Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
November 2025
The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics
Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Accept settingsHide notification onlyCookie settingsWe may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.
Privacy policy
Researchers identify key mechanism in metabolic pathway that fuels cancers
, /in E-News /by 3wmediaIn a breakthrough discovery at the Children’s Medical Center Research Institute at UT Southwestern (CRI), a research team led by Ralph DeBerardinis, M.D., Ph.D., has taken a significant step in cracking the code of an atypical metabolic pathway that allows certain cancerous tumours to thrive, providing a possible roadmap for defeating such cancers.
Following up on Dr. DeBerardinis’ landmark finding in 2011, this most recent discovery identifies the triggering mechanism that plays a key role in causing a series of energy-generating chemical reactions known as the Krebs cycle to run in reverse.
‘With this finding, we have learned there are particular enzymes that work together to enable the reverse pathway to function, much like the tiny gears that turn in opposite directions to power a mechanical clock,’ said Dr. DeBerardinis, director of CRI’s Genetic and Metabolic Disease Program and associate professor in the Department of Pediatrics and the Eugene McDermott Center for Human Growth and Development at UT Southwestern Medical Center.
The identification of the mechanism could provide a future target for drugs that would attack tumours relying upon the reverse pathway for sustenance and growth. Tumours of this type, often found in the brain, lungs and kidneys, tend to be difficult for oncologists to treat because cells using the atypical pathway seem to resist existing treatments like chemotherapy.
‘Prior to this discovery, we didn’t have enough information about how to tap into the reverse metabolic pathway without disrupting the pathways that were operating in the typical, forward manner,’ said Dr. DeBerardinis, senior author of the study. ‘We now believe there is a specific enzyme critical to the reverse pathway that can be deleted without impairing normal function. If we can eliminate that enzyme, we may be able to starve tumours of their supply of building blocks for growth.’ UT Southwestern
Gene behind unhealthy adipose tissue identified
, /in E-News /by 3wmediaResearchers at Karolinska Institutet in Sweden have for the first time identified a gene driving the development of pernicious adipose tissue in humans. The findings imply that the gene may constitute a risk factor promoting the development of insulin resistance and type 2 diabetes.
Adipose tissue can expand in two ways: by increasing the size and/or the number of the fat cells. It is well established that subjects with few but large fat cells, so-called hypertrophy, display an increased risk of developing type 2-diabetes. In the current study, researchers identified a gene, EBF1, which according to these new findings drive the development of the unhealthy adipose tissue. This gene encodes a protein that controls a set of other genes, a so-called transcription factor, and regulates the formation of new fat cells as well as their metabolic function.
The investigators compared adipose tissue from subjects with small or large fat cells and found that EBF1 was closely linked to hypertrophy. Individuals with large fat cells had markedly lower EBF1 expression in their adipose tissue, displayed altered lipid mobilisation and were insulin resistant. Insulin resistance – a condition characterised by reduced cellular response to the hormone insulin that is released when the blood glucose levels rise after a meal – is an important causal factor underlying the increased risk of diabetes in individuals with hypertrophic adipose tissue. Insulin resistance leads to increased circulating levels of glucose and lipids in the blood.
In collaboration with Professor Mark C. Horowitz at Yale School of Medicine, U.S. the researchers also investigated genetically modified mice expressing lower levels of the murine variant of the human EBF1-gene. It turned out that these mice developed adipose hypertrophy and displayed increased lipid mobilisation from fat cells. When the mice were put on high-fat diet they became insulin resistant.
‘Our findings represent an important step forward in the understanding of how adipose tissue links to the development of metabolic disease’, comments Professor Peter Arner, one of the principal investigators at Karolinska Institutet along with Hui Gao, Niklas Mejhert and Mikael Rydén. ‘This is the first time someone has identified a gene which may cause malfunctioning adipose tissue in man. In the future, it might be possible to develop drugs that improve EBF1 function in adipose tissue, which could be used to treat type 2-diabetes.’ Karolinska Institute
Alzheimer’s disease, other conditions linked to prion-like proteins
, /in E-News /by 3wmediaA new theory about disorders that attack the brain and spinal column has received a significant boost from scientists at Washington University School of Medicine in St. Louis.
The theory attributes these disorders to proteins that act like prions, which are copies of a normal protein that have been corrupted in ways that cause diseases. Scientists previously thought that only one particular protein could be corrupted in this fashion, but researchers in the laboratory of Marc Diamond, MD, report that another protein linked to Alzheimer’s disease and many other neurodegenerative conditions also behaves very much like a prion.
Diamond’s lab found that the protein, known as tau, could be corrupted in different ways, and that these different forms of corruption — known as strains — were linked to distinct forms of damage to the brain.
‘If we think of these different tau strains as different pathogens, then we can begin to describe many human disorders linked to tau based on the strains that underlie them,’ said senior author Diamond, the David Clayson Professor of Neurology. ‘This may mean that certain antibodies or drugs, for example, will work better against certain disorders than others.’
Prions are composed of normal proteins that have folded into an abnormal shape. They aren’t alive, but their effects can be similar to infectious microbes such as bacteria or viruses. Their unusual structure lets prions replicate themselves through a kind of molecular peer pressure: When a prion interacts with identical but normally folded proteins, it can cause these proteins to become prions, which are small aggregates, or clumps, that can spread from cell to cell.
Prions first came to popular attention in the 1990s with the emergence of mad cow disease, a disorder that destroys the brains of cattle. Scientists linked a few cases of a similar condition in people to consumption of meat from infected cows. Researchers eventually determined that the disorder was caused by a distinct strain of prions made by the sickened cattle.
Scientists had suspected that prion-like forms of a protein called alpha-synuclein contribute to Parkinson’s disease and other conditions, and prion-like versions of proteins known as SOD1 and TDP43 may cause amyotrophic lateral sclerosis, commonly known as Lou Gehrig’s disease.
Scientists also had identified tau clumps in 25 different neurodegenerative disorders, known collectively as tauopathies. This hinted at potential prion-like behaviour on the part of tau. In 2009, Diamond’s group found that tau misfolds into several different shapes in a test tube.
‘When we infected a cell with one of these misshapen copies of tau and allowed the cell to reproduce, the daughter cells contained copies of tau misfolded in the same fashion as the parent cell,’ Diamond said. ‘Further, if we extracted the tau from an affected cell, we could reintroduce it to a naïve cell, where it would recreate the same aggregate shape. This proves that each of these differently shaped copies of the tau protein can form stable prion strains, like a virus or a bacteria, that can be passed on indefinitely.’
Diamond used the tau prions made in cells to infect mouse brains, showing that differently shaped strains caused different levels of brain damage. He isolated the prions from the mice, grew them in cell culture, and then infected other mice. Throughout these transfers, each particular prion strain continued to be misfolded in the same shape and to cause damage in the same fashion.
Finally, the researchers examined clumps of tau from the brains of 28 patients after they died. Each of the patients was known to have one of five forms of tauopathy.
‘Each disease had a unique tau prion strain or combination of strains associated with it,’ he said. ‘For example, we isolated the same tau prion strain from nearly every patient with Alzheimer’s disease we examined.’
Brain samples from patients with the progressive neurological disorders corticobasal degeneration and Pick’s disease also typically had the same tau prion strains or mixtures of strains. Washington University School of Medicine
New evidence links air pollution to autism, schizophrenia
, /in E-News /by 3wmediaNew research from the University of Rochester Medical Center describes how exposure to air pollution early in life produces harmful changes in the brains of mice, including an enlargement of part of the brain that is seen in humans who have autism and schizophrenia.
As in autism and schizophrenia, the changes occurred predominately in males. The mice also performed poorly in tests of short-term memory, learning ability, and impulsivity.
The new findings are consistent with several recent studies that have shown a link between air pollution and autism in children. Most notably, a 2013 study in JAMA Psychiatry reported that children who lived in areas with high levels of traffic-related air pollution during their first year of life were three times as likely to develop autism.
‘Our findings add to the growing body of evidence that air pollution may play a role in autism, as well as in other neurodevelopmental disorders,’ said Deborah Cory-Slechta, Ph.D., professor of Environmental Medicine at the University of Rochester and lead author of the study, published in the journal Environmental Health Perspectives.
In three sets of experiments, Cory-Slechta and her colleagues exposed mice to levels of air pollution typically found in mid-sized U.S. cities during rush hour. The exposures were conducted during the first two weeks after birth, a critical time in the brain’s development. The mice were exposed to polluted air for four hours each day for two four-day periods.
In one group of mice, the brains were examined 24 hours after the final pollution exposure. In all of those mice, inflammation was rampant throughout the brain, and the lateral ventricles — chambers on each side of the brain that contain cerebrospinal fluid — were enlarged two-to-three times their normal size.
‘When we looked closely at the ventricles, we could see that the white matter that normally surrounds them hadn’t fully developed,’ said Cory-Slechta. ‘It appears that inflammation had damaged those brain cells and prevented that region of the brain from developing, and the ventricles simply expanded to fill the space.’
The problems were also observed in a second group of mice 40 days after exposure and in another group 270 days after exposure, indicating that the damage to the brain was permanent. Brains of mice in all three groups also had elevated levels of glutamate, a neurotransmitter, which is also seen in humans with autism and schizophrenia.
Most air pollution is made up mainly of carbon particles that are produced when fuel is burned by power plants, factories, and cars. For decades, research on the health effects of air pollution has focused on the part of the body where the damage is most obvious — the lungs. That research began to show that different-sized particles produce different effects. Larger particles — the ones regulated by the Environmental Protection Agency (EPA) — are actually the least harmful because they are coughed up and expelled. But many researchers believe that smaller particles known as ultrafine particles — which are not regulated by the EPA — are more dangerous, because they are small enough to travel deep into the lungs and be absorbed into the bloodstream, where they can produce toxic effects throughout the body.
That assumption led Cory-Slechta to design a set of experiments that would show whether ultrafine particles have a damaging effect on the brain, and if so, to reveal the mechanism by which they inflict harm
‘I think these findings are going to raise new questions about whether the current regulatory standards for air quality are sufficient to protect our children,’ said Cory-Slechta. University of Rochester Medical Center
Prostate cancer biomarkers identified in seminal fluid
, /in E-News /by 3wmediaImproved diagnosis and management of one of the most common cancers in men – prostate cancer – could result from research at the University of Adelaide, which has discovered that seminal fluid (semen) contains biomarkers for the disease.
Results of a study have shown that the presence of certain molecules in seminal fluid indicates not only whether a man has prostate cancer, but also the severity of the cancer.
Speaking in the lead-up to Men’s Health Week (9-15 June), University of Adelaide research fellow and lead author Dr Luke Selth says the commonly used PSA (prostate specific antigen) test is by itself not ideal to test for the cancer.
‘While the PSA test is very sensitive, it is not highly specific for prostate cancer,’ Dr Selth says. ‘This results in many unnecessary biopsies of non-malignant disease. More problematically, PSA testing has resulted in substantial over-diagnosis and over-treatment of slow growing, non-lethal prostate cancers that could have been safely left alone.
‘Biomarkers that can accurately detect prostate cancer at an early stage and identify aggressive tumours are urgently needed to improve patient care. Identification of such biomarkers is a major focus of our research,’ he says.
Dr Selth, a Young Investigator of the Prostate Cancer Foundation (USA), is a member of the Freemasons Foundation Centre for Men’s Health at the University of Adelaide and is based in the University’s Dame Roma Mitchell Cancer Research Laboratories.
Using samples from 60 men, Dr Selth and colleagues discovered a number of small ribonucleic acid (RNA) molecules called microRNAs in seminal fluid that are known to be increased in prostate tumours. The study showed that some of these microRNAs were surprisingly accurate in detecting cancer.
‘The presence of these microRNAs enabled us to more accurately discriminate between patients who had cancer and those who didn’t, compared with a standard PSA test,’ Dr Selth says. ‘We also found that the one specific microRNA, miR-200b, could distinguish between men with low grade and higher grade tumours. This is important because, as a potential prognostic tool, it will help to indicate the urgency and type of treatment required.’ University of Adelaide
Biomarkers accurately distinguish mesothelioma from non-cancerous tissue
, /in E-News /by 3wmediaScientists have identified four biomarkers that may help resolve the difficult differential diagnosis between malignant pleural mesothelioma (MPM) and non-cancerous pleural tissue with reactive mesothelial proliferations (RMPs). This is a frequent differential diagnostic problem in pleural biopsy samples taken from patients with clinical suspicion of MPM. The ability to make more accurate diagnoses earlier may facilitate improved patient outcomes.
‘Our goal was to identify microRNAs (miRNAs) that can aid in the differential diagnosis of MPM from RMPs,’ says lead investigator Eric Santoni-Rugiu, MD, PhD, of the Laboratory of Molecular Pathology at the Department of Pathology of Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark. miRNAs, which are small, non-coding RNA strands composed of approximately 22 nucleotides, have been shown to be potential diagnostic, prognostic, and predictive markers in other cancers.
After screening 742 miRNAs, the investigators identified miR-126, miR-143, miR-145, and miR-652 as the best candidates to diagnose MPM. Using results from these four miRNAs, tissue samples from patients with known outcomes could be classified as MPM or non-cancerous with an accuracy of 0.94, sensitivity of 0.95, and specificity of 0.93. Further, an association between miRNA levels and patient survival could be made.
‘The International Mesothelioma Interest Group (IMIG) recommends that a diagnostic marker of MPM have sensitivity/specificity of >0.80, and these criteria are fulfilled by our miRNA classifier,’ comments Dr. Santoni-Rugiu. The authors suggest that diagnostic accuracy can be further improved by adding immunohistochemical testing of miRNA targets in biopsy tissue to their miRNA assay. This combined assay could enable analysis of samples with low tumour cell count.
MPM, which is linked to long-term asbestos exposure, is an aggressive cancer originating from the mesothelial cells that line the membrane surrounding each lung, known as the pleura. Distinguishing MPM from non-cancerous abnormalities, such as reactive mesothelial hyperplasia or fibrous pleurisy (organising pleuritis), can be challenging as there are no generally accepted diagnostic biomarkers for differentiating these two conditions. As a result, patients often present with the disease when they are already at an advanced stage, and less than 20% of patients can be successfully treated surgically.
The current study, however, suggests that miRNAs may provide new opportunities for improving the accuracy of the differential diagnosis between MPM and noncancerous pleural conditions. If further validated, the combination of ISH for miRNAs with immunohistocemical testing of miRNA targets may therefore have the potential to aid in the diagnosis, and thus outcome, of MPM. EurekAlert
Three gene networks discovered in autism, may present treatment targets
, /in E-News /by 3wmediaHakon Hakonarson, MD, PhDA large new analysis of DNA from thousands of patients has uncovered several underlying gene networks with potentially important roles in autism. These networks may offer attractive targets for developing new autism drugs or repurposing existing drugs that act on components of the networks.
Furthermore, one of the autism-related gene pathways also affects some patients with attention-deficit hyperactivity disorder (ADHD) and schizophrenia — raising the possibility that a class of drugs may treat particular subsets of all three neurological disorders.
‘Neurodevelopmental disorders are extremely heterogeneous, both clinically and genetically,’ said study leader Hakon Hakonarson, MD, PhD, director of the Center for Applied Genomics at The Children’s Hospital of Philadelphia (CHOP). ‘However, the common biological patterns we are finding across disease categories strongly imply that focusing on underlying molecular defects may bring us closer to devising therapies.’
The study by Hakonarson and colleagues draws on gene data from CHOP’s genome center as well as from the Autism Genome Project and the AGRE Consortium, both part of the organisation Autism Speaks.
Autism spectrum disorders (ASDs), of which autism is the best known, are a large group of heritable childhood neuropsychiatric conditions characterised by impaired social interaction and communication, as well as by restricted behaviours. The authors note that recent investigations suggest that up to 400 distinct ASDs exist.
The current research is a genome-wide association study comparing more than 6,700 patients with ASDs to over 12,500 control subjects. It was one of the largest-ever studies of copy number variations (CNVs) in autism. CNVs are deletions or duplications of DNA sequences, as distinct from single-base changes in DNA.
The study team focused on CNVs within defective gene family interaction networks (GFINs) — groups of disrupted genes acting on biological pathways. In patients with autism, the team found three GFINs in which gene variants perturb how genes interact with proteins. Of special interest to the study group was the metabotropic glutamate receptor (mGluR) signalling pathway, defined by the GRM family of genes that affects the neurotransmitter glutamate, a major chemical messenger in the brain regulating functions such as memory, learning, cognition, attention and behaviour.
Hakonarson’s team and other investigators previously reported that 10 percent or more of ADHD patients have CNVs in genes along the glutamate receptor metabotropic (GRM) pathway, while other teams have implicated GRM gene defects in schizophrenia.
Based on these findings, Hakonarson is planning a clinical trial in selected ADHD patients of a drug that activates the GRM pathway. ‘If drugs affecting this pathway prove successful in this subset of patients with ADHD, we may then test these drugs in autism patients with similar gene variants,’ he said.
In ASDs and other complex neurodevelopmental disorders, common gene variants often have very small individual effects, while very rare gene variants exert stronger effects. Many of these genes with very rare defects belong to gene families that may offer druggable targets.
The three gene families found in the current study have notable functional roles. The CALM1 network includes the calmodulin family of proteins, which regulate cell signaling and neurotransmitter function. The MXD-MYC-MAX gene network is involved in cancer development, and may underlie links reported between autism and specific types of cancer. Finally, members of the GRM gene family affect nerve transmission, neuron formation, and interconnections in the brain — processes highly relevant to ASDs. Children’s Hospital of Philadelphia
Scientists take totally tubular journey through brain cells
, /in E-News /by 3wmediaIn a new study, scientists at the National Institutes of Health took a molecular-level journey into microtubules, the hollow cylinders inside brain cells that act as skeletons and internal highways. They watched how a protein called tubulin acetyltransferase (TAT) labels the inside of microtubules. The results answer long-standing questions about how TAT tagging works and offer clues as to why it is important for brain health.
Microtubules are constantly tagged by proteins in the cell to designate them for specialized functions, in the same way that roads are labelled for fast or slow traffic or for maintenance. TAT coats specific locations inside the microtubules with a chemical called an acetyl group. How the various labels are added to the cellular microtubule network remains a mystery. Recent findings suggested that problems with tagging microtubules may lead to some forms of cancer and nervous system disorders, including Alzheimer’s disease, and have been linked to a rare blinding disorder and Joubert Syndrome, an uncommon brain development disorder.
‘This is the first time anyone has been able to peer inside microtubules and catch TAT in action,’ said Antonina Roll-Mecak, Ph.D., an investigator at the NIH’s National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, Maryland, and the leader of the study.
Microtubules are found in all of the body’s cells. They are assembled like building blocks, using a protein called tubulin. Microtubules are constructed first by aligning tubulin building blocks into long strings. Then the strings align themselves side by side to form a sheet. Eventually the sheet grows wide enough that it closes up into a cylinder. TAT then bonds an acetyl group to alpha tubulin, a subunit of the tubulin protein.
Some microtubules are short-lived and can rapidly change lengths by adding or removing tubulin pieces along one end, whereas others remain unchanged for longer times. Recognising the difference may help cells function properly. For example, cells may send cargo along stable microtubules and avoid ones that are being rebuilt. Cells appear to use a variety of chemical labels to describe the stability of microtubules.
‘Our study uncovers how TAT may help cells distinguish between stable microtubules and ones that are under construction,’ said Dr. Roll-Mecak. According to Dr. Roll-Mecak, high levels of microtubule tagging are unique to nerve cells and may be the reason that they have complex shapes allowing them to make elaborate connections in the brain.
For decades scientists knew that the insides of long-lived microtubules were often tagged with acetyl groups by TAT. Changes in acetylation may influence the health of nerve cells. Some studies have shown that blocking this form of microtubule tagging leads to nerve defects, brain abnormalities or degeneration of nerve fibres. Since the discovery of microtubule acetylation, scientists have been puzzled about how TAT accesses the inside of the microtubules and how the tagging reaction happens.
To watch TAT at work, Dr. Roll-Mecak and her colleagues took high resolution movies of individual TAT molecules interacting with microtubules in real time. They saw that TAT surfs through the inside of microtubules and although it can find acetylation sites quickly, the process of adding the tag occurs very slowly.
In general, tagging reactions work like keys fitting into locks: the better the key fits, the faster the lock can open. Similarly, the rate of the reactions is determined by how well TAT molecules fit around tagging sites.
Dr. Roll-Mecak’s team investigated this idea by using a technique called X-ray crystallography to look at how atoms on TAT molecules interact with acetylation sites on tubulin molecules. Their results suggested that TAT fit poorly around the sites.
‘It looks as though TAT can easily journey through microtubules spotting acetylation sites but may only label those that are stable for longer periods of time,’ said Dr. Roll-Mecak.
This may help cells identify the microtubules they need to rapidly change shapes or send cargo to other places. Further studies may help researchers understand how microtubule tagging influences nerve cells in health and disease. National Institute of Neurological Disorders and Stroke
Involving a genetic health care professional may improve quality, reduce unnecessary testing
, /in E-News /by 3wmediaA new Moffitt Cancer Center study shows that counselling from a genetic health care provider before genetic testing educates patients and may help reduce unnecessary procedures.
Up to 10 percent of cancers are inherited, meaning a person was born with an abnormal gene that increases their risk for cancer. ‘Pre-test genetic counselling in which a health care provider takes a thorough family history and discusses the potential risks and benefits of genetic testing is standard of care as recommended by the American Society of Clinical Oncology and National Society of Genetic Counselors,’ said Tuya Pal, M.D., a board-certified geneticist at Moffitt and senior author of the paper.
In the Moffitt study, researchers surveyed 473 patients who had genetic testing for BRCA1 and BRCA2 gene mutations, which are associated with an increased risk of breast and ovarian cancers. Among study participants who saw a board-certified geneticist or genetic counsellor, almost all recalled having a pre-test discussion, compared to only 59 percent of those who did not. These findings suggest large differences in quality of care across providers who order testing.
The researchers also suggest there may be cost-of-care implications when genetic health care providers are involved. ‘Our results suggest that genetic health care providers are less likely to order more expensive comprehensive genetic testing, when less expensive testing may be appropriate,’ said Deborah Cragun, Ph.D., lead study author and post-doctoral fellow at Moffitt. ‘Our study found that in cases where less expensive testing may be appropriate, genetic health care providers ordered comprehensive testing for 9.5 percent of participants, compared to 19.4 percent when tests were ordered by other health care providers. At the time of data collection, comprehensive genetic testing cost approximately $4,000, compared to $400 for the less expensive testing.’
The findings are important, noted researchers, because costs and quality of care are often the focus of policy-level decisions in health care. Moffitt Cancer Center
Found: ‘master’ protein in pulmonary fibrosis
, /in E-News /by 3wmediaThis spring has brought rare but tangible moments of progress against the devastating lung disease idiopathic pulmonary fibrosis (IPF), which afflicts millions of people worldwide. Two drugs recently showed promise in clinical trials, and now a study offers both an unprecedentedly deep explanation of how the disease progresses and introduces another potential therapeutic avenue.
The new study features a central figure: an evolutionarily ancient protein called ‘chitinase 3-like-1’ (CHI3L1). The authors implicate it as the ‘master regulator’ of what appears to be a tragically errant repair response to the mysterious lung injuries that give rise to the disease. In describing how CHI3L1 works in IPF, the research also points to a strategy for treatment.
The report demonstrates that CHI3L1 is produced to help in response to the injury. It feeds back to protect injured cells from dying and simultaneously stimulates tissue repair to patch the damage that has occurred. But the study also shows how this dual role contributes to the ultimate problem. If IPF resulted from a single injury, like a paper cut, CHI3L1 would decrease the injury and cause local scarring while it restored tissue integrity. In that case, the amount of scarring would not be excessive and tissue function would not be significantly altered. But in IPF lungs, cells undergo ongoing injury, so CHI3L1 is chronically elevated and scar tissue accumulates. As CHI3L1 rescues cell after cell, the scarring builds up, eventually compromising the lung’s ability to breathe. In IPF, 70 percent of patients die within five years.
‘The CHI3L1 is doing exactly what it is supposed to do — it is designed to shut off cell death and decrease injury,’ said Dr. Jack A. Elias, a co-senior author of the study and dean of medicine and biological sciences at Brown University. He is joined on the paper by a host of his former colleagues and students at Yale University where the research occurred. ‘But at the same time it is decreasing cell death it is driving the fibrosis. You’ve got this ongoing injury so you’ve got these ongoing attempts to shut off injury which stimulate scarring.’
They compared tissues and serum from normal patients, outpatients with IPF, and patients with an acute exacerbation (AE) of IPF. In AE, widespread lung injury is superimposed on the pulmonary fibrosis, which frequently occurs before patients die. In lung biopsies and serum, they found that CHI3L1 levels are elevated in both tissue compartments in the outpatients with IPF and that the levels of CHI3L1 correlated with their disease progression. In the patients with AE, elevated levels of CHI3L1 were not noted, showing that the levels of CHI3L1 decrease right before the patients die.
‘This demonstrates that the CHI3L1 plays a key role in controlling lung injury in this setting,’ Elias said.
After documenting that elevated levels of CHI3L1 correlate with ongoing fibrosis and scarring and that a lack of the protein associates with widespread cell death, the team engaged in several manipulations of CHI3L1 in mice to see how levels and the clinical outcomes might be related. (In mice, CHI3L1 is also called BRP-39.)
Scientists can induce an IPF-like response in mice using a drug called bleomycin. In mice given bleomycin, the researchers found that the levels of CHI3L1 declined at first and then surged. At the times when the protein levels were low, cell damage occurred, and when the protein surged, the excessive scarring set in.
In previous research the team had engineered several lines of genetically modified mice. Some were transgenic and can produce CHI3l1 on chemically delivered command. Other mice were engineered to never produce BRP-39 — the mouse version of CHI3L1 — at all.
Using these mice, the researchers found that if they triggered CHI3L1 production early after administering bleomycin, the mice fared well, experiencing less injury, less damage and less scarring than controls. If they waited several days after bleomycin to trigger CHI3L1, the mice fared very poorly and scarring and mortality went up.
Mice who couldn’t produce CHI3L1/BRP-39, had acute lung cell damage, somewhat like AE patients who have a relative deficiency of CHI3L1. However, without CHI3L1 they did not generate much scarring.
All of these findings were supplemented with several other experiments that were designed to learn how CHI3L1 interacts with other cells involved in the tissue repair response in both human and mouse lungs. The experiments, including studies conducted in a bioengineered 3-D model of lung tissue seeded with relevant cells, showed that CHI3L1 regulates a pathway that recruits cells such as macrophages and fibroblasts that produce the scarring, or fibrosis.
In all, the results show that CHI3L1 plays a fundamental role in the course, if not the origin, of IPF. An ongoing buildup of it results in excessive scarring. Too little and cells die much more frequently.
‘To my knowledge this is the first comprehensive paper that’s been able to explain the many facets and presentations of IPF,’ Elias said. ‘It explains and links the injury and the repair responses that are critical in the disease. It also provides an explanation for the slowly progressing patients and the patients that experience acute exacerbations.’ Brown University