulating the cell division and proliferation. ‘This remains to be tested, but the findings suggest that alterations in methylation are an important early step in the development of leukaemia,’ Mullighan said.
The research provides further evidence that genetic and epigenetic events are both important in establishing different subgroups of ALL. For this study, researchers conducted genome-wide sampling of methylation, gene expression and DNA structural abnormalities, including the gain or loss of DNA. Shann-Ching Chen, Ph.D., St. Jude Pathology, developed many of the methods used to integrate and analyse the results. Chen and Maria Figueroa, now of the University of Michigan and formerly of Cornell, are the study’s co-first authors.
The study also found that more than one-third of 71 genes targeted by genetic alterations are also abnormally methylated in ALL. The methylation changes involved known tumor suppressor or oncogenes genes including CDKN2A, CDKN2B, PTEN and KRAS. ‘The findings suggest these genes are inactivated or deregulated more frequently than suggested by simply analysing structural changes in the genome,’ Mullighan said. St. Jude Children’s Research Hospital

Rare mitochondrial mutations — maybe not so rare?

French scientists have discovered that supposedly rare mutations in the mitochondria, the ‘power plants’ of human cells responsible for creating energy, account for more than 7% of patients with a mitochondrial disease manifesting itself as a respiratory deficiency. Their data emphasise the need for comprehensive analysis of all the mitochondrial DNA (mtDNA) in patients suspected as having a mitochondrial disease, and this should include children, a researcher will tell the annual conference of the European Society of Human Genetics.
Dr. Sylvie Bannwarth and Professor Véronique Paquis, from the Hôpital Archet 2, Nice, France, together with colleagues from the ten diagnostic centres that make up the French Mitochondrial Disease Network, investigated 743 patients who were suspected of having a respiratory chain disorder caused by defective mitochondria, but who did not carry a common mtDNA mutation. Mitochondrial diseases, which can be very severe, are estimated to affect one child in every 5000, and are usually untreatable. However, prompt diagnosis can help clinicians to prescribe treatment to alleviate secondary symptoms.

‘We examined the relationship between clinical presentation of disease, age at onset, and the localisations of mutations. Our results showed that, in the French population, clinical presentations that are not associated with common mtDA mutations begin mainly before adulthood, and that neuromuscular problems are the most common manifestation of such mutations’, says Dr. Bannwarth.

‘We found that early onset disease was significantly associated with mutations in genes that code for proteins, while late onset disorder were associated with mutations in tRNA genes, and that two genes represent ‘hotspots’ for disease-causing mutations. Knowing the prevalence of these rare mutations is essential if we are to be able to improve the diagnosis of these diseases.’

There are very many mitochondrial diseases, and they manifest themselves in a large number of different ways. They can involve muscle weakness, neurological disease, respiratory, gastrointestinal and cardiac problems, and strokes. Many are degenerative, while some are relatively static.

One of the two techniques used for screening the entirety of an individual’s mtDNA was developed by Dr. Bannwarth. The use of such techniques can aid not just in diagnosis, but also in genetic counselling and prenatal diagnosis for mitochondrial disease. Up to now the study of mtDNA mutations has usually been restricted to the detection of deletions and a few common mutations, but without any data about the prevalence of rare mutations and their associated phenotypes (characteristics or traits).

‘With the advent of Next Generation Sequencing techniques, screening all mtDNA is now feasible, and this means that we can detect both common and rare mutations as well as deletions. For example, in the patients we studied we found that Leigh syndrome – a rare disorder that affects the central nervous system – was found in 41% of patients with rare mtDNA mutations. Had we not screened all of the mtDNA, including the rare mutations, we would not have known this’, says Dr. Bannwarth. ‘This is clearly a big aid to accurate diagnosis and we hope that our results will underline the importance of comprehensive mtDNA screening.’ EurekAlert

Scientists find promising biomarker for predicting HPV-related oropharynx cancer

Researchers have found that antibodies against the human papillomavirus (HPV) may help identify individuals who are at greatly increased risk of HPV-related cancer of the oropharynx, which is a portion of the throat that contains the tonsils.
In their study, at least 1 in 3 individuals with oropharyngeal cancer had antibodies to HPV, compared to fewer than 1 in 100 individuals without cancer. When present, these antibodies were detectable many years before the onset of disease. These findings raise the possibility that a blood test might one day be used to identify patients with this type of cancer.
The results of this study were carried out by scientists at the National Cancer Institute (NCI), part of the National Institutes of Health, in collaboration with the International Agency for Research on Cancer (IARC).
Historically, the majority of oropharyngeal cancers could be explained by tobacco use and alcohol consumption rather than HPV infection. However, incidence of this malignancy is increasing in many parts of the world, especially in the United States and Europe, because of increased infection with HPV type 16 (HPV16). In the United States it is estimated that more than 60 percent of current cases of oropharyngeal cancer are due to HPV16. Persistent infection with HPV16 induces cellular changes that lead to cancer.
HPV E6 is one of the viral genes that contribute to tumour formation. Previous studies of patients with HPV-related oropharynx cancer found antibodies to E6 in their blood.
‘Our study shows not only that the E6 antibodies are present prior to diagnosis—but that in many cases, the antibodies are there more than a decade before the cancer was clinically detectable, an important feature of a successful screening biomarker,’ said Aimee R. Kreimer, Ph.D., the lead Investigator from the Division of Cancer Epidemiology and Genetics, NCI.
Kreimer and her colleagues tested samples from participants in the European Prospective Investigation into Cancer and Nutrition Study, a long-term study of more than 500,000 healthy adults in 10 European countries. Participants gave a blood sample at the start of the study and have been followed since their initial contribution.
The researchers analysed blood from 135 individuals who developed oropharyngeal cancer between one and 13 years later, and nearly 1,600 control individuals who did not develop cancer. The study found antibodies against the HPV16 E6 protein in 35 percent of the individuals with cancer, compared to less than 1 percent of the samples from the cancer-free individuals. The blood samples had been collected on average, six years before diagnosis, but the relationship was independent of the time between blood collection and diagnosis. Antibodies to HPV16 E6 protein were even found in blood samples collected more than 10 years before diagnosis.
The scientists also report that HPV16 E6 antibodies may be a biomarker for improved survival, consistent with previous reports. Patients in the study with oropharyngeal cancer who tested positive for HPV16 E6 antibodies prior to diagnosis were 70 percent more likely to be alive at the end of follow-up, compared to patients who tested negative.
‘Although promising, these findings should be considered preliminary,’ said Paul Brennan, Ph.D., the lead investigator from IARC. ‘If the predictive capability of the HPV16 E6 antibody holds up in other studies, we may want to consider developing a screening tool based on this result.’ National Cancer Institute

Rare genomic mutations found in 10 families with early-onset, familial Alzheimer’s disease

Although a family history of Alzheimer’s disease is a primary risk factor for the devastating neurological disorder, mutations in only three genes – the amyloid precursor protein and presenilins 1 and 2 – have been established as causative for inherited, early-onset Alzheimer’s, accounting for about half of such cases. Now Massachusetts General Hospital (MGH) researchers have discovered a type of mutation known as copy-number variants (CNVs) – deletions, duplications, or rearrangements of human genomic DNA – in affected members of 10 families with early-onset Alzheimer’s. Notably, different genomic changes were identified in the Alzheimer’s patients in each family.
The study was conducted as part of the Alzheimer’s Genome Project – directed by Rudolph Tanzi, PhD, director of the Genetics and Aging Research Unit at Massachusetts General Hospital (MGH) and a co-discoverer of the first three early-onset genes – and was supported by the Cure Alzheimer’s Fund and the National Institute of Mental Health (NIMH).
‘We found that the Alzheimer’s-afflicted members of these families had duplications or deletions in genes with important roles in brain function, while their unaffected siblings had unaltered copies of those genes,’ says Basavaraj Hooli, PhD, of the Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, lead author of a report that has been published online in Molecular Psychiatry. ‘Since our preliminary review of the affected genes has provided strong clues to a range of pathways associated with Alzheimer’s disease and other forms of dementia, we believe that further research into the functional effects of these CNVs will provide new insights into Alzheimer’s pathogenesis.’ Hooli is a research fellow in Neurology at Harvard Medical School.
Most studies searching for genes contributing to Alzheimer’s risk have looked for variants in a single nucleotide, and while thousands of such changes have been identified, each appears to have a very small impact on disease risk. Recently research has found that CNVs – in which DNA segments of varying lengths are deleted or duplicated – have a greater impact on genomic diversity than do single-nucleotide changes. This led Tanzi and his team to search for large CNVs in affected members of families with inherited Alzheimer’s disease. ‘These are the first new early-onset familial Alzheimer’s disease gene mutations to be reported since 1995, when we co-discovered the presenilins. As with those original genes, we hope to use the information gained from studies of the new Alzheimer’s mutations to guide the development of novel therapies aimed at preventing and treating this devastating disease.’ Tanzi explains.
The investigators reviewed genomic data from two sources – the NIMH Alzheimer’s Disease Genetics Initiative and the National Cell Repository for Alzheimer’s Disease – and focused on 261 families with at least one member who developed Alzheimer’s before the age of 65. Using a novel algorithm they had developed for analyzing CNVs, the researchers identified deletions or duplications that appeared only in affected members of these families. Two of these families had CNVs that included the well-established amyloid precursor protein gene, but 10 others were found to have novel Alzheimer’s-associated CNVs, with different gene segments being affected in each family.
While none of the novel variants have previously been associated with Alzheimer’s disease, most of them affect genes believed to be essential to normal neuronal function, and several have been previously associated with other forms of dementia. For example, one of the identified CNVs involves deletion of a gene called CHMP2B, mutations of which can cause ALS. In another family, affected members had three copies of the gene MAPT, which encodes the tau protein found in the neurofibrillary tangles characteristic of Alzheimer’s. Mutations in MAPT also cause frontotemporal dementia.
Hooli explains, ‘Potential clinical application of the findings of this study are not yet clear and require two additional pieces of information: similar studies in larger groups of families with inherited Alzheimer’s to establish the prevalence of these CNVs and whether the presence of one ensures development of the disease, and a better understanding of how these variants affect neuronal pathways leading to the early-onset form of Alzheimer’s disease.’ Massachusetts General Hospital

Study identifies protein essential for normal heart function

Protein being studied to fight cancer; may cause toxicity in cardiac cells
A study by researchers at Skaggs School of Pharmacy and Pharmaceutical Sciences and the Department of Pharmacology at the University of California, San Diego, shows that a protein called MCL-1, which promotes cell survival, is essential for normal heart function.

Their study found that deletion of the gene encoding MCL-1 in adult mouse hearts led to rapid heart failure within two weeks, and death within a month.

MCL-1 (myeloid cell leukemia-1) is an anti-apoptotic protein, meaning that it prevents or delays the death of a cell. It is also a member of the BCL-2 family of proteins that regulate mitochondria – the cell’s power producers – and cell death. Aberrant expression of anti-apoptotic BCL-2 family members is one of the defining features of cancer cells, and is strongly associated with resistance to current therapies. Thus, these proteins are currently major targets in the development of new therapies for patients with cancer.

But, while MCL-1 is up regulated in a number of human cancers, contributing to the overgrowth of cancer cells, it is found at high levels in normal heart tissue. Additionally, the researchers found that autophagy – a process which deals with mitochondrial maintenance and is normally induced by myocardial stress – was impaired in mice with MCL-1 deficient hearts.
In summary, the study demonstrated that the loss of MCL-1 led to rapid dysfunction of mitochondria, impaired autophagy and heart failure, even in the absence of cardiac stress.

‘Cardiac injury, such as a heart attack, causes levels of MCL-1 to drop in the heart, and this process may increase cardiac cell death,’ said Åsa B. Gustafsson, PhD, an associate professor at UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences. ‘Therefore, preserving normal levels of this protein in cardiac tissue could reduce damage after a heart attack and prevent progression to heart failure.’

By compromising both autophagy and mitochondrial function, MCL-1 inhibitors are likely to affect the cells’ energy supply. ‘Our findings raise concerns about the potential cardiac toxicity of drugs that block MCL-1 – drugs that have entered clinical trials because they increase cancer cell death,’ said the study’s first author, Robert L. Thomas. Skaggs School of Pharmacy and Pharmaceutical Sciences