Genetics of cervical cancer raise concern about antiviral therapy in some cases

A new understanding of the genetic process that can lead to cervical cancer may help improve diagnosis of potentially dangerous lesions for some women, and also raises a warning flag about the use of anti-viral therapies in certain cases – suggesting they could actually trigger the cancer they are trying to cure.

The analysis provides a clearer picture of the chromosomal and genetic changes that take place as the human papillomavirus sometimes leads to chronic infection and, in less than 1 percent of cases, to cervical cancer. It is the first to identify specific genes that are keys to this process.

Researchers say they want to emphasise, however, that the HPV vaccine commonly used by millions of women around the world is perfectly safe if done prior to infection with the virus. The concerns raised by this study relate only to viral therapies or possible use of a therapeutic vaccine after the virus has already been integrated into human cells.

‘It’s been known for decades that only women with prior infection with HPV get cervical cancer,’ said Andrey Morgun, an assistant professor and a leader of the study in the OSU College of Pharmacy. ‘In about 90 percent of cases it’s naturally eliminated, often without any symptoms. But in a small fraction of cases it can eventually lead to cancer, in ways that have not been fully understood.’

These findings by researchers from Oregon State University and a number of other universities or agencies in the United States, Norway and Brazil. Collaborators at OSU included Natalia Shulzhenko, an assistant professor in the OSU College of Veterinary Medicine.

The study found that some pre-cancerous lesions can acquire a higher level of chromosomal imbalances in just a small number of cells. These new features appear to do two things at the same time – finally eliminate the lingering virus that may have been present for many years, and set the stage for the beginning of invasive cancer.

So long as the virus is not eliminated, it helps to keep under control viral oncogenes that have been integrated into the patient’s genome, researchers said.

‘Some of what’s taking place here was surprising,’ Morgun said. ‘But with continued work it should help us improve diagnosis and early monitoring, to tell which lesions may turn into cancer and which will not.’

The study also concludes it could be dangerous to use antiviral treatments or therapeutic vaccines with women whose lesions already show signs of HPV integration.

This may help explain why use of the antiviral drug interferon had inconclusive results in the past, in some studies of its value in treating cervical cancer. Patients with existing HPV lesions may wish to discuss findings of this study with their physicians before starting such treatments, researchers said.

Other researchers using a similar analytical approach also found key driver genes in melanoma, according to the report. This approach may have value in identifying genomic changes that are relevant to a range of malignant tumors, scientists said. Oregon State University

Researchers identify genetic variants predicting aggressive prostate cancers

Researchers at Moffitt Cancer Center and colleagues at Louisiana State University have developed a method for identifying aggressive prostate cancers that require immediate therapy. It relies on understanding the genetic interaction between single nucleotide polymorphisms (SNPs). The goal is to better predict a prostate cancer’s aggressiveness to avoid unnecessary radical treatment.
According to the authors, prostate cancer accounts for 20 percent of all cancers and 9 percent of cancer deaths. It is the most common cancer and was the second leading cause of cancer death in American men in 2012.
‘For most prostate cancer patients, the disease progresses relatively slowly,’ said study co-author Hui-Yi Lin, Ph.D., assistant member of the Chemical Biology and Molecular Medicine Program at Moffitt. ‘However, some cases grow aggressively and metastasise. It is often difficult to tell the difference between the two.’
The two treatment options for aggressive prostate cancer — radical surgery and radiation therapy — have negative side effects, such as incontinence and erectile dysfunction. It is why the authors believe there is an urgent need for biomarkers that can identify or predict aggressive types of prostate cancer.

Through examining combinations of genetic variants, or SNP-SNP interactions, the researchers have identified and validated several genetic changes that are related to prostate cancer aggressiveness. Their work also shows that the epithelial growth factor receptor may be the hub for these interactions because it is involved in the growth of blood vessels (angiogenesis), which in turn stimulates tumour growth.
‘Our findings identified five SNP-SNP interactions in the angiogenesis genes associated with prostate cancer aggressiveness,’ explained study co-author Jong Y. Park, Ph.D., associate member of Moffitt’s Cancer Epidemiology Program. ‘We successfully detected the genotype combinations that put patients at risk of aggressive prostate cancer and then explored the underlying biological associations among angiogenesis genes associated with aggressive prostate cancer.’

The researchers concluded that the gene network they constructed based on SNP-SNP interactions indicates there are novel relationships among critical genes involved in the angiogenesis pathway in prostate cancer.

‘Our findings will help physicians identify patients with an aggressive type of prostate cancer and may lead to better personalised treatment in the future,’ Park said. Moffitt Cancer Center

Gene offers an athlete’s heart without the exercise

Researchers at Case Western Reserve University have found that a single gene poses a double threat to disease: Not only does it inhibit the growth and spread of breast tumours, but it also makes hearts healthier.

In 2012, medical school researchers discovered the suppressive effects of the gene HEXIM1 on breast cancer in mouse models. Now they have demonstrated that it also enhances the number and density of blood vessels in the heart – a sure sign of cardiac fitness.

Scientists re-expressed the HEXIM1 gene in the adult mouse heart and found that the hearts grew heavier and larger without exercise. In addition, the animals’ resting heart rates decreased. The lowered heart rate indicates improved efficiency, and is supported by their finding that transgenic hearts are pumping more blood per beat. The team also discovered that untrained transgenic mice ran twice as long as those without any genetic modification.

‘Our promising discovery reveals the potential for HEXIM1 to kill two birds with one stone – potentially circumventing heart disease as well as cancer, the country’s leading causes of death,’ said Monica Montano, PhD, associate professor of pharmacology, member of the Case Comprehensive Cancer Center, who created the mice for the heart and breast cancer research and one of the lead researchers.

Hypertension and subsequent heart failure are characterised by a mismatch between the heart muscles’ need for oxygen and nutrients and blood vessels’ inability to deliver either at the rate required. This deficit leads to an enlarged heart that, in turn, often ultimately weakens and stops. The researchers showed that increasing blood vessel growth through the artificial enhancement of HEXIM1 levels improved overall function – HEXIM1 may be a possible therapeutic target for heart disease.

The study is the sixth from the team of Dr. Montano and Michiko Watanabe, PhD, professor of paediatrics, genetics, and anatomy at Case Western Reserve School of Medicine and director of Pediatric Cardiology Fellowship Research at Rainbow Babies and Children’s Hospital.
‘Our Cleveland-based collaborative research teams revealed that increasing HEXIM1 levels brought normal functioning hearts up to an athletic level, which could perhaps stand up to the physical insults of various cardiovascular diseases,’ Watanabe said.

The results build on the team’s findings last year that showed increased levels of HEXIM1 suppressed the growth of breast cancer tumours. Using a well-known mouse model of breast cancer metastasis, researchers induced the gene’s expression by locally delivering a drug, hexamethylene-bisacetamide using an FDA-approved polymer. The strategy increased local HEXIM1 levels and inhibited the spread of breast cancer. The team is currently making a more potent version of the drug and intends to move to clinical trials within a few years. Case Western Reserve University School of Medicine

Complex genetic architectures: Some common symptoms of trisomy 21

Down syndrome, more commonly known as ‘trisomy 21′ is very often accompanied by pathologies found in the general population: Alzheimer’s disease, leukaemia, or cardiac deficiency. In a study conducted by Professor Stylianos Antonarakis’ group from the Faculty of Medicine of the University of Geneva (UNIGE), researchers have identified the genomic variations associated with trisomy 21, determining the risk of congenital heart disease in people with Down syndrome. The targeted and specific study of chromosome 21 revealed two genomic variations, which, in combination, are the hallmark of hereditary cardiac deficiency.
Heart disease is a common disorder of Down syndrome. While the presence of a third gene in the n°21 pair (which characterises the disease) increases the risk of heart disease, it is not the sole cause: genetic variations—or polymorphisms—as well as certain environmental factors also contribute to it. Genetic variations create the diversity of human beings, their predispositions, and the differences in the expression of similar genes.
As part of a study carried out on the risk of congenital heart disease in people with Down syndrome, the geneticists led by Stylianos Antonarakis who conducts the research at UNIGE’s Department of Genetic and Developmental Medicine observed the dominating role of two types of polymorphisms: the nucleotide and the variability in the number of copies of a gene (CNV, which stands for copy number variation).
To verify these observations, the scientists created a tailor-made chromosome 21; their analyses revealed two areas of variability in the number of copies of a gene (or CNV), and one area identified by a nucleotide polymorphism (or SNP), which can be associated with the risk of heart deficiency. Therefore, this study highlights the role of two CNVs and one SNP in the cardiac pathogenesis of people with Down syndrome for the first time, revealing the genetic complexity of a common symptom of trisomy 21.
For the geneticist-authors of this study, the genetic architecture of the risk of congenital heart disease in individuals with Down syndrome must henceforth be understood as a complex combination, revealing the 21st chromosome, nucleotide polymorphism, and variability in the number of copies of a gene all at once; three factors to which we must add to the rest of the genome a still unidentified genetic variation, which Professor Antonarakis’ group is already tracking.
…and also the risk of chronic myeloid leukemia
In parallel, this same group has made progress in understanding another relatively common symptom of Down syndrome, by tracking the genetic variations that identify chronic myeloid leukemia in the body’s cells. EurekAlert

Chlamydia promotes gene mutations

Chlamydia trachomatis is a human pathogen that is the leading cause of bacterial sexually transmitted disease worldwide with more than 90 million new cases of genital infections occurring each year. About 70 percent of women infected with Chlamydia remain asymptomatic and these bacteria can establish chronic infections for months, or even years. Even when it causes no symptoms, Chlamydia can damage a woman’s reproductive organs. In addition, standard antibacterial drugs are proving increasingly ineffective in complete eradication, as Chlamydia goes in to persistent mode, leading to asymptomatic chronic infection. Researchers at the Max Planck Institute for Infection Biology in Berlin (MPIIB) now show that Chlamydia infections can cause mutations in the host DNA by overriding the normal mechanisms by which their host prevents unregulated growth of genetically damaged cells that pave the way for the development of cancer.
Owing to their intracellular lifestyle Chlamydia depend on various host cell functions for their survival. Chlamydia manipulates the host cell mechanism to favour its growth, however the consequences of such alterations on the fate of host cells remains enigmatic. Even more worrying is mounting epidemiological evidence which links Chlamydia infections with the development of cervical and ovarian cancer. Cindrilla Chumduri, Rajendra Kumar Gurumurthy and Thomas F. Meyer, researchers at the Max Planck Institute for Infection Biology in Berlin, have now discovered that Chlamydia induces long-lasting effects on the genome and epi-genome of their host cells. Such changes are increasingly implicated in the development of a range of cancers.

The team found increased levels of DNA breaks in Chlamydia-infected cells. In normal cells, depending on the extent of damage, cells either ‘commit suicide’ or activate repair by special protein complexes in a process called the DNA Damage Response, which reseals the broken strands of DNA and makes sure the sequence of the genetic code has not been changed. Crucially, in Chlamydia-infected cells the DNA Damage Response was impaired, leading to an error-prone repair of the DNA breaks- a potential cause of mutations. Strikingly, despite the presence of extensive DNA damage, Chlamydia infected cells continued to proliferate, facilitated by additional pro-survival signals activated in the host cells by Chlamydia. The flip-side of this forced survival of damaged cells is an increased tendency to evade the normal mechanisms that eliminate cells carrying mutations that could lead to cancer. The team believe that this could be the first step on the path to carcinogenesis of the infected cells, due to uncontrolled cell growth in the presence of accumulating DNA damage – the hallmark of cancer.

The identification of infections as the origin of human cancers is important since it would allow early prevention of cancerogenesis by means of vaccination or antibiotic treatment. Such preventive strategies are currently successfully pursued against the cancer-inducing agents Human Papiloma Virus (HPV) and Helicobacter pylori, the etiological agents of cervical and gastric cancer, respectively. However, many infection-based cancer etiologies have not been firmly established and therefore cancer treatment is usually restricted to patients at an advanced stage and with an established cancer diagnosis. The department of Professor Meyer at MPIIB therefore vigorously pursues several lines of research to unequivocally assess the linkage between bacterial infections and cancer, apart from the well-known carcinogenic role of H. pylori. The current paper by Chumduri et al. constitutes one important mosaic piece, corroborating a potential link between female ascending Chlamydia infections and ovarian cancer in particular. Max Planck Society

Absence of gene leads to earlier, more severe case of multiple sclerosis

A UC San Francisco-led research team has identified the likely genetic mechanism that causes some patients with multiple sclerosis (MS) to progress more quickly than others to a debilitating stage of the disease. This finding could lead to the development of a test to help physicians tailor treatments for MS patients.
Researchers found that the absence of the gene Tob1 in CD4+ T cells, a type of immune cell, was the key to early onset of more serious disease in an animal model of MS.
 
Senior author Sergio Baranzini, PhD, a UCSF associate professor of neurology, said the potential development of a test for the gene could predict the course of MS in individual patients.
The study was done in collaboration with UCSF neurology researchers Scott Zamvil, MD, and Jorge Oksenberg, PhD.
MS is an inflammatory disease in which the protective myelin sheathing that coats nerve fibres in the brain and spinal cord is damaged and ultimately stripped away – a process known as demyelination. During the highly variable course of the disease, a wide range of cognitive, debilitating and painful neurological symptoms can result.
In previously published work, Baranzini and his research team found that patients at an early stage of MS, known as clinically isolated syndrome, who expressed low amounts of Tob1 were more likely to exhibit further signs of disease activity – a condition known as relapsing-remitting multiple sclerosis – earlier than those who expressed normal levels of the gene.
The current study, according to Baranzini, had two goals: to recapitulate in an animal model what the researchers had observed in humans, and uncover the potential mechanism by which it occurs.
The authors were successful on both counts. They found that when an MS-like disease was induced in mice genetically engineered to be deficient in Tob1, the mice had significantly earlier onset compared with wild-type mice, and developed a more aggressive form of the disease.
Subsequent experiments revealed the probable cause: the absence of Tob1 in just CD4+ T cells. The scientists demonstrated this by transferring T cells lacking the Tob1 gene into mice that had no immune systems but had normal Tob1 in all other cells. They found that the mice developed earlier and more severe disease than mice that had normal Tob1 expression in all cells including CD4+.
‘This shows that Tob1 only needs to be absent in this one type of immune cell in order to reproduce our initial observations in mice lacking Tob1 in all of their cells,’ said Baranzini.
The researchers also found the likely mechanism of disease progression in the Tob1-deficient mice: higher levels of Th1 and Th17 cells, which cause an inflammatory response against myelin, and lower levels of Treg cells, which normally regulate inflammatory responses. The inflammation results in demyelination.
The research is significant for humans, said Baranzini, because the presence or absence of Tob1 in CD4+ cells could eventually serve as a prognostic biomarker that could help clinicians predict the course and severity of MS in individual patients. ‘This would be useful and important,’ he said, ‘because physicians could decide to switch or modify therapies if they know whether the patient is likely to have an aggressive course of disease, or a more benign course.’
Ultimately, predicted Baranzini, ‘This may become an example of personalised medicine. When the patient comes to the clinic, we will be able to tailor the therapy based on what the tests tell us. We’re now laying the groundwork for this to happen.’ University of California – San Francisco

Symptoms of Prader-Willi syndrome associated with interference in circadian, metabolic genes

Researchers with the UC Davis MIND Institute and Agilent Laboratories have found that Prader-Willi syndrome — a genetic disorder best known for causing an insatiable appetite that can lead to morbid obesity — is associated with the loss of non-coding RNAs, resulting in the dysregulation of circadian and metabolic genes, accelerated energy expenditure and metabolic differences during sleep.
The research was led by Janine LaSalle, a professor in the UC Davis Department of Medical Microbiology and Immunology who is affiliated with the MIND Institute. It is published online in Human Molecular Genetics.
‘Prader-Willi syndrome children do not sleep as well at night and have daytime sleepiness,’ LaSalle said. ‘Parents have to lock up their pantries because the kids are rummaging for food in the middle of the night, even breaking into their neighbours’ houses to eat.’
The study found that these behaviours are rooted in the loss of a long non-coding RNA that functions to balance energy expenditure in the brain during sleep. The finding could have a profound effect on how clinicians treat children with Prader-Willi, as well as point the way to new, innovative therapies, LaSalle said.
The leading cause of morbid obesity among children in the United States, Prader-Willi involves a complex, and sometimes contradictory, array of symptoms. Shortly after birth children with Prader-Willi experience failure to thrive. Yet after they begin to feed themselves, they have difficulty sleeping and insatiable appetites that lead to obesity if their diets are not carefully monitored.
The current study was conducted in a mouse model of Prader-Willi syndrome. It found that mice engineered with the loss of a long non-coding RNA showed altered energy use and metabolic differences during sleep.
Prader-Willi has been traced to a specific region on chromosome 15 (SNORD116), which produces RNAs that regulate gene expression, rather than coding for proteins. When functioning normally, SNORD116 produces small nucleolar (sno) RNAs and a long non-coding RNA (116HG), as well as a third non-coding RNA implicated in a related disorder, Angelman syndrome. The 116HG long non-coding RNA forms a cloud inside neuronal nuclei that associates with proteins and genes regulating diurnal metabolism in the brain, LaSalle said.
‘We thought the cloud would be activating transcription, but in fact it was doing the opposite,’ she said. ‘Most of the genes were dampened by the cloud. This long non-coding RNA was acting as a decoy, pulling the active transcription factors away from genes and keeping them from being expressed.’
As a result, losing snoRNAs and 116HG causes a chain reaction, eliminating the RNA cloud and allowing circadian and metabolic genes to get turned on during sleep periods, when they should be dampened down. This underlies a complex cycle in which the RNA cloud grew during sleep periods (daytime for nocturnal mice), turning down genes associated with energy use, and receded during waking periods, allowing these genes to be expressed. Mice without the 116HG gene lacked the benefit of this neuronal cloud, causing greater energy expenditure during sleep.
The researchers said that the work provides a clearer picture of why children with Prader-Willi syndrome can’t sleep or feel satiated and may change therapeutic approaches. For example, many such children have been treated with growth hormone because of short stature, but this actually may boost other aspects of the disease.
‘People had thought the kids weren’t sleeping at night because of the sleep apnea caused by obesity,’ said LaSalle. ‘What this study shows is that the diurnal metabolism is central to the disorder, and that the obesity may be as a result of that. If you can work with that, you could improve therapies, for example figuring out the best times to administer medications.’ UC Davis Department of Medical Microbiology and Immunology

Cancer-linked Fam190a gene found to regulate cell division

Johns Hopkins cancer scientists have discovered that a little-described gene known as FAM190A plays a subtle but critical role in regulating the normal cell division process known as mitosis, and the scientists’ research suggests that mutations in the gene may contribute to commonly found chromosomal instability in cancer.
In laboratory studies of cells, investigators found that knocking down expression of FAM190A disrupts mitosis. In three pancreatic cancer-cell lines and a standard human-cell line engineered to be deficient in FAM190A, researchers observed that cells often had difficulty separating at the end of mitosis, creating cells with two or more nuclei. Until now, there had been no common gene alteration identified as the culprit for cancer-linked mitosis.
‘These cells try to divide, and it looks like they succeed, except they wind up with a strand that connects them,’ explains Scott Kern, M.D., professor of oncology and pathology at Johns Hopkins University School of Medicine and its Kimmel Cancer Center. ‘The next time they try to divide, all the nuclei come together, and they try to make four cells instead of two. Subsequently, they try to make eight cells, and so on.’
Kern’s group previously reported that deletions in the FAM190A gene could be found in nearly 40 percent of human cancers. That report, published in 2011 in the journal Oncotarget, and the current one are believed to be the only published papers focused solely on FAM190A, which is frequently altered in human cancers but whose function has been unknown. Alterations in FAM190A messages may be the third most common in human cancers after those for the more well-known genes p53 and p16, Kern says.
‘We don’t think that a species can exist without FAM190, but we don’t think severe defects in FAM190A readily survive among cancers,’ Kern says. ‘The mutations seen here are very special – they don’t take out the whole gene but instead remove an internal portion and leave what we call the reading frame. We think we’re finding a more subtle defect in human cancers, in which mitosis defects can occur episodically, and we propose it may happen in about 40 percent of human cancers.’
Abnormalities in FAM190A may cause chromosomal imbalances seen so commonly in cancers, Kern says. Multipolar mitosis is one of the most common functional defects reported in human cancers, and more than 90 percent of human cancers have abnormal numbers of chromosomes.
Kern says he plans to study FAM190A further by creating lab models of the subtle defects akin to what actually is tolerated by human cancer cells. Johns Hopkins Medicine

Urine biomarker test can diagnose as well as predict rejection of transplanted kidneys

A breakthrough non-invasive test can detect whether transplanted kidneys are in the process of being rejected, as well as identify patients at risk for rejection weeks to months before they show symptoms, according to a study.
By measuring just three genetic molecules in a urine sample, the test accurately diagnoses acute rejection of kidney transplants, the most frequent and serious complication of kidney transplants, says the study’s lead author, Dr. Manikkam Suthanthiran, the Stanton Griffis Distinguished Professor of Medicine at Weill Cornell Medical College and chief of transplantation medicine, nephrology and hypertension at NewYork-Presbyterian Hospital/Weill Cornell Medical Center.
‘It looks to us that we can actually anticipate rejection of a kidney several weeks before rejection begins to damage the transplant,’ Dr. Suthanthiran says.
The test may also help physicians fine-tune the amount of powerful immunosuppressive drugs that organ transplant patients must take for the rest of their lives, says Dr. Suthanthiran, whose laboratory developed what he calls the ‘three-gene signature’ of the health of transplanted kidney organs.
‘We have, for the first time, the opportunity to manage transplant patients in a more precise, individualised fashion. This is good news since it moves us from the current one-size-fits-all treatment model to a much more personalised plan,’ he says, noting that too little immunosuppression leads to organ rejection and too much can lead to infection or even cancer.
Such a test is sorely needed to help improve the longevity of kidney transplants and the lives of patients who receive these organs, says study co-author Dr. Darshana Dadhania, associate professor of medicine and medicine in surgery at Weill Cornell Medical College and associate attending physician at NewYork-Presbyterian Hospital.
Dr. Dadhania says that the primary blood test now used to help identify rejection — creatinine, which measures kidney function — is much less specific than the three-gene signature.
‘Creatinine can go up for many reasons, including simple dehydration in a patient, and when this happens we then need to do a highly invasive needle-stick biopsy to look at the kidney and determine the cause. Our goal is to provide the most effective care possible for our transplant patients, and that means individualizing their post transplant care,’ she says. ‘Using an innovative biomarker test like this will eliminate unnecessary biopsies and provide a yardstick to measure adequate immunosuppression to keep organs — and our patients — healthy.’
Although a number of researchers have tried to develop blood or urine-based tests to measure genes or proteins that signify kidney organ rejection, Dr. Suthanthiran and his research team were the first to create a gene expression profile urine test — an advance that was reported in NEJM in 2001 and, with an update also in NEJM, in 2005.
The research team measured the levels of messenger RNA (mRNA) molecules produced as genes are being expressed, or activated, to make proteins. To do this, they developed a number of sophisticated tools to measure this genetic material. ‘We were told we would never be able to isolate good quality mRNA from urine,’ he says. ‘Never say never.’
He and his colleagues found that increased expression of three mRNAs can determine if an organ will be, or is being, rejected. The mRNAs (18S ribosomal (rRNA)–normalized CD3ε mRNA, 18S rRNA–
The signature test consists of adding levels of the three mRNAs in urine into a composite score. Tracked over time, a rising score can indicate heightened immune system activity against a transplanted kidney, Dr. Suthanthiran says. A score that stays the same suggests that the patient is not at risk for rejection.
‘We were always looking for the most parsimonious model for an organ rejection biomarker test,’ Dr. Suthanthiran says. ‘Minimising the number of genes that we test for is just more practical and helps to give us a clearer path towards diagnosis and use in the clinic.’

Physicians can tailor a patient’s use of multiple immunosuppressive drugs by lowering the doses steadily, and monitoring the patient’s composite score over time. Any increase would suggest a somewhat higher dose of therapy is needed to keep the organ safe. EurekAlert normalised interferon-inducible protein 10 (IP-10) mRNA, and 18S rRNA) indicate that killer T immune cells are being recruited to the kidney in order to destroy what the body has come to recognise as alien tissue.

Altered protein shapes may explain differences in some brain diseases

It only takes one bad apple to spoil the bunch, and the same may be true of certain proteins in the brain. Studies have suggested that just one rogue protein (in this case, a protein that is misfolded or shaped the wrong way) can act as a seed, leading to the misfolding of nearby proteins. According to an NIH-funded study, various forms of these seeds — originating from the same protein — may lead to different patterns of misfolding that result in neurological disorders with unique sets of symptoms.
‘This study has important implications for Parkinson’s disease and other neurodegenerative disorders,’ said National Institute of Neurological Disorders and Stroke (NINDS) Director Story Landis, Ph.D. ‘We know that among patients with Parkinson’s disease, there are variations in the way that the disorder affects the brains. This exciting new research provides a potential explanation for why those differences occur.’
An example of such a protein is alpha-synuclein, which can accumulate in brain cells, causing synucleinopathies, multiple system atrophy, Parkinson’s disease, Parkinson’s disease with dementia (PDD), and dementia with Lewy bodies (DLB). In addition, misfolded proteins other than alpha-synuclein sometimes aggregate, or accumulate, in the same brains. For example, tau protein collects into aggregates called tangles, which are the hallmark of Alzheimer’s disease and are often found in PDD and DLB brains. Findings from this study raise the possibility that different structural shapes, or strains, of alpha-synuclein may contribute to the co-occurrence of synuclein and tau accumulations in PDD or DLB.
In the new study Jing L. Guo, Ph.D., and her colleagues from the University of Pennsylvania Perelman School of Medicine, Philadelphia, wanted to see if different preparations of synthetic alpha-synuclein fibrils would behave differently in neurons that were in a petri dish as well as in mouse brains. They discovered two strains of alpha-synuclein with distinct seeding activity in cultured neurons: while one strain (strain A) resulted in accumulation of alpha-synuclein alone, the other strain (strain B) resulted in accumulations of both alpha-synuclein and tau.
The researchers also injected strain A or strain B into the brains of mice engineered to make large amounts of human tau, and then monitored the formation of alpha-synuclein and tau aggregates at various time points. Mice that received injections of synuclein strain B showed more accumulation of tau — earlier and across more brain regions — compared to mice that received strain A.
The researchers also examined the brains of five patients who had PDD, some of whom also had Alzheimer’s. In this small sample, there was evidence of two different structural forms of alpha-synuclein, one in PDD brains and a distinctly different one in PDD/Alzheimer’s brains, supporting the existence of disease-specific strains of the protein in human diseases.
‘We are just starting to do work with human tissues,’ said Virginia M.Y. Lee, Ph.D., senior author of the study. ‘We are planning to look at the brains of patients who had Parkinson’s disease, PDD, or DLB to see if there are differences in the distribution of alpha-synuclein strains.’
Although the two strains used in this study were created in test tubes, the authors noted that in human brains, where the environment is much more complicated, the chances of forming additional disease-related alpha-synuclein strains may be greater.
‘These different strains not only can convert normal alpha-synuclein into pathological alpha-synuclein within one cell, they also can morph into new strains as they pass from cell to cell, acquiring the ability to serve as a template to damage both normal alpha-synuclein and other proteins,’ said Dr. Lee. ‘So certain strains, but not all strains, can act as templates to influence the development of other pathologies, such as tau tangles.’
She commented, ‘We are just beginning to understand some of these strains and there may be many others. We hope to find a way to identify strains that are relevant to human disease.’ NINDS