Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
November 2025
The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics
Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Accept settingsHide notification onlyCookie settingsWe may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.
Privacy policy
NCI generate largest data set of cancer-related genetic variations
, /in E-News /by 3wmediaScientists at the National Cancer Institute (NCI) have generated a data set of cancer-specific genetic variations and are making these data available to the research community.
This will help cancer researchers better understand drug response and resistance to cancer treatments.
‘To date, this is the largest database worldwide, containing 6 billion data points that connect drugs with genomic variants for the whole human genome across cell lines from nine tissues of origin, including breast, ovary, prostate, colon, lung, kidney, brain, blood, and skin,’ said Yves Pommier, M.D., Ph.D., chief of the Laboratory of Molecular Pharmacology at the NCI in Bethesda, Md., in an interview. ‘We are making this data set public for the greater community to use and analyse.
‘Opening this extensive data set to researchers will expand our knowledge and understanding of tumorigenesis [the process by which normal cells are transformed into cancer], as more and more cancer-related gene aberrations are discovered,’ Pommier added. ‘This comes at a great time, because genomic medicine is becoming a reality, and I am very hopeful this valuable information will change the way we use drugs for precision medicine.’
Pommier and colleagues conducted whole-exome sequencing of the NCI-60 human cancer cell line panel, which is a collection of 60 human cancer cell lines, and generated a comprehensive list of cancer-specific genetic variations. Preliminary studies conducted by the researchers indicate that the extensive data set has the potential to dramatically enhance understanding of the relationships between specific cancer-related genetic variations and drug response, which will accelerate the drug development process.
The NCI-60 human cancer cell line panel is used extensively by cancer researchers to discover novel anti-cancer drugs. To conduct whole-exome sequencing, Pommier and his NCI team extracted DNA from the 60 different cell lines, which represent cancers of the lung, colon, brain, ovary, breast, prostate, and kidney, as well as leukaemia and melanoma, and catalogued the genetic coding variants for the entire human genome. The genetic variations identified were of two types: type I variants corresponding to variants found in the normal population, and type II variants, which are cancer-specific.
The researchers then used the Super Learner algorithm to predict the sensitivity of cells harboring type II variants to 103 anti-cancer drugs approved by the FDA and an additional 207 investigational new drugs. They were able to study the correlations between key cancer-related genes and clinically relevant anti-cancer drugs, and predict the outcome.
The data generated in this study provide means to identify new determinants of response and mechanisms of resistance to drugs, and offer opportunities to target genomic defects and overcome acquired resistance, according to Pommier. To enable this, the researchers are making these data available to all researchers via two database portals, called the CellMiner database and the Ingenuity systems database. American Association for Cancer Research
RNA diagnostic test from paraffin improves lung cancer diagnosis over routine microscopic evaluation alone
, /in E-News /by 3wmediaKnowing what type of lung cancer a patient has is critical to determine which drug will work best and which therapies are safest in the era of personalised medicine. Key to making that judgement is an adequate tumour specimen for the pathologist to determine the tumour’s histology, a molecular description of a tumour based on the appearance of cells under a microscope. But not all specimens are perfect, and are sometimes so complex that a definitive diagnosis presents a challenge.
Scientists at the Universities of North Carolina and Utah have developed a histology expression predictor for the most common types of lung cancer: adenocarcinoma, carcinoid, small cell carcinoma and squamous cell carcinoma. This predictor can confirm histologic diagnosis in routinely collected paraffin samples of patients’ tumours and can complement and corroborate pathologists’ findings.
Neil Hayes, MD, MPH, associate professor of medicine and corresponding author of the study says, ‘As we learn more about the genetics of lung cancer, we can use that understanding to tailor therapies to the individual’s tumour. Gene expression profiling has great potential for improving the accuracy of the histologic diagnosis. Historically, gene expression analysis has required fresh tumour tissue that is usually not possible in routine clinical care. We desperately needed to extend the analysis of genes (aka RNA) to paraffin samples that are routinely generated in clinical care, rather than fresh frozen tissue. That is the major accomplishment of the current study and one of the first large scale endeavours in lung cancer to show this is possible.
‘Our predictor identifies the major histologic types of lung cancer in paraffin-embedded tissue specimens which is immediately useful in confirming the histologic diagnosis in difficult tissue biopsy specimens.’ Dr. Hayes is a member of UNC Lineberger Comprehensive Cancer Center.
The scientists used 442 samples of formalin-fixed paraffin-embedded specimens from lung cancer patients at UNC and the University of Utah Health Sciences Center as they developed their predictor.
First author Matthew Wilkerson, PhD, explains, ‘Our question was, ‘Can histology be predicted accurately by gene expression?’ We had lung cancer genes we already knew were differentially expressed in the different tumour types, so we measured them in tumour paraffin specimens. Next we developed a predictor in an independent set of tumour samples. We then compared the predictor to the actual clinical diagnosis and had additional pathologists review the samples. We showed accuracy as least as good as the pathologist. Our predictor exhibited a mean accuracy of 84 percent, and when compared with pathologist diagnoses, yielded similar accuracy and precision as the pathologists.’
Dr. Hayes summarizes, ‘Going beyond meeting a current need of increasing the accuracy of histologic diagnosis is expected to be the ultimate benefit of this technology. There are many additional characteristics of tumours that could be leveraged for clinical purposes once the world of gene expression analysis from paraffin is efficient from clinical samples. We anticipate additional uses such as predicting responses to additional therapies and prognostication as near term additions.’ University of North Carolina Health Care
The love hormone is two-faced
, /in E-News /by 3wmediaIt turns out the love hormone oxytocin is two-faced. Oxytocin has long been known as the warm, fuzzy hormone that promotes feelings of love, social bonding and well-being. It’s even being tested as an anti-anxiety drug. But new Northwestern Medicine research shows oxytocin also can cause emotional pain, an entirely new, darker identity for the hormone.
Oxytocin appears to be the reason stressful social situations, perhaps being bullied at school or tormented by a boss, reverberate long past the event and can trigger fear and anxiety in the future.
That’s because the hormone actually strengthens social memory in one specific region of the brain, Northwestern scientists discovered.
If a social experience is negative or stressful, the hormone activates a part of the brain that intensifies the memory. Oxytocin also increases the susceptibility to feeling fearful and anxious during stressful events going forward.
(Presumably, oxytocin also intensifies positive social memories and, thereby, increases feelings of well being, but that research is ongoing.)
The findings are important because chronic social stress is one of the leading causes of anxiety and depression, while positive social interactions enhance emotional health. The research, which was done in mice, is particularly relevant because oxytocin currently is being tested as an anti-anxiety drug in several clinical trials.
‘By understanding the oxytocin system’s dual role in triggering or reducing anxiety, depending on the social context, we can optimise oxytocin treatments that improve well-being instead of triggering negative reactions,’ said Jelena Radulovic, the senior author of the study and the Dunbar Professsor of Bipolar Disease at Northwestern University Feinberg School of Medicine.
This is the first study to link oxytocin to social stress and its ability to increase anxiety and fear in response to future stress. Northwestern scientists also discovered the brain region responsible for these effects — the lateral septum – and the pathway or route oxytocin uses in this area to amplify fear and anxiety.
The scientists discovered that oxytocin strengthens negative social memory and future anxiety by triggering an important signalling molecule — ERK (extracellular signal regulated kinases) — that becomes activated for six hours after a negative social experience. ERK causes enhanced fear, Radulovic believes, by stimulating the brain’s fear pathways, many of which pass through the lateral septum. The region is involved in emotional and stress responses. Northwestern University
Faster, simpler diagnosis for fibromyalgia may be on the horizon
, /in E-News /by 3wmediaResearchers have developed a reliable way to use a finger-stick blood sample to detect fibromyalgia syndrome, a complicated pain disorder that often is difficult to diagnose.
If it were someday made available to primary care physicians, the test could knock up to five years off of the wait for a diagnosis, researchers predict.
In a pilot study, the scientists used a high-powered and specialized microscope to detect the presence of small molecules in blood-spot samples from patients known to have fibromyalgia.
By ‘training’ the equipment to recognise that molecular pattern, the researchers then showed that the microscope could tell the difference between fibromyalgia and two types of arthritis that share some of the same symptoms.
Though more analysis is needed to identify exactly which molecules are related to development of the disorder itself, the researchers say their pilot data are promising.
‘We’ve got really good evidence of a test that could be an important aid in the diagnosis of fibromyalgia patients,’ said Tony Buffington, professor of veterinary clinical sciences at The Ohio State University and senior author of the study. ‘We would like this to lead to an objective test for primary care doctors to use, which could produce a diagnosis as much as five years before it usually occurs.’
Patients with fibromyalgia are often desperate by the time they receive treatment because of the lengthy process required to make a diagnosis. The main symptoms, persistent pain and fatigue, mimic many other conditions, so physicians tend to rule out other potential causes before diagnosing fibromyalgia. Additional symptoms include disrupted sleep and memory or thought problems. An estimated 5 million American adults have the disorder, according to the National Institute of Arthritis and Musculoskeletal and Skin Diseases.
‘The importance of producing a faster diagnosis cannot be overstated, because patients experience tremendous stress during the diagnostic process. Just getting the diagnosis actually makes patients feel better and lowers costs because of reductions in anxiety,’ said Kevin Hackshaw, associate professor of medicine, division of rheumatology and immunology, at Ohio State’s Wexner Medical Center and lead author of the study.
The technology used in this work is infrared microspectroscopy, which identifies the biochemical content of a blood sample based on where peaks of molecules appear in the infrared spectrum. The technology offers hints at the molecules present in the samples based on how molecular bonds vibrate when they are struck by light.
The spectroscopy works on dried blood, so just a few drops from a finger stick produce enough blood to run this test.
Researchers first obtained blood samples from patients diagnosed with fibromyalgia (14), rheumatoid arthritis (15) and osteoarthritis (12). These other conditions were chosen for comparison because they produce similar symptoms as fibromyalgia, but are easier to diagnose.
The scientists analysed each sample with the infrared microspectroscopy to identify the molecular patterns associated with each disease. This functioned as a ‘training’ phase of the study.
When the researchers then entered blinded blood samples into the same machinery, each condition was accurately identified based on its molecular patterns.
‘It separated them completely, with no misclassifications,’ Buffington said. ‘That’s very important. It never mistook a patient with fibromyalgia for a patient with arthritis. Clearly we need more numbers, but this showed the technique is quite effective.’
The researchers also analyzed some of the potential chemicals that could someday function as biomarkers in the fibromyalgia blood samples, but further studies are needed to identify the molecules responsible for the spectral patterns, he said. EurekAlert
Digital PCR technology detects brain-tumour-associated mutation in cerebrospinal fluid
, /in E-News /by 3wmediaMassachusetts General Hospital (MGH) researchers and their colleagues have used digital versions of a standard molecular biology tool to detect a common tumour-associated mutation in the cerebrospinal fluid (CSF) of patients with brain tumours. In their report, the investigators describe using advanced forms of the gene-amplification technology polymerase chain reaction (PCR) to analyse bits of RNA carried in membrane-covered sacs called extracellular vesicles for the presence of a tumour-associated mutation in a gene called IDH1.
‘Reliable detection of tumour-associated mutations in cerebrospinal fluid with digital PCR would provide a biomarker for monitoring and tracking tumours without invasive neurosurgery,’ says Xandra Breakefield, PhD, of the MGH Molecular Neurogenetics Unit, corresponding author of the paper. ‘Knowing the IDH1 mutation status of these tumours could help guide treatment decisions, since a number of companies are developing drugs that specifically target that mutant enzyme.’
Both normal and tumour cells regularly release extracellular vesicles, which contain segments of RNA, DNA or proteins and can be found in blood, CSF and other body fluids. A 2008 study from the MGH team was able to identify a relatively large tumour-associated mutation in extracellular vesicles from the blood of brain tumour patients, but most current diagnostic technologies that analyse CSF do not capture molecular or genetic information from central nervous system tumours.
In addition, explains Leonora Balaj, PhD, of MGH Neurology, co-lead author of the current report, ‘Tumour-specific EVs make up only a small percentage of the total number of EVs found in either blood or cerebrospinal fluid, so finding rare, single-nucleotide mutations in a sample of blood or CSF is very challenging. These digital PCR techniques allow the amplification of such hard-to-find molecules, dramatically improving the ability to identify tumour-specific changes without the need for biopsy.’
The current study used two forms of digital PCR – BEAMing and Droplet Digital PCR – to analyse extracellular vesicles in the blood and CSF of brain tumour patients and healthy controls for the presence of a single-nucleotide IDH1 mutation known to be associated with several types of cancer. Both forms of PCR were able to detect both the presence and abundance of mutant IDH1 in the CSF of 5 of the 8 patients known to have IDH1-mutant tumours. Two of the three mutation-positive tumours that had false negative results were low grade and the third was quite small, suggesting a need for future studies of more samples to determine how the grade and size of the tumours affect the ability to detect mutations. The failure to detect tumour-associated mutations in blood samples with this technology may indicate that CSF is a better source for extracellular vesicles from brain tumours.
The ability to non-invasively determine the genetic makeup of brain tumours could have a significant effect on patient care, explains study co-author Fred Hochberg, MD, MGH Neurology. ‘The current approach for patients who may have a brain tumour is first to have a brain scan and then a biopsy to determine whether a growth is malignant. Patients may have a second operation to remove the tumour prior to beginning radiation therapy and chemotherapy, but none of these treatments are targeted to the specific molecular nature of the tumour.
‘Having this sort of molecular diagnostic assay – whether in spinal fluid or blood – would allow us to immediately initiate treatment that is personalised for that patient without the need for surgical biopsy,’ he adds. ‘For some patients, the treatment could shrink a tumour before surgical removal, for others it may control tumour growth to the point that surgery is not necessary, which in addition to keeping patients from undergoing an unnecessary procedure, could save costs. We still have a long way to go to improve survival of these malignancies, so every improvement we can make is valuable.’ Massachusetts General Hospital
‘Dead’ gene comes to life, puts chill on inflammation, researchers find
, /in E-News /by 3wmediaA gene long presumed dead comes to life under the full moon of inflammation, Stanford University School of Medicine scientists have found.
The discovery may help explain how anti-inflammatory steroid drugs work. It also could someday lead to entirely new classes of anti-inflammatory treatments without some of steroids’ damaging side effects.
Chronic inflammation plays a role in cancer and in autoimmune, cardiovascular and neurodegenerative diseases, among others. Anti-inflammatory steroid drugs are widely prescribed for treating the inflammatory states that underlie or exacerbate these conditions.
‘Inflammation tells your body something is wrong,’ said the study’s senior author, Howard Chang, MD, PhD, professor of dermatology at Stanford and the recipient of an early career scientist award from the Howard Hughes Medical Institute. ‘But after it does its job of alerting immune cells to a viral or bacterial infection or spurring them to remove debris from a wound site, it has to get turned off before it causes harm to healthy tissue.’
That appears to be what the ‘undead’ gene does. Chang’s team, which identified it, has named it Lethe, after the stream in Greek mythology that makes the deceased who cross it forget their pasts.
The master regulator of inflammation inside cells — a bulky complex of several proteins, collectively called NF-kappa-B — is a transcription factor: It can switch on hundreds or even thousands of genes in a cell’s nucleus. When aroused by signals at the cell surface (typically delivered by circulating proteins or microbial components), NF-kappa-B activates pro-inflammatory genes, gearing that cell up to combat viral or bacterial assaults and respond to an injury.
Lethe, which the investigators found is activated by NF-kappa-B, subdues the master regulator’s massive influence on the genome, curtailing the inflammatory response.
NF-kappa-B also plays a key role in ageing. In a study published in 2007 in Genes and Development, Chang and his colleagues showed that old skin cells in which NF-kappa-B was temporarily inactivated began to act young. This finding has since been confirmed in other tissues and by other researchers.
To learn more about NF-kappa-B, Chang’s group decided to activate it and see which genes get turned on or off. But rather than ‘normal’ genes, which are essentially recipes for making proteins, they were curious about DNA sequences that generate long non-coding RNA molecules, or lncRNAs, which Chang helped to discover during the past decade.
RNA is best known as the intermediate material in classic protein production. Gene-reading machines in cells produce RNA transcripts, or copies, of protein-coding genes. These transcripts, known as messenger RNAs, are free to leave the cell nucleus for the cytoplasm, where they can transmit genes’ instructions to the protein-making machines situated there.
But lately RNA has been shown to play an increasing number of additional roles that have nothing to do with making proteins. The lncRNAs Chang studied are made by the same molecular machinery that protein-coding genes use to make a messenger RNA. Instead of heading for the cytoplasm to make proteins, though, lncRNAs can remain in the nucleus and directly regulate genes. More than 10,000 lncRNAs have now been discovered, although scientists are only beginning to understand what they do.
To see which lncRNAs were induced during inflammation, Chang and his colleagues exposed cultured fibroblasts from embryonic mice to TNF-alpha, an immune-signalling protein known to trigger NF-kappa-B. They found that levels of hundreds of lncRNAs inside the cells were driven either up or down by TNF-alpha stimulation.
Of those lncRNAs, a total of 54 were copied from so-called pseudogenes: DNA sequences that, while they closely resemble genes, don’t code for proteins. More than 11,000 pseudogenes — one for every two protein-coding genes — have been identified in the human genome. Scientists believe pseudogenes are copies of actual genes that, during the replication of some ancestral organism’s germ cell, were accidentally inserted into the genome and, redundant but harmless, came along for the evolutionary ride. Over the intervening eons, these genetic doppelgangers have roamed along the genome, mutated and decayed to the point where, it is believed, they no longer do anything at all.
‘Pseudogenes have been considered to be completely silent, ignored by cells’ DNA-reading machinery,’ Chang said. ‘But we got a real surprise. When a cell is subjected to an inflammatory stress signal, it’s like Night of the Living Dead.’
Equally surprising, Chang said, is that different signalling chemicals or microbial components (such as bits of bacterial cell walls or of viral DNA) wake up different groups of lncRNA-encoding DNA sequences, including pseudogenes. ‘They’re not really dead, after all. They just need very specific signals to set them in motion.’
Lethe was one such pseudogene tripped off by stimulation of NF-kappa-B. Lethe directly interfered with the complex’s ability to seat itself on appropriate DNA sequences, shutting down the pro-inflammatory genes the transcription factor ordinarily activates.
Several pseudogenes were activated in a selective manner. For example, TNF-alpha and another circulating signalling protein — but not microbial parts — activated Lethe.
Because some pseudogenes sit near protein-coding genes, some scientists have argued that the generation of RNA transcripts from the pseudogenes is simply an artifact of normal transcription of full-fledged protein-coding genes. ‘There’s a tendency to assume it’s some protein-coding gene that NF-kappa-B is really targeting, and to downplay the activation of a lncRNA as noise, a ‘ripple effect’ like the one you see when a boat goes by,’ Chang said.
But TNF-alpha failed to activate two nearby protein-coding genes on either side of Lethe. Reciprocally, stimuli that turned these two other genes on didn’t affect Lethe. Meanwhile, two other pseudogenes that very closely resemble Lethe were not activated by TNF-alpha, as Lethe was.
Another surprising finding was that dexamethasone, a commonly prescribed anti-inflammatory steroid drug, activates Lethe. Various other steroid hormones that are not anti-inflammatory in nature, such as vitamin D or oestrogen or a male steroid hormone, failed to boost Lethe levels.
‘We’re wondering whether there might be ways to artificially raise Lethe levels without steroids. These drugs have potentially deleterious side effects such as elevated blood pressure and blood sugar, thinning of bones and general suppression of the immune system,’ Chang said.
The study results suggest that not only Lethe but other pseudogenes undergo similarly selective awakenings to generate lncRNAs in response to different external inflammatory stimuli. ‘From the pattern of activated lncRNAs, you can tell what the cell has encountered — a virus, a bacteria or something else,’ Chang said. ‘These patterns of activation may be able to serve as an indicator of what kind of inflammatory situation or pathogenic invasion is responsible.’ Stanford University Medical Center
Could turning on a gene prevent diabetes?
, /in E-News /by 3wmediaType 2 diabetes accounts for 90 % of cases of diabetes around the world, afflicting 2.5 million Canadians and costing over 15 billion dollars a year in Canada. It is a severe health condition which makes body cells incapable of taking up and using sugar. Dr. Alexey Pshezhetsky of the Sainte-Justine University Hospital Research Center, affiliated with the University of Montreal, has discovered that the resistance to insulin seen in type 2 diabetics is caused partly by the lack of a protein that has not previously been associated with diabetes. This breakthrough could potentially help to prevent diabetes.
‘We discovered that Neu1, a protein nicknamed after ‘neuraminidase 1’, turns the absorption of sugar ‘on’ or ‘off’ in body cells, by regulating the amount of sialic acid on the surface of cells’, Dr. Pshezhetsky explains.
‘We are now trying to find a way to restore Neu1 levels and function in diabetes. If we can remove sialic acid residues from the cell surface, this will force the insulin receptor do its job of absorbing blood sugar properly. This could give doctors an opportunity to reduce the use of insulin therapy, and might help to reduce the diabetes epidemic, says Dr. Pshezhetsky.
Although type 2 diabetes is initially treated with diet, exercise and tobacco avoidance, doctors try to restore normal levels of insulin by prescribing it when this fails. The number of cases diagnosed around the world continues to grow incredibly quickly: according to the United States Center Disease Control, cases in that country grew on average by 82% between 1995 and 2010. In Oklahoma, the number increased by 226%. The disease accounts for 90% of diabetes cases around the world, and its prevalence has increased in parallel with the obesity epidemic. Obesity is in fact thought to cause this disease which can in turn lead to heart disease, strokes and even limb amputation due to poor circulation. University of Montreal
Digital PCR technology detects brain-tumor-associated mutation in cerebrospinal fluid
, /in E-News /by 3wmediaMassachusetts General Hospital (MGH) researchers and their colleagues have used digital versions of a standard molecular biology tool to detect a common tumour-associated mutation in the cerebrospinal fluid (CSF) of patients with brain tumours. In their report the investigators describe using advanced forms of the gene-amplification technology polymerase chain reaction (PCR) to analyse bits of RNA carried in membrane-covered sacs called extracellular vesicles for the presence of a tumour-associated mutation in a gene called IDH1.
‘Reliable detection of tumour-associated mutations in cerebrospinal fluid with digital PCR would provide a biomarker for monitoring and tracking tumours without invasive neurosurgery,’ says Xandra Breakefield, PhD, of the MGH Molecular Neurogenetics Unit, corresponding author of the paper. ‘Knowing the IDH1 mutation status of these tumours could help guide treatment decisions, since a number of companies are developing drugs that specifically target that mutant enzyme.’
Both normal and tumour cells regularly release extracellular vesicles, which contain segments of RNA, DNA or proteins and can be found in blood, CSF and other body fluids. A 2008 study from the MGH team was able to identify a relatively large tumour-associated mutation in extracellular vesicles from the blood of brain tumour patients, but most current diagnostic technologies that analyse CSF do not capture molecular or genetic information from central nervous system tumours.
In addition, explains Leonora Balaj, PhD, of MGH Neurology, co-lead author of the current report, ‘Tumour-specific EVs make up only a small percentage of the total number of EVs found in either blood or cerebrospinal fluid, so finding rare, single-nucleotide mutations in a sample of blood or CSF is very challenging. These digital PCR techniques allow the amplification of such hard-to-find molecules, dramatically improving the ability to identify tumour-specific changes without the need for biopsy.’
The current study used two forms of digital PCR – BEAMing and Droplet Digital PCR – to analyse extracellular vesicles in the blood and CSF of brain tumour patients and healthy controls for the presence of a single-nucleotide IDH1 mutation known to be associated with several types of cancer. Both forms of PCR were able to detect both the presence and abundance of mutant IDH1 in the CSF of 5 of the 8 patients known to have IDH1-mutant tumours. Two of the three mutation-positive tumours that had false negative results were low grade and the third was quite small, suggesting a need for future studies of more samples to determine how the grade and size of the tumours affect the ability to detect mutations. The failure to detect tumour-associated mutations in blood samples with this technology may indicate that CSF is a better source for extracellular vesicles from brain tumours.
The ability to non-invasively determine the genetic makeup of brain tumours could have a significant effect on patient care, explains study co-author Fred Hochberg, MD, MGH Neurology. ‘The current approach for patients who may have a brain tumour is first to have a brain scan and then a biopsy to determine whether a growth is malignant. Patients may have a second operation to remove the tumour prior to beginning radiation therapy and chemotherapy, but none of these treatments are targeted to the specific molecular nature of the tumour.
‘Having this sort of molecular diagnostic assay – whether in spinal fluid or blood – would allow us to immediately initiate treatment that is personalised for that patient without the need for surgical biopsy,’ he adds. ‘For some patients, the treatment could shrink a tumour before surgical removal, for others it may control tumour growth to the point that surgery is not necessary, which in addition to keeping patients from undergoing an unnecessary procedure, could save costs. We still have a long way to go to improve survival of these malignancies, so every improvement we can make is valuable.’ Massachusetts General Hospital
Amylin deposits in the brain may link dementia and diabetes
, /in E-News /by 3wmediaDeposits of a hormone called amylin in the brain may indicate risk for developing dementia and type 2 diabetes. The analysis by researchers at the NIA-funded Alzheimer’s Disease Center at the University of California, Davis, is the first to identify amylin deposits in post-mortem brain tissue from older people who had been diagnosed with Alzheimer’s disease or vascular dementia and diabetes. The findings also indicated that amylin may play a similar role in the Alzheimer’s disease process as amyloid protein, a hallmark of the disorder. Amylin (also known as islet amyloid polypeptide) is a hormone expressed and secreted with insulin. It influences blood sugar levels; when too much is secreted, risk for developing diabetes increases. These new findings show that amylin deposits can also build up and form plaques in the brain, similar to amyloid plaques found in Alzheimer’s disease. The researchers examined post-mortem brain tissue from three groups of volunteers older than 70 years: those who had diabetes and dementia (vascular dementia or Alzheimer’s), those who had Alzheimer’s but no diabetes, and those free of these disorders. Investigators found significant amylin deposits in the brain tissue of people with both dementia and diabetes. Surprisingly, they also found amylin in people with Alzheimer’s but without diabetes—perhaps because these individuals had undiagnosed insulin resistance. The healthy controls had few amylin deposits. The study, led by Dr. Florin Despa, may explain why people with diabetes are at risk for dementia. Like amyloid, amylin circulates in the blood and, during the disease process, is overproduced and not cleared normally, building up in the brain. Over time, both proteins lead to the loss of brain cells and brain damage. Amylin buildup in the brain’s blood vessels may also play a role in amyloid buildup and contribute to risk for Alzheimer’s, the study found. National Institute on Ageing
Variants at gene linked to kidney disease, sleeping sickness resistance
, /in E-News /by 3wmediaA new study led by University of Pennsylvania researchers involves a classic case of evolution’s fickle nature: a genetic mutation that protects against a potentially fatal infectious disease also appears to increase the risk of developing a chronic, debilitating condition.
Such a relationship exists between malaria and sickle cell anaemia. Individuals who carry a gene to resist the former are carriers for the latter. And recently scientific evidence has suggested that individuals who are resistant to human African trypanosomiasis, or sleeping sickness, are predisposed to developing chronic kidney disease. That could explain why African-Americans, who derive much of their ancestry from regions where sleeping sickness is endemic, suffer from kidney disease at high rates.
In a study Penn researchers and colleagues offer further insights into the unfinished story of the sleeping sickness-kidney disease connection by looking at a variety of African populations which had not been included in prior studies. Sequencing a portion of a gene believed to play a role in both diseases, the scientists discovered new candidate variants that are targeted by recent natural selection. Their findings lend support to the idea that the advantages of resistance to sleeping sickness, a disease which continues to affect tens of thousands of sub-Saharan Africans each year, may have played a role in the evolution of populations across Africa.
The research was led by Wen-Ya Ko and Sarah Tishkoff of the Department of Genetics in Penn’s Perelman School of Medicine. Tishkoff, a Penn Integrates Knowledge professor, also has an appointment in the School of Arts and Sciences’ Department of Biology. Ko now holds a research position at the Universidade do Porto in Portugal.
Earlier research had shown that African-Americans with kidney disease frequently had one of two mutations in the gene that codes for the ApoL1 protein, endowing it with the ability to kill the parasite species that causes the form of sleeping sickness found in eastern Africa. But, puzzlingly, these variants were found at high frequencies in the Yoruba, who live in western Africa’s Nigeria.
‘That was an interesting finding, but nobody had ever done a sequencing analysis of this gene across other African populations,’ Tishkoff said. ‘We wanted to know if we would find the same variants and would they be as common.’
Using the earlier findings as a starting point, the Penn-led study expanded the sequencing effort to look at a region of the ApoL1 gene in 10 different African populations, encompassing groups from both eastern and western Africa.
They found the G1 and G2 haplotypes in some of the other populations but only at low frequencies, suggesting there may be other variants playing a similar role. Sure enough, the researchers also turned up another variant shared across groups, which they called G3.
‘This novel G3 was quite common in some of the populations but surprisingly absent in the Yoruba,’ Tishkoff said.
Not only was this variant present in the other nine groups studied, but the Ko-Tishkoff team found signs that it had been positively selected, or ferried through generations at a rate above chance, perhaps because it exerted a protective effect against sleeping sickness.
And interestingly, G3 was most common in the Fulani, a pastoralist group which lives in western and central Africa. The authors note that human African sleeping sickness, which is typically transmitted by tse tse flies, might have been an important factor driving the migration patterns of the Fulani throughout history.
Because the Fulani ‘practice cattle herding, tse tse flies and the parasites they carry may have been more of a problem … than for some other groups,’ Ko said. ‘It may have been particularly advantageous for them to be able to resist the disease.’
The different variants, therefore, may reflect a variety of selective pressures, including population movements around Africa and the historical and ongoing evolutionary arms race between the sleeping sickness parasite and the human immune system. The fact that the Yoruba can resist a form of the disease that is no longer present in the area in which they live might be the result of changes either in the parasite or in the movement patterns of the Yoruba themselves. Kidney disease might thus be considered an evolutionary trade-off, the unintended consequence of a battle to resist a powerful and prevalent infectious disease. University of Pennsylvania