Researchers reveal treasure trove of genes key to kidney cancer

A genomic analysis of clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, from 72 patients has uncovered 31 genes that are key to development, growth and spread of the cancer, say researchers from Mayo Clinic in Florida. Eight of these genes had not been previously linked to kidney cancer, and six other genes were never known to be involved in any form of cancer.

Their stud is the most extensive analysis to date of gene expression’s role in ccRCC tumor growth and metastasis. The ccRCC subtype accounts for 80 percent of all kidney cancer cases.
This study is a thorough analysis, because overexpressed genes were functionally tested in kidney cancer cells to ensure they were important to some aspect of the cancer process, says the study’s senior investigator, molecular biologist, John A. Copland, Ph.D.

“The power of this study is that we looked at genes discovered to be over-expressed in patients’ tumours and determined their function in kidney cancer, which has not been done on a large scale before,” he says. “This is a seminal step in identifying key pathways and molecules involved in kidney cancer so that specific therapies that target these new genes can be developed to treat this cancer.” Mayo Clinic

The inhibition of a protein opens the door to the treatment of pancreatic cancer, one of the tumours with the worst prognosis

Researchers from IMIM (Hospital del Mar Medical Research Institute) have identified a new protein, galectin-1, as a possible therapeutic target for pancreatic cancer. For the first time they have demonstrated the effects of the inhibition of this protein in mice suffering this type of cancer and the results showed an increase in survival of 20%. The work further suggests that it could be a therapeutic target with no adverse effects.

Until now, the strategies for treating this tumour were aimed at attacking the tumour cells and had little success. The latest studies indicate that trying to destroy what surrounds the tumour is possibly a better strategy. “Our contribution is directed toward this, as the reduction of galectin-1 mainly affects the immune system and the cells and structure that surrounds the tumour cells, which is called the stroma. Therefore, galectin-1 as a therapeutic target has great potential”, explains Dr. Pilar Navarro, co-ordinator of the research group on molecular mechanisms of tumorigenesis of IMIM and director of the research.

It was known that galectin-1 was not found in the normal pancreas despite being strongly expressed in pancreatic tumours. Furthermore, some clear functions were known which demonstrate the relationship between galectin-1 and tumour progression in other contexts. In fact, some preclinical studies for other diseases use inhibitor molecules and antibodies against this protein. “We are aiming at its possible use in pancreatic cancer” states Dr. Neus Martínez, researcher of the group on molecular mechanisms and tumorigenesis of IMIM and first author of this article. “We have also observed that the elimination of galectin-1 in mice has no harmful consequences, indicating that it could be a safe therapeutic target with no adverse effects”, she adds.

In collaboration with the Hospital del Mar Anatomical Pathology Service, which has analysed some samples, pancreatic tumours were studied in mice with high levels of galectin-1 and after its depletion. They observed that tumours without this protein showed less proliferation, fewer blood vessels, less inflammation and an increase in the immune response. All these changes are associated with less aggressive tumours. IMIM

Whole-exome sequencing helpful in identifying gene mutations linked to certain nervous system diseases

Use of exome sequencing improved the ability to identify the underlying gene mutations in patients with biochemically defined defects affecting multiple mitochondrial respiratory chain complexes (enzymes that are involved in basic energy production), according to a study in the July 2 issue of JAMA.

Defects of the mitochondrial respiratory chain have emerged as the most common cause of childhood and adult neurometabolic disease, with an estimated prevalence of l in 5,000 live births. Clinically these disorders can present at any time of life, are often seen in association with neurological impairment, and cause chronic disability and premature death. The diagnosis of mitochondrial disorders remains challenging, according to background information in the article. Examples of problems caused by mitochondrial diseases include a type of epilepsy; mitochondrial encephalopathy; lactic acidosis; and a syndrome that includes stroke-like episodes.

Robert W. Taylor, Ph.D., F.R.C.Path., of Newcastle University, Newcastle upon Tyne, U.K., and colleagues studied whether a whole-exome sequencing approach could help define the molecular basis of mitochondrial disease. Whole-exome sequencing is a complex laboratory process that determines the entire unique sequence of an organism’s exome (the collection of exons, which are relatively small lengths of a whole genome and contain instructions for the body to build proteins).

The study included 53 patients, referred to 2 national centres in the United Kingdom and Germany between 2005 and 2012, who had biochemical evidence of multiple respiratory chain complex defects. The majority (51/53 [96 percent]) of the patients presented during childhood (<15 years old) and most (66 percent) developed symptoms within the first year of life. The most frequent clinical features were muscle weakness, central neurological disease, cardiomyopathy, and abnormal liver function; a combination of these abnormalities was present in most cases. Following whole-exome sequencing, presumptive causal variants were identified in 28 patients (53 percent) and possible causal variants were identified in 4 (8 percent). Together these accounted for 32 patients (60 percent) and involved 18 different genes. Distinguishing clinical features included deafness and kidney involvement associated with one gene, and cardiomyopathy with two genes. In 20 patients with prominent heart disease, the causative mutation was detected in 80 percent, while the detection rate was much lower in patients with liver disease (33 percent). It was not possible to confidently identify the underlying genetic basis in 21 patients (40 percent). “In the pre-exome era, the systematic biochemical characterization of 53 patients with multiple respiratory chain complex defects led to detection of the underlying genetic basis in only 1 patient. The work presented herein demonstrates the effect of whole-exome sequencing in this context, which has defined the genetic etiology in 32 of 53 patients (60 percent) with a confirmed biochemical defect …,” the authors write. “Our findings contrast with large-scale candidate gene analysis using conventional and next-generation sequencing approaches, both of which had a lower diagnostic yield (10 percent-13 percent) and by definition did not discover new potential disease genes.” “Additional study is required to determine the utility of this approach compared with traditional diagnostic methods in independent patient populations,” the researchers conclude. JAMA Network

Significant step towards blood test for Alzheimer’s

Scientists have identified a set of 10 proteins in the blood which can predict the onset of Alzheimer’s, marking a significant step towards developing a blood test for the disease.

There are currently no effective long-lasting drug treatments for Alzheimer’s, and it is believed that many new clinical trials fail because drugs are given too late in the disease process. A blood test could be used to identify patients in the early stages of memory loss for clinical trials to find drugs to halt the progression of the disease.

‘Alzheimer’s begins to affect the brain many years before patients are diagnosed with the disease,’ said Professor Simon Lovestone of the University of Oxford, who led the work while at King’s College London. ‘Many of our drug trials fail because by the time patients are given the drugs, the brain has already been too severely affected.

‘A simple blood test could help us identify patients at a much earlier stage to take part in new trials and hopefully develop treatments which could prevent the progression of the disease. The next step will be to validate our findings in further sample sets, to see if we can improve accuracy and reduce the risk of misdiagnosis, and to develop a reliable test suitable to be used by doctors.’

The study, led by King’s College London and UK proteomics company, Proteome Sciences plc, analysed over 1,000 individuals and is the largest of its kind to date.

The researchers used data from three international studies. Blood samples from a total of 1,148 individuals (476 with Alzheimer’s disease, 220 with ‘mild cognitive impairment’, and 452 elderly controls without dementia) were analysed for 26 proteins previously shown to be associated with Alzheimer’s disease. A sub-group of 476 individuals across all three groups also had an MRI brain scan.

Researchers identified 16 of these 26 proteins to be strongly associated with brain shrinkage in either mild cognitive impairment or Alzheimer’s.

They then ran a second series of tests to establish which of these proteins could predict the progression from mild cognitive impairment to Alzheimer’s. They identified a combination of 10 proteins capable of predicting whether individuals with mild cognitive impairment would develop Alzheimer’s disease within a year, with an accuracy of 87%.

Dr Abdul Hye, lead author of the study from the Institute of Psychiatry at King’s College London, said: ‘Memory problems are very common, but the challenge is identifying who is likely to develop dementia. There are thousands of proteins in the blood, and this study is the culmination of many years’ work identifying which ones are clinically relevant. We now have a set of 10 proteins that can predict whether someone with early symptoms of memory loss, or mild cognitive impairment, will develop Alzheimer’s disease within a year, with a high level of accuracy.’ Kings College London

New genetic variant linked to risk of stroke and heart attack

Researchers at King’s College London have identified a genetic variant associated with an increased risk of stroke and heart attack.

Stroke and heart attack are caused when arteries, already clogged up by fatty substances (a condition known as atherosclerosis), become completely blocked by the formation of a blood clot. Risk factors for this include smoking, high blood pressure and high cholesterol.

The findings suggest a new genetic link caused by a variation in a protein known as ‘glycoprotein IIIa’. This genetic variant is found in platelets, a type of blood cell involved in the formation of blood clots.

These findings may, in future, allow clinicians to identify patients who are at particularly high risk of stroke or heart attack by looking for the genetic variant. This would represent advancement on current practice, which mainly addresses risk factors such as smoking and high blood pressure.

Previous findings surrounding this genetic variant have been inconsistent and the study at King’s represents the first large-scale meta-analysis of the literature, including over 50,000 participants from a combined total of 82 studies.

In the UK over 150,000 people have a stroke every year. Stroke is the third largest cause of death after heart disease and cancer. A stroke occurs when blood supply to part of the brain is cut off, leading to damage of brain cells. There are around 103,000 heart attacks in the UK each year, caused by blockage of a coronary artery that supplies blood to the heart and resulting in damage to heart muscles.

In the first research paper, which examined stroke patients, researchers found that carrying the PlA2 genetic variant of glycoprotein IIIa was associated with an increased risk of thrombotic stroke – that is, stroke caused by a blood clot. This equated to a higher risk of around 10-15 per cent, which was even stronger (amounting to a 70 per cent increase in risk) in people who carried two copies of this gene variant. The variant was not associated with haemorrhagic stroke, which is caused by bleeding into the brain.

The second research paper found that the same genetic variant was also associated with an increased risk of heart attack. This link was stronger in younger than in older patients, which is likely to reflect the greater influence of other cardiovascular risk factors in older patients (such as smoking and high cholesterol), according to the researchers.

Albert Ferro, Professor of Cardiovascular Clinical Pharmacology at King’s College London, said: ‘The genetic risk found in stroke and heart attack patients is likely to be caused by over-active platelets. Under normal circumstances, platelets help your body form clots to stop bleeding, but in these patients platelet activation has the undesired effect of causing their narrowed arteries to be blocked off completely. In future it may be possible to reduce the chances of this happening by examining patients for this variant on a blood test, so that if they carry the PlA2 form – and especially if they carry two copies of it – such patients could be identified for a more determined reduction of risk factors such as smoking, high blood pressure or high cholesterol.’ King’s College London

New diagnostic test to distinguish psoriasis from eczema

In many patients it is not easy to differentiate between the chronic inflammatory skin diseases psoriasis and eczema. Researchers at the Helmholtz Zentrum München and the Technical University of Munich (TUM) have now developed a procedure based on a skin analysis that enables an exact diagnosis to be made.

In some patients, the chronic inflammatory skin diseases psoriasis and eczema are similar in appearance. Up to now, dermatologists have therefore had to base their decision on which treatment should be selected on their own experience and an examination of tissue samples. A team of researchers at the Helmholtz Zentrum München and the Technical University of Munich (TUM) have now analysed the molecular processes that occur in both diseases and discovered crucial differences. This has enabled them for the first time to gain a detailed understanding of the ways in which the respective disease process occurs. Building on this knowledge, the scientists, led by Dr. Stefanie Eyerich and Prof. Dr. Kilian Eyerich as well as Prof. Dr. Fabian Theis, have developed a diagnostic procedure which in practice enables psoriasis and eczema to be reliably differentiated from one another on the basis of only two genes.

“Both diseases have a highly complex appearance, which often varies widely from one patient to another,” says Dr. Stefanie Eyerich, who heads the Specific Immunology working group at the Institute of Allergy Research (IAF) at the Helmholtz Zentrum München. “This has led previous attempts to compare their molecular signature to fail.” In this study, the researchers identified 24 patients who were suffering simultaneously from psoriasis and eczema and in each analyzed at the molecular level the characteristic differences they demonstrated between psoriasis and eczema compared to clinically unremarkable skin.

“We were thus able to drastically reduce random genetic or environmental influences and gain a detailed picture of the development of these two diseases,” explains Prof. Fabian Theis of the Institute of Computational Biology (ICB) at the Helmholtz Zentrum München.

In recent years, many new specific treatments have been developed for psoriasis and eczema. However, in each case, these are only effective for one or other of the two diseases. And they are very expensive: one such treatment generally costs several tens of thousands of euros per year, per patient. The ability to make an exact diagnosis therefore has a considerable economic impact.

If it cannot be clearly determined on presentation which of the two diseases is involved, the newly developed diagnostic tool will help to differentiate them. It involves a test which compares samples of diseased and healthy skin and is concluded within one day. The researchers have now filed a patent application for it.

Helmholtz Zentrum München

Study identifies novel genomic changes in the most common type of lung cancer

Researchers from Dana-Farber Cancer Institute, the Broad Institute of MIT and Harvard, and other centres have identified novel mutations in a well-known cancer-causing pathway in lung adenocarcinoma, the most common subtype of lung cancer. Knowledge of these mutations could potentially identify a greater number of patients with treatable mutations because many potent cancer drugs that target these mutations already exist. In addition, these findings may expand the number of possible new therapeutic targets for this disease.

In this new study researchers from the Cancer Genome Atlas (TCGA) Research Network, led by Dana-Farber scientist Matthew Meyerson, MD, PhD, examined the genomes, RNA, and some protein from 230 lung adenocarcinoma samples. In three-quarters of the samples, the scientists ultimately identified mutations that put a cell-signalling pathway known as the RTK/RAS/RAF pathway into overdrive.

“Lung adenocarcinoma is the leading cause of human cancer death. This is because there are so many ways to develop the disease, and many different pathways are altered in this cancer,” said Meyerson, who is also a Broad senior associate member. “In recent years, we have made enormous progress in lung adenocarcinoma treatment by targeting EGFR, ALK, and other mutated proteins. Through this study, we are able to add to the range of such alterations and therefore gain potential new therapeutic targets.”

Mutations affecting the RTK/RAS/RAF pathway can cause it to become stuck in the “on” state. As a result, signals that promote cancer cell proliferation and survival are produced continuously. However, drugs are currently available that curb aberrant activity of this pathway and prompt therapeutic responses in patients.

“About 10% of patients have tumours with EGFR mutations, and these patients uniquely benefit from anti-EGFR therapy,” said Alice Berger, a post-doctoral fellow in the Meyerson lab and co-author of the study. “We were motivated to find genetic aberrations in patients that lack EGFR mutations and that might be similarly suitable for therapeutic targeting. Ultimately, we want to be able to provide every patient with an effective drug for their specific cancer.”

In the group’s initial scan of the tumour samples, researchers identified gene mutations that would increase RTK/RAS/RAF pathway activity in 62 percent of the samples. The affected genes are oncogenes, or genes that have the potential to cause cancer when mutated or expressed at high levels. Consequently, these tumour samples were classified as oncogene-positive. To identify additional alterations, the investigators looked at DNA copy number changes, or changes in gene number resulting from the deletion or amplification (multiplication) of sections of DNA in the genome. In doing so, they detected amplification of two oncogenes, ERBB2 and MET, which are part of the RTK/RAS/RAF pathway in the “oncogene negative” cancers. Gene amplification usually leads to increased expression of the encoded protein in cells.

Now that these amplifications have been identified in cancers without other activity of the RTK/RAS/RAF pathway, clinicians may be able to treat patients whose tumours have specific gene changes with drugs that are either currently available or under development.

“It is quite striking that we have now identified an actionable mutation in over 75 percent of patients with lung adenocarcinoma, a significant improvement from a decade ago,” said Meyerson.

Additional analysis identified other genes that may play important roles in lung cancer development. Mutations in one of these genes, NF1 — a known tumour suppressor gene that regulates the RTK/RAS/RAF pathway — had previously been reported in lung cancer. Mutations of NF1 also put that pathway into overdrive. Another mutated gene, RIT1, is also part of the RTK/RAS/RAF pathway, and this is the first study to associate mutation of this gene with lung cancer. Dana-Farber Institute

Scientists deepen genetic understanding of Eosinophilic oesophagitis

Scientists funded by the National Institutes of Health (NIH) have identified genetic markers associated with eosinophilic oesophagitis (EoE), an inflammatory disease characterized by high levels of immune cells called eosinophils in the oesophagus. Their findings suggest that several genes are involved in the development of EoE, which can cause difficulty eating and often is associated with food allergies. The findings also may help explain why the disease specifically affects the oesophagus.

A team led by researchers at Cincinnati Children’s Hospital Medical Center searched the entire human genome for variations between 9,246 healthy people and 736 people with EoE. They confirmed previous results from a smaller study that linked variations in the region on chromosome 5 containing TSLP, a gene associated with allergic diseases, to a higher risk of developing EoE. They also identified variations in a region on chromosome 2 containing a gene called CAPN14, which produces an enzyme called calpain 14, that are associated with higher EoE risk. The researchers showed that CAPN14 is expressed, or “turned on,” primarily in the esophagus. CAPN14 expression and calpain activity rose when scientists treated cultured esophageal cells with a molecule that induces allergic inflammation, suggesting that the enzyme is part of an anti-inflammatory response. People with EoE who carry the variant form of the gene may be unable to mount this response as effectively.

Further research is needed to determine if these findings might lead to identification of biomarkers to detect a person’s risk of developing EoE. Understanding the factors underlying EoE may help guide development of new diagnostic and treatment strategies for the disease. NIH

Danish DNA could be key to happiness

Genetics could be the key to explaining nation’s levels of happiness, according to research from the University of Warwick.

Economists at the University’s Centre for Competitive Advantage in the Global Economy (CAGE) have looked at why certain countries top the world happiness rankings. In particular they have found the closer a nation is to the genetic makeup of Denmark, the happier that country is. The research could help to solve the puzzle of why a country like Denmark so regularly tops the world happiness rankings.

Dr Eugenio Proto and Professor Andrew Oswald found three forms of evidence for a link between genetic makeup and a nation’s happiness.

Firstly they used data on 131 countries from a number of international surveys including the Gallup World Poll, World Value Survey and the European Quality of Life Surveys. The researchers linked cross-national data on genetic distance and well-being.

Dr Proto said: “The results were surprising, we found that the greater a nation’s genetic distance from Denmark, the lower the reported wellbeing of that nation. Our research adjusts for many other influences including Gross Domestic Product, culture, religion and the strength of the welfare state and geography.

The second form of evidence looked at existing research suggesting an association between mental wellbeing and a mutation of the gene that influences the reuptake of serotonin, which is believed to be linked to human mood.

Dr Proto added: “We looked at existing research which suggested that the long and short variants of this gene are correlated with different probabilities of clinical depression, although this link is still highly debated. The short version has been associated with higher scores on neuroticism and lower life satisfaction. Intriguingly, among the 30 nations included in the study, it is Denmark and the Netherlands that appear to have the lowest percentage of people with this short version.”

The final form of evidence looked at whether the link between genetics and happiness also held true across generations, continents and the Atlantic Ocean.

Professor Oswald said: “We used data on the reported wellbeing of Americans and then looked at which part of the world their ancestors had come from. The evidence revealed that there is an unexplained positive correlation between the happiness today of some nations and the observed happiness of Americans whose ancestors came from these nations, even after controlling for personal income and religion.” University of Warwick

Scientists identify gene that plays a surprising role in combating aging

It is something of an eternal question: Can we slow or even reverse the aging process? Even though genetic manipulations can, in fact, alter some cellular dynamics, little is known about the mechanisms of the aging process in living organisms.

Now scientists from the Florida campus of The Scripps Research Institute (TSRI) have found in animal models that a single gene plays a surprising role in aging that can be detected early on in development, a discovery that could point toward the possibility of one day using therapeutics, even some commonly used ones, to manipulate the aging process itself.

“We believe that a previously uncharacterized developmental gene known as Spns1 may mediate the aging process,” said Shuji Kishi, a TSRI assistant professor who led the study.

Using various genetic approaches to disturb Spns1 during the embryonic and/or larval stages of zebrafish—which have emerged as a powerful system to study diseases associated with development and aging—the scientists were able to produce some models with a shortened life span, others that lived long lives.

While most studies of “senescence”—declines in a cell’s power of division and growth—have focused on later stages of life, the study is intriguing in exploring this phenomenon in early stages. “Mutations to Spns1 both disturbs developmental senescence and badly affects the long-term bio-chronological aging process,” Kishi said.

The new study shows that Spns1, in conjunction with another pair of tumour suppressor genes, beclin 1 and p53 can, influences developmental senescence through two differential mechanisms: the Spns1 defect was enhanced by Beclin 1 but suppressed by ‘basal’ p53. In addition to affecting senescence, Spns1 impedes autophagy, the process whereby cells remove unwanted or destructive proteins and balance energy needs during various life stages.

Building on their insights from the study, Kishi and his colleagues noted in the future therapeutics might be able influence aging through Spns1. He noted one commonly used antacid, Prilosec, has been shown to temporarily suppress autophagic abnormality and senescence observed in the Spns1 deficiency.

Scripps Research Institute