Scientists identify gene that controls aggressiveness in breast cancer cells

In a discovery that sheds new light on the aggressiveness of certain breast cancers, Whitehead Institute researchers have identified a transcription factor, known as ZEB1, that is capable of converting non-aggressive basal-type cancer cells into highly malignant, tumour-forming cancer stem cells (CSCs). Intriguingly, luminal breast cancer cells, which are associated with a much better clinical prognosis, carry this gene in a state in which it seems to be permanently shut down.

The researchers report that the ZEB1 gene is held in a poised state in basal non-CSCs, such that it can readily respond to environmental cues that consequently drive those non-CSCs into the dangerous CSC state. Basal-type breast carcinoma is a highly aggressive form of breast cancer. According to a 2011 epidemiological study, the 5-year survival rate for patients with basal breast cancer is 76%, compared with a roughly 90% 5-year survival rate among patients with other forms of breast cancer.

‘We may have found a root source, maybe the root source, of what ultimately determines the destiny of breast cancer cells—their future benign or aggressive clinical behavior,’ says Whitehead Founding Member Robert Weinberg, who is also a professor of biology at MIT and Director of the MIT/Ludwig Center for Molecular Oncology.

Transcription factors are genes that control the expression of other genes, and therefore have a significant impact on cell activities. In the case of ZEB1, it has an important role in the so-called epithelial-to-mesenchymal transition (EMT), during which epithelial cells acquire the traits of mesenchymal cells. Unlike the tightly-packed epithelial cells that stick to one another, mesenchymal cells are loose and free to move around a tissue. Previous work in the Weinberg lab showed that adult cancer cells passing through an EMT are able to self-renew and to seed new tumours with high efficiency, hallmark traits of CSCs.

Other earlier work led by Christine Chaffer, a postdoctoral researcher in the Weinberg lab, demonstrated that cancer cells are able to spontaneously become CSCs. Now Chaffer and Nemanja Marjanovic have pinpointed ZEB1, a key player in the EMT, as a gene critical for this conversion in breast cancer cells.

Breast cancers are categorised into at least five different subgroups based on their molecular profiles. More broadly these groups can be subdivided into the less aggressive ‘luminal’ subgroup or more aggressive ‘basal’ subgroup. The aggressive basal-type breast cancers often metastasise, seeding new tumours in distant parts of the body. Patients with basal breast cancer generally have a poorer prognosis than those with the less aggressive luminal-type breast cancer.

Chaffer and Marjanovic, a former research assistant in the Weinberg lab, studied non-CSCs from luminal- and basal-type cancers and determined that cells from basal cancers are able to switch relatively easily into CSC state, unlike luminal breast cancer cells, which tend to remain in the non-CSC state.

The scientists determined that the difference in ZEB1’s effects is due to the way the gene is marked in the two types of cancers. In luminal breast cancer cells, the ZEB1 gene is occupied with modifications that shut it down. But in basal breast cancer cells, ZEB1’s state is more tenuous, with repressing and activating markers coexisting on the gene. When these cells are exposed to certain signals, including those from TGFß, the repressive marks are removed and ZEB1 is expressed, thereby converting the basal non-CSCs into CSCs.

So what does this new insight mean for treating basal breast cancer?

‘Well, we know that these basal breast cancer cells are very plastic and we need to incorporate that kind of thinking into treatment regimes,’ says Chaffer. ‘As well as targeting cancer stem cells, we also need to think about how we can prevent the non-cancer stem cells from continually replenishing the pool of cancer stem cells. For example, adjuvant therapies that inhibit this type of cell plasticity may be a very effective way to keep metastasis at bay.’ Whitehead Institute

Scientists identify genetic cause of ‘spongy’ skin condition

Scientists have identified the genetic cause of a rare skin condition that causes the hands and feet to turn white and spongy when exposed to water.
The study, led by researchers from Queen Mary, University of London, has provided scientists with an insight into how the skin barrier functions and could help with research into a variety of conditions.
Diffuse non-epidermolytic palmoplantar keratoderma (NEPPK) is a rare condition in which individuals have thickened, yellowish skin over their palms and soles, thickened nails and suffer from excessive sweating. When their hands and feet are exposed to water, the skin quickly turns white and spongy and individuals are prone to fungal infections.
While prevalence in the general population is estimated at one in 40,000 it is much higher in northern Sweden (up to one in 200 people), where a single ancestral genetic mutation is believed to have originated and then subsequently passed down from generation to generation.
A team led by David Kelsell, Professor of Human Molecular Genetics at Queen Mary studied DNA from a number of families of British and Swedish origin in which the skin condition is present. Using high throughput DNA sequencing methods they were able to pin down the underlying cause of the condition to mutations in the AQP5 gene, which encodes a water channel protein known as aquaporin 5. All individuals who have inherited an AQP5 mutation will present with this rare skin condition.
Professor Kelsell, from the Blizard Institute at Barts and The London School of Medicine and Dentistry, Queen Mary, said: ‘Aquaporins are a family of proteins known as ‘the plumbing system for cells’ as they form pores which allow water to flow through cells rapidly.
‘We knew aquaporin 5 was present in high amounts in the sweat glands, salivary glands and tear ducts – routes by which the body loses water. Here we’ve demonstrated it is also found in the skin, with higher amounts in the hands and feet.’
Co-author Dr Diana Blaydon, also from the Blizard Institute, explained: ‘The AQP5 gene mutation appears to result in a protein that has a wider channel than usual, forming a bigger pore in the cell membrane allowing more water to permeate it.’
Further work is needed to understand exactly how the mutations identified and the associated changes in the skin barrier lead to NEPPK .
Professor Kelsell added: ‘While we’ve studied aquaporins in the skin, these results also give us an idea of what might be happening in internal aquaporins, which are found in structures throughout the body, including the kidneys, cornea and lungs.’ Queen Mary, University of London

Newly identified bone marrow stem cells reveal markers for ALS

Genes could give new direction for diagnostics and therapeutics research, says a TAU researcher

Amyotrophic Lateral Sclerosis (ALS) is a devastating motor neuron disease that rapidly atrophies the muscles, leading to complete paralysis. Despite its high profile — established when it afflicted the New York Yankees’ Lou Gehrig — ALS remains a disease that scientists are unable to predict, prevent, or cure.

Although several genetic ALS mutations have been identified, they only apply to a small number of cases. The ongoing challenge is to identify the mechanisms behind the non-genetic form of the disease and draw useful comparisons with the genetic forms.

Now, using samples of stem cells derived from the bone marrow of non-genetic ALS patients, Prof. Miguel Weil of Tel Aviv University’s Laboratory for Neurodegenerative Diseases and Personalized Medicine in the Department of Cell Research and Immunology and his team of researchers have uncovered four different biomarkers that characterise the non-genetic form of the disease. Each sample shows similar biological abnormalities to four specific genes, and further research could reveal additional commonalities. ‘Because these genes and their functions are already known, they give us a specific direction for research into non-genetic ALS diagnostics and therapeutics,’ Prof. Weil says.
To hunt for these biomarkers, Prof. Weil and his colleagues turned to samples of bone marrow collected from ALS patients. Though more difficult to collect than blood, bone marrow’s stem cells are easy to isolate and grow in a consistent manner. In the lab, he used these cells as cellular models for the disease. He ultimately discovered that cells from different ALS patients shared the same abnormal characteristics of four different genes that may act as biomarkers of the disease. And because the characteristics appear in tissues that are related to ALS — including in muscle, brain, and spinal cord tissues in mouse models of genetic ALS — they may well be connected to the degenerative process of the disease in humans, he believes.

Searching for the biological significance of these abnormalities, Prof. Weil put the cells under stress, applying toxins to induce the cells’ defence mechanisms. Healthy cells will try to fight off threats and often prove quite resilient, but ALS cells were found to be overwhelmingly sensitive to stress, with the vast majority choosing to die rather than fight. Because this is such an ingrained response, it can be used as a feature for drug screening for the disease, he adds.
Whether these biomarkers are a cause or consequence of ALS is still unknown. However, this finding remains an important step towards uncovering the mechanisms of the disease. Because these genes have already been identified, it gives scientists a clear direction for future research. In addition, these biomarkers could lead to earlier and more accurate diagnostics. American Friends of Tel Aviv University

Common cause for brain tumours in children

An overactive signalling pathway is a common cause in cases of pilocytic astrocytoma, the most frequent type of brain cancer in children. This was discovered by a network of scientists co-ordinated by the German Cancer Research Center (as part of the International Cancer Genome Consortium, ICGC). In all 96 cases studied, the researchers found defects in genes involved in a particular pathway. Hence, drugs can be used to help affected children by blocking components of the signalling cascade. The project is funded by the German Cancer Aid (Deutsche Krebshilfe) and the Federal Ministry of Education and Research (BMBF).
Brain cancer is the primary cause of cancer mortality in children. Even in cases when the cancer is cured, young patients suffer from the stress of a treatment that can be harmful to the developing brain. In a search for new target structures that would create more gentle treatments, cancer researchers are systematically analysing all alterations in the genetic material of these tumours. This is the mission of the PedBrain consortium, which was launched in 2010. Led by Professor Stefan Pfister from the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), the PedBrain researchers have now published the results of the first 96 genome analyses of pilocytic astrocytomas.
Pilocytic astrocytomas are the most common childhood brain tumours. These tumours usually grow very slowly. However, they are often difficult to access by surgery and cannot be completely removed, which means that they can recur. The disease may thus become chronic and have debilitating effects for affected children.

In previous work, teams of researchers led by Professor Dr. Stefan Pfister and Dr. David Jones had already discovered characteristic mutations in a major proportion of pilocytic astrocytomas. All of the changes involved a key cellular signalling pathway known as the MAPK signalling cascade. MAPK is an abbreviation for ‘mitogen-activated protein kinase.’ This signalling pathway comprises a cascade of phosphate group additions (phosphorylation) from one protein to the next – a universal method used by cells to transfer messages to the nucleus. MAPK signalling regulates numerous basic biological processes such as embryonic development and differentiation and the growth and death of cells.

‘A couple of years ago, we had already hypothesised that pilocytic astrocytomas generally arise from a defective activation of MAPK signalling,’ says David Jones, first author of the publication. ‘However, in about one fifth of the cases we had not initially discovered these mutations. In a whole-genome analysis of 96 tumours we have now discovered activating defects in three other genes involved in the MAPK signalling pathway that have not previously been described in astrocytoma.’

‘Aside from MAPK mutations, we do not find any other frequent mutations that could promote cancer growth in the tumours. This is a very clear indication that overactive MAPK signals are necessary for a pilocytic astrocytoma to develop,’ says study director Stefan Pfister. The disease thus is a prototype for rare cancers that are based on defects in a single biological signalling process.

In total, the genomes of pilocytic astrocytomas contain far fewer mutations than are found, for example, in medulloblastomas, a much more malignant pediatric brain tumour. This finding is in accordance with the more benign growth behaviour of astrocytomas. The number of mutations increases with the age of the affected individuals.

About one half of pilocytic astrocytomas develop in the cerebellum, the other 50 percent in various other brain regions. Cerebellar astrocytomas are genetically even more homogenous than other cases of the disease: In 48 out of 49 cases that were studied, the researchers found fusions between the BRAF gene, a central component of the MAPK signalling pathway, and various other fusion partners.

‘The most important conclusion from our results,’ says study director Stefan Pfister, ‘is that targeted agents for all pilocytic astrocytomas are potentially available to block an overactive MAPK signalling cascade at various points. We might thus in the future be able to also help children whose tumours are difficult to access by surgery.’ German Cancer Research Center

Researchers pinpoint sources of fibrosis-promoting cells that ravage organs

Scientists have tracked down and quantified the diverse origins of cells that drive fibrosis, the incurable, runaway wound-healing that scars and ultimately destroys organs such as the lungs, liver and kidneys.
Findings are from research conducted at Beth Israel Deaconess Medical Center, Harvard Medical School and Massachusetts Institute of Technology in Boston and continued at The University of Texas MD Anderson Cancer Center.
‘Answering a fundamental question about the origin of these cells by identifying four separate pathways involved in their formation allows us to look at ways to block those pathways to treat fibrosis,’ said senior author Raghu Kalluri, Ph.D., M.D., MD Anderson chair and professor of Cancer Biology. ‘It’s highly unlikely that a single drug will work.’
‘In addition to being lethal in its own right, fibrosis is a precursor for the development of cancer and plays a role in progression, metastasis and treatment resistance,’ Kalluri said. ‘In some cancers, such as pancreatic cancer, up to 95 percent of tumours consist of fibrotic stroma.’
Working in genetic mouse models of kidney fibrosis, Kalluri and colleagues identified four sources of cells called myofibroblasts, the dominant producers of collagen. Collagen normally connects damaged tissue and serves as scaffolding for wound-healing. As healing occurs, myofibroblasts and collagen usually diminish or disappear.
In fibrosis, collagen production marches on. While inflammation-inhibiting drugs can sometimes slow its progress, fibrosis now is treatable only by organ transplant.
The researchers employed a fate-mapping strategy to track cells on their way to becoming myofibroblasts. In fate mapping, the promoter of a protein expresses a colour inside a cell that remains with the cell no matter what happens to it until it dies, Kalluri said.
This was particularly important because two of the four sources of myofibroblasts start out as another cell type and differentiate into the collagen-producing cells.
Their experiments showed:
Half of all myofibroblasts are produced by the proliferation of pre-existing resting fibroblasts.
Another 35 percent are produced by mesenchymal stem cells that originate in the bone marrow, migrate to the ‘wound’ site, and then differentiate into myofibroblasts.
An additional 10 percent are the products of endothelial to mesenchymal transition (EndMT), in which blood vessel cells change into mesenchymal cells, then become myofibroblasts.
The final 5 percent come from epithelial to mesenchymal transition (EMT), in which functional cells of an organ sometimes behave like mesenchymal cells and myofibroblasts.
‘These differentiation pathways provide leads for drug targets,’ Kalluri said. ‘Combining an antiproliferation drug with therapies that block one or more differentiation pathways could provide a double hit to control fibrosis. We hope to synergise these pathways for the most effective therapeutic response.’ MD Anderson Cancer Center

Study reveals biological basis for sensory processing disorders in kids

Sensory processing disorders (SPD) are more prevalent in children than autism and as common as attention deficit hyperactivity disorder, yet it receives far less attention partly because it’s never been recognised as a distinct disease.
In a groundbreaking new study from UC San Francisco, researchers have found that children affected with SPD have quantifiable differences in brain structure, for the first time showing a biological basis for the disease that sets it apart from other neurodevelopmental disorders.
One of the reasons SPD has been overlooked until now is that it often occurs in children who also have ADHD or autism, and the disorders have not been listed in the Diagnostic and Statistical Manual used by psychiatrists and psychologists.
‘Until now, SPD hasn’t had a known biological underpinning,’ said senior author Pratik Mukherjee, MD, PhD, a professor of radiology and biomedical imaging and bioengineering at UCSF. ‘Our findings point the way to establishing a biological basis for the disease that can be easily measured and used as a diagnostic tool,’ Mukherjee said.
Children with SPD struggle with how to process stimulation, which can cause a wide range of symptoms including hypersensitivity to sound, sight and touch, poor fine motor skills and easy distractibility. Some SPD children cannot tolerate the sound of a vacuum, while others can’t hold a pencil or struggle with social interaction. Furthermore, a sound that one day is an irritant can the next day be sought out. The disease can be baffling for parents and has been a source of much controversy for clinicians, according to the researchers.
‘Most people don’t know how to support these kids because they don’t fall into a traditional clinical group,’ said Elysa Marco, MD, who led the study along with postdoctoral fellow Julia Owen, PhD. Marco is a cognitive and behavioral child neurologist at UCSF Benioff Children’s Hospital, ranked among the nation’s best and one of California’s top-ranked centers for neurology and other specialties, according to the 2013-2014 U.S. News & World Report Best Children’s Hospitals survey.
‘Sometimes they are called the ‘out of sync’ kids. Their language is good, but they seem to have trouble with just about everything else, especially emotional regulation and distraction. In the real world, they’re just less able to process information efficiently, and they get left out and bullied,’ said Marco, who treats affected children in her cognitive and behavioural neurology clinic.
‘If we can better understand these kids who are falling through the cracks, we will not only help a whole lot of families, but we will better understand sensory processing in general. This work is laying the foundation for expanding our research and clinical evaluation of children with a wide range of neurodevelopmental challenges – stretching beyond autism and ADHD,’ she said. University of California – San Francisco

Method to rapidly identify specific strains of illness

Researchers from Boston University School of Medicine (BUSM) and George Washington University (GWU) have developed a method to rapidly identify pathogenic species and strains causing illnesses, such as pneumonia, that could help lead to earlier detection of disease outbreaks and pinpoint effective treatments more quickly.
Emerging sequencing technologies have revolutionised the collection of genomic data for bioforensics, biosurveillance and for use in clinical settings. However, new approaches are being developed to analyse these large volumes of genetic data. Principal investigator Evan Johnson, PhD, assistant professor of medicine at BUSM, and Keith Crandall, PhD, director of the Computational Biology Institute at GWU, have created a statistical framework called Pathoscope to identify pathogenic genetic sequences from infected tissue samples.

This unique approach can accurately discriminate between closely related strains of the same species with little coverage of the pathogenic genome. The method also can determine the complete composition of known pathogenic and benign organisms in a biological sample. No other method can accurately identify multiple species or substrains in such a direct and automatic way. Current methods, such as the standard polymerase chain reaction detection or microscope observation, are often imperfect and time-consuming.
‘Pathoscope is like completing a complex jigsaw puzzle. Instead of manually assembling the puzzle, which can take days or weeks of tedious effort, we use a statistical algorithm that can determine how the picture should look without actually putting it together,’ said Johnson. ‘Our method can characterise a biological sample faster, more accurately and in a more automated fashion than any other approach out there.’

This work will be relevant in a broad range of scenarios. For example, in hospitals, this sequencing method will allow for rapid screening of thousands of infectious pathogens simultaneously, while being sensitive enough to monitor disease outbreaks caused by specific pathogenic strains. Veterinarians can even apply the method in their practices. This research is also applicable outside of clinical settings, allowing officials to quickly identify agents of bioterrorism (e.g. in a tainted letter) and harmful pathogens on hard surfaces, soil, water or in food products.
‘This approach has the ability to drastically change the process for identifying and combating pathogens, whether they’re in a hospital, veterinarian’s office or salmon stream,’ Crandall said. Researchers plan to conduct more studies to further verify the efficacy of their approach, and will soon begin to work with the aquaculture industry, helping fishermen with water-quality surveillance.

Boston University School of Medicine

How ‘obesity gene’ triggers weight gain

An international team of researchers has discovered why people with a variation of the FTO gene that affects one in six of the population are 70 per cent more likely to become obese.

A new study led by scientists at UCL, the Medical Research Council (MRC) and King’s College London Institute of Psychiatry shows that people with the obesity-risk FTO variant have higher circulating levels of the ‘hunger hormone’, ghrelin, in their blood. This means they start to feel hungry again soon after eating a meal.
Real-time brain imaging reveals that the FTO gene variation also changes the way the brain responds to ghrelin, and to images of food, in the regions linked with the control of eating and reward.

Together these findings explain for the first time why people with the obesity-risk variant of the FTO gene eat more and prefer higher calorie foods compared with those with the low-risk version, even before they become overweight.
Individuals with two copies of the obesity-risk FTO variant are biologically programmed to eat more. Not only do these people have higher ghrelin levels and therefore feel hungrier, their brains respond differently to ghrelin and to pictures of food – it’s a double hit.
Previous studies have revealed that single ‘letter’ variations in the genetic code of the FTO gene are linked with an increased risk of obesity, and this behaviour is present even in pre-school children.
Using a unique study design, scientists led by Dr Rachel Batterham (UCL Metabolism and Experimental Therapeutics) recruited 359 healthy male volunteers to examine the ‘real life’ effects of the FTO variation in humans.

They studied two groups of participants – those with two copies of the high obesity-risk FTO variant (AA group) and those with the low obesity-risk version (TT group). They matched the volunteers perfectly for body weight, fat distribution and social factors such as educational level to ensure that any differences they saw were linked to FTO, and not to other physical or psychological characteristics.
A group of 20 participants (10 AA and 10 TT) were asked to rate their hunger before and after a standard meal, while blood samples were taken to test levels of ghrelin – a hormone released by cells in the stomach that stimulates appetite.

Normally ghrelin levels rise before meals and fall after eating, but in this study men with the AA variation had much higher circulating ghrelin levels and felt hungrier after the meal than the TT group. This suggests that the obesity-risk variant (AA) group do not suppress ghrelin in a normal way after a meal.

The researchers then used functional magnetic resonance imaging (fMRI) in a different group of 24 participants to measure how the brain responds to pictures of high-calorie and low-calorie food images, and non-food items, before and after a meal. Again they took blood samples and asked the participants to rate on a scale how appealing the images were.
Individuals with the obesity-risk FTO variant rated pictures of high-calorie foods as more appealing after a meal than the low-risk group. In addition, the fMRI study results revealed that the brains of the two groups responded differently to food images (before and after a meal) and to circulating levels of ghrelin. The differences were most pronounced in the brain’s reward regions (known to respond to alcohol and recreational drugs) and in the hypothalamus – a non-conscious part of the brain that controls appetite.

Finally, the scientists looked at mouse and human cells to uncover what causes increased ghrelin production at a molecular level. They over-expressed the FTO gene and found that this altered the chemical make-up of ghrelin mRNA (the template for the ghrelin protein) leading to higher levels of ghrelin itself. Blood cells taken from the obesity-risk group also had higher levels of FTO gene expression and more ghrelin mRNA than the low-risk group.
Dr Rachel Batterham from UCL and University College London Hospitals, who led the study, said: ‘We’ve known for a while that variations in the FTO gene are strongly linked with obesity, but until now we didn’t know why. What this study shows us is that individuals with two copies of the obesity-risk FTO variant are biologically programmed to eat more. Not only do these people have higher ghrelin levels and therefore feel hungrier, their brains respond differently to ghrelin and to pictures of food – it’s a double hit. University College London

When fear factors in

A little bit of learned fear is a good thing, keeping us from making risky, stupid decisions or falling over and over again into the same trap. But new research from neuroscientists and molecular biologists at USC shows that a missing brain protein may be the culprit in cases of severe over-worry, where the fear perseveres even when there’s nothing of which to be afraid. In a study, researchers examined mice without the enzymes monoamine oxidase A and B (MAO A/B), which sit next to each other in a human’s genetic code as well as on that of mice.
Prior research has found an association between deficiencies of these enzymes in humans and developmental disabilities along the autism spectrum, such as clinical perseverance, the inability to change or modulate actions along with social context. ‘These mice may serve as an interesting model to develop interventions to these neuropsychiatric disorders,’ said University Professor and senior author Jean Shih, Boyd & Elsie Welin Professor of Pharmacology and Pharmaceutical Sciences at the USC School of Pharmacy and the Keck School of Medicine of USC. ‘The severity of the changes in the MAO A/B knockout mice compared to MAO A knockout mice supports the idea that the severity of autistic-like features may be correlated to the amounts of monoamine levels, particularly at early developmental stages.’
Shih is a world leader in understanding the neurobiological and biochemical mechanisms behind such behaviours as aggression and anxiety. In this latest study, Shih and her co-investigators — including lead author Chanpreet Singh, a USC doctoral student at the time of the research who is now at the California Institute of Technology (Caltech), and Richard Thompson, USC University Professor Emeritus and Keck Professor of Psychology and Biological Sciences at the USC Dornsife College of Letters, Arts and Sciences — expanded their past research on MAO A/B, which regulates neurotransmitters known as monoamines, including serotonin, norepinephrine and dopamine. Comparing mice without MAO A/B with their wild-type littermates, the researchers found significant differences in how the mice without MAO A/B processed fear and other types of learning. Mice without MAO A/B and wild mice were put in a new, neutral environment and given a mild electric shock. All mice showed learned fear the next time they were tested in the same environment, with the MAO A/B knockout mice displaying a greater degree of fear. But while wild mice continued to explore other new environments freely after the trauma, mice without the MAO A/B enzymes generalised their phobia to other contexts — their fear spilled over onto places where they should have no reason to be afraid. ‘The neural substrates processing fear in the brain is very different in these mice,’ Singh said. ‘Enhanced learning in the wrong context is a disorder and is exemplified by these mice. Their brain is not letting them forget. In a survival issue, you need to be able to forget things.’
The mice without MAO A and MAO B also learned eye-blink conditioning much more quickly than wild mice, which has also been noted in autistic patients but not in mice missing only one of these enzymes. Importantly, the mice without MAO A/B did not display any differences in learning for spatial skills and object recognition, the researchers found, ‘but in their ability to learn an emotional event, the [MAO A/B knockout mice] are very different than wild types,’ Singh said. He continued: ‘When both enzymes are missing, it significantly increases the levels of neurotransmitters, which causes developmental changes, which leads to differential expression of receptors that are very important for synaptic plasticity — a measure of learning — and to behavior that is quite similar to what we see along the autism spectrum.’ University of Southern California

Path of plaque build-up in brain shows promise as early biomarker for Alzheimer’s Disease

The trajectory of amyloid plaque build-up—clumps of abnormal proteins in the brain linked to Alzheimer’s disease—may serve as a more powerful biomarker for early detection of cognitive decline rather than using the total amount to gauge risk, researchers from Penn Medicine’s Department of Radiology suggest in a new study.
Amyloid plaque that starts to accumulate relatively early in the temporal lobe, compared to other areas and in particular to the frontal lobe, was associated with cognitively declining participants, the study found. ‘Knowing that certain brain abnormality patterns are associated with cognitive performance could have pivotal importance for the early detection and management of Alzheimer’s,’ said senior author Christos Davatzikos, PhD, professor in the Department of Radiology, the Center for Biomedical Image Computing and Analytics, at the Perelman School of Medicine at the University of Pennsylvania.

Today, memory decline and Alzheimer’s—which 5.4 million Americans live with today—is often assessed with a variety of tools, including physical and bio fluid tests and neuroimaging of total amyloid plaque in the brain. Past studies have linked higher amounts of the plaque in dementia-free people with greater risk for developing the disorder. However, it’s more recently been shown that nearly a third of people with plaque on their brains never showed signs of cognitive decline, raising questions about its specific role in the disease.
Now, Dr. Davatzikos and his Penn colleagues, in collaboration with a team led by Susan M. Resnick, PhD, Chief, Laboratory of Behavioral Neuroscience at the National Institute on Aging (NIA), used Pittsburgh compound B (PiB) brain scans from the Baltimore Longitudinal Study of Aging’s Imaging Study and discovered a stronger association between memory decline and spatial patterns of amyloid plaque progression than the total amyloid burden.
‘It appears to be more about the spatial pattern of this plaque progression, and not so much about the total amount found in brains. We saw a difference in the spatial distribution of plaques among cognitive declining and stable patients whose cognitive function had been measured over a 12-year period. They had similar amounts of amyloid plaque, just in different spots,’ Dr. Davatzikos said. ‘This is important because it potentially answers questions about the variability seen in clinical research among patients presenting plaque. It accumulates in different spatial patterns for different patients, and it’s that pattern growth that may determine whether your memory declines.’
The team, including first author Rachel A. Yotter, PhD, a postdoctoral researcher in the Section for Biomedical Image Analysis, retrospectively analysed the PET PiB scans of 64 patients from the NIA’s Baltimore Longitudinal Study of Aging whose average age was 76 years old. For the study, researchers created a unique picture of patients’ brains by combining and analysing PET images measuring the density and volume of amyloid plaque and their spatial distribution within the brain. The radiotracer PiB allowed investigators to see amyloid temporal changes in deposition.
Those images were then compared to California Verbal Learning Test (CLVT) scores, among other tests, from the participants to determine the longitudinal cognitive decline. The group was then broken up into two subgroups: the most stable and the most declining individuals (26 participants).

Despite lack of significant difference in the total amount of amyloid in the brain, the spatial patterns between the two groups (stable and declining) were different, with the former showing relatively early accumulation in the frontal lobes and the latter in the temporal lobes.

A particular area of the brain may be affected early or later depending on the amyloid trajectory, according to the authors, which in turn would affect cognitive impairment. Areas affected early with the plaque include the lateral temporal and parietal regions, with sparing of the occipital lobe and motor cortices until later in disease progression.

‘This finding has broad implications for our understanding of the relationship between cognitive decline and resistance and amyloid plaque location, as well as the use of amyloid imaging as a biomarker in research and the clinic,’ said Dr Davatzikos. ‘The next step is to investigate more individuals with mild cognitive impairment, and to further investigate the follow-up scans of these individuals via the BLSA study, which might shed further light on its relevance for early detection of Alzheimer’s.’ Perelman School of Medicine at the University of Pennsylvania