Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
November 2025
The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics
Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Accept settingsHide notification onlyCookie settingsWe may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.
Privacy policy
New ‘lab-on-a-chip’ could revolutionize early diagnosis of cancer
, /in E-News /by 3wmediaScientists have been labouring to detect cancer and a host of other diseases in people using promising new biomarkers called “exosomes.” Indeed, Popular Science magazine named exosome-based cancer diagnostics one of the 20 breakthroughs that will shape the world this year. Exosomes could lead to less invasive, earlier detection of cancer, and sharply boost patients’ odds of survival.
“Exosomes are minuscule membrane vesicles — or sacs — released from most, if not all, cell types, including cancer cells,” said Yong Zeng, assistant professor of chemistry at the University of Kansas. “First described in the mid-’80s, they were once thought to be ‘cell dust,’ or trash bags containing unwanted cellular contents. However, in the past decade scientists realized that exosomes play important roles in many biological functions through capsuling and delivering molecular messages in the form of nucleic acids and proteins from the donor cells to affect the functions of nearby or distant cells. In other words, this forms a crucial pathway in which cells talk to others.”
While the average piece of paper is about 100,000 nanometers thick, exosomes run just 30 to 150 nanometers in size. Because of this, exosomes are hard to separate out and test, requiring multiple-step ultracentrifugation — a tedious and inefficient process requires long stretches in the lab, according to scientists.
“There aren’t many technologies out there that are suitable for efficient isolation and sensitive molecular profiling of exosomes,” said Zeng. “First, current exosome isolation protocols are time-consuming and difficult to standardize. Second, conventional downstream analyses on collected exosomes are slow and require large samples, which is a key setback in clinical development of exosomal biomarkers.”
Now, Zeng and colleagues from the University of Kansas Medical Center and KU Cancer Center have just published a breakthrough paper in the Royal Society of Chemistry journal describing their invention of a miniaturized biomedical testing device for exosomes. Dubbed the “lab-on-a-chip,” the device promises faster result times, reduced costs, minimal sample demands and better sensitivity of analysis when compared with the conventional bench-top instruments now used to examine the tiny biomarkers.
“A lab-on-a-chip shrinks the pipettes, test tubes and analysis instruments of a modern chemistry lab onto a microchip-sized wafer,” Zeng said. “Also referred to as ‘microfluidics’ technology, it was inspired by revolutionary semiconductor electronics and has been under intensive development since the 1990s. Essentially, it allows precise manipulation of minuscule fluid volumes down to one trillionth of a litre or less to carry out multiple laboratory functions, such as sample purification, running of chemical and biological reactions, and analytical measurement.”
Zeng and his fellow researchers have developed the lab-on-a-chip for early detection of lung cancer — the number-one cancer killer in the U.S. Today, lung cancer is detected mostly with an invasive biopsy, after tumours are larger than 3 centimetres in diameter and even metastatic, according to the KU researcher.
Using the lab-on-a-chip, lung cancer could be detected much earlier, using only a small drop of a patient’s blood.
“Most lung cancers are first diagnosed based on symptoms, which indicate that the normal lung functions have been already damaged,” Zeng said. “Unlike some cancer types such as breast or colon cancer, no widely accepted screening tool has been available for detecting early-stage lung cancers. Diagnosis of lung cancer requires removing a piece of tissue from the lung for molecular examination. Tumour biopsy is often impossible for early cancer diagnosis as the developing tumour is too small to see by the current imaging tools. In contrast, our blood-based test is minimally invasive, inexpensive, and more sensitive, thus suitable for large population screening to detect early-stage tumours.”
Zeng said the prototype lab-on-a-chip is made of a widely used silicone rubber called polydimethylsiloxane and uses a technique called “on-chip immunoisolation.”
“We used magnetic beads of 3 micrometres in diameter to pull down the exosomes in plasma samples,” Zeng said. “In order to avoid other interfering species present in plasma, the bead surface was chemically modified with an antibody that recognizes and binds with a specific target protein — for example, a protein receptor — present on the exosome membrane. The plasma containing magnetic beads then flows through the microchannels on the diagnostic chip in which the beads can be readily collected using a magnet to extract circulating exosomes from the plasma.”
Beyond lung cancer, Zeng said the lab-on-a-chip could be used to detect a range of potentially deadly forms of cancer.
“Our technique provides a general platform to detecting tumour-derived exosomes for cancer diagnosis,” he said. “In addition to lung cancer, we’ve also tested for ovarian cancer in this work. In theory, it should be applicable to other types of cancer. Our long-term goal is to translate this technology into clinical investigation of the pathological implication of exosomes in tumour development. University of Kansas
Anorexia/bulimia: A bacterial protein implicated
, /in E-News /by 3wmediaEating disorders (ED) such as anorexia nervosa, bulimia, and binge eating disorder affect approximately 5-10% of the general population, but the biological mechanisms involved are unknown. Researchers at Inserm Unit 1073, ‘Nutrition, inflammation and dysfunction of the gut-brain axis’ (Inserm/University of Rouen) have demonstrated the involvement of a protein produced by some intestinal bacteria that may be the source of these disorders. Antibodies produced by the body against this protein also react with the main satiety hormone, which is similar in structure. According to the researchers, it may ultimately be possible to correct this mechanism that causes variations in food intake.
Anorexia nervosa, bulimia and binge eating disorder are all eating disorders (ED). If the less well defined and atypical forms are included, ED affect 15-20% of the population, particularly adolescents and young adults. Despite various psychiatric, genetic and neurobiological studies, the molecular mechanism responsible for these disorders remains mysterious. The common characteristic of the different forms of ED is dysregulation of food intake, which is decreased or increased, depending on the situation.
Sergueï Fetissov’s team in Inserm Joint Research Unit 1073, ‘Nutrition, inflammation and dysfunction of the gut-brain axis’ (Inserm/University of Rouen), led by Pierre Déchelotte, studies the relationships between the gut and the brain that might explain this dysregulation.
In this new study, the researchers have identified a protein that happens to be a mimic of the satiety hormone (melanotropin). This protein (ClpB) is produced by certain bacteria, such as Escherichia coli, which are naturally present in the intestinal flora. Where this protein is present, antibodies are produced against it by the body. These will also bind to the satiety hormone because of its structural homology to ClpB, and thereby modify the satietogenic effect of the hormone. The sensation of satiety is reached (anorexia) or not reached (bulimia or overeating). Moreover, the bacterial protein itself seems to have anorexigenic properties.
To obtain these results, the researchers modified the composition of the intestinal flora of mice to study their immunological and behavioural response. Food intake and level of antibodies against melanotropin in the 1st group of mice, which were given mutant E. coli bacteria (not producing ClpB) did not change. In contrast, antibody level and food intake did vary in the 2nd group of animals, which received E. coli producing ClpB protein.
The likely involvement of this bacterial protein in disordered eating behaviour in humans was established by analysing data from 60 patients.
The standardised scale ‘Eating Disorders Inventory-2’ was used to diagnose these patients and evaluate of the severity of their disorders, based on a questionnaire regarding their behaviour and emotions (wish to lose weight, bulimia, maturity fears, etc.). Plasma levels of antibodies to ClpB and melanotropin were higher in these patients. Furthermore, their immunological response determined the development of eating disorders in the direction of anorexia or bulimia.
These data thus confirm the involvement of the bacterial protein in the regulation of appetite, and open up new perspectives for the diagnosis and specific treatment of eating disorders.
Correcting the action of the protein mimicking the satiety hormone
‘We are presently working to develop a blood test based on detection of the bacterial protein ClpB. If we are successful in this, we will be able to establish specific and individualised treatments for eating disorders,’ say Pierre Déchelotte and Sergueï Fetissov, authors of this study.
At the same time, the researchers are using mice to study how to correct the action of the bacterial protein in order to prevent the dysregulation of food intake that it generates. ‘According to our initial observations, it would indeed be possible to neutralise this bacterial protein using specific antibodies, without affecting the satiety hormone,’ they conclude. EurekAlert
New test helps doctors diagnose and treat ovarian cancer
, /in E-News /by 3wmediaAn international team of researchers led by KU Leuven has developed a new test to help doctors diagnose ovarian tumours and choose the most appropriate treatment. The researchers have recently described the test called ADNEX `
Existing predication models for ovarian cancer discriminate between benign and malignant tumours but lack accuracy and are unable to sub-classify different types of malignant tumour. This makes determining the appropriate treatment difficult, since some ovarian tumours require more serious treatment than others.
The new test developed by Professor Ben Van Calster (KU Leuven) in cooperation with the International Ovarian Tumour Analysis group (IOTA) not only discriminates between benign and malignant tumours but also makes it possible to accurately identify and classify malignant tumours into four types: borderline, stage 1 invasive, stage II-IV invasive and secondary metastatic.
The test is based on the patient’s clinical information, a simple tumour marker blood test and features that can be identified on an ultrasound scan. In addition to identifying the type of tumour, the test also expresses the confidence of the diagnosis as a percentage.
Doctors can use the test in a clinical database or by entering the patient’s details into a smartphone app, which was demonstrated to gynaecologists at the International Society for Ultrasound in Obstetrics and Gynecology World Congress in Barcelona last month. The authors of the study say doctors could start using ADNEX straight away.
Successful treatment depends in large part on the correct identification of the type of tumour, but this can be difficult. As a result, many women with ovarian cancer are not referred to the right specialist and some undergo more serious operations than necessary. A benign ovarian tumour often does not even need treatment at all.
But for malignant tumours especially, determining the tumour type is crucial to selecting the right specialist surgeon and treatment.
The researchers developed the test using data from almost 6,000 ovarian cancer patients, which were gathered and analysed by the IOTA group led by Professor Dirk Timmerman of UZ Leuven (University Hospitals Leuven), KU Leuven’s network of research hospitals. University of Leuven
Human cancer prognosis is related to newly identified immune cell
, /in E-News /by 3wmediaA newly discovered population of immune cells in tumours is associated with less severe cancer outcomes in humans, and may have therapeutic potential, according to a new UC San Francisco study of 3,600 human tumours of 12 types, as well as mouse experiments.
Molecules associated with these cells, newly identified by the UCSF researchers, could be the focus of new immunotherapies that are more precisely targeted than current immunotherapies now in clinical trials, said Matthew Krummel, PhD, professor of pathology at UCSF and the leader of the study.
In fact, the UCSF researchers concluded that the presence of these cells may be the reason current immunotherapies aimed at boosting T lymphocyte responses have any effectiveness whatsoever.
Krummel’s lab team depleted the population of these already rare cells in mice and demonstrated that the immune system was then unable to control tumours, even when the mice were given immunotherapeutic treatments.
“We found a rare cell type, present in most tumours — but very sparsely — that confers immunity and thus assists in immune rejection of the tumour,” Krummel said.
Tumours are able to grow large and spread in part because they subvert the immune system. Cancers prevent the activation of T lymphocytes within the immune system that specifically target tumour molecules recognized as abnormal.
Immune cells known as antigen-presenting cells need to activate T lymphocytes to trigger them to attack, but in cancer, cells called tumour-associated macrophages tell T lymphocytes to remain dormant, and also foster the development of blood vessels that feed the growing tumour.
However, the distinct, rare population of cells newly identified by Krummel’s lab team persists in trying to activate tumour-targeting T lymphocytes, apparently with enough success despite their scarcity to make a difference in cancer outcomes. Krummel calls the cells antigen-presenting CD103+ dendritic cells, and they make up fewer than 1 percent of all antigen-presenting cells, he said.
The researchers found specific molecules on the cells that serve as a signature for their identification, and molecules that might be targeted to boost the cells’ power to activate T lymphocytes.
“Patients who have the signature of these cells live consistently longer than those with weak signatures,” Krummel said.
“These antigen-presenting CD103+ dendritic cells are an important but previously unrecognized ally in immunity to cancer, and we believe that we can learn to manipulate their numbers for new cancer immunotherapies.
“We have identified proteins that we plan to target in order to enhance the good cells, and conversely, we think we can treat molecules on the surface of the bad cells as targets to eliminate those cells.”
The association of the signature for antigen-presenting CD103+ dendritic cells with better outcomes was especially strong in head and neck cancers and in breast cancers, Krummel said.
The strength of the association between the CD103+ cell signature and cancer outcomes raises the prospect that researchers might even be able to detect cancer early via an immune response. “We want to find genes that are only present in immune cells in cancer, and not in people without cancer,” Krummel said. University of California – San Francisco
MicroRNA molecules serve as on/off switches for inflammation
, /in E-News /by 3wmediaUniversity of Utah scientists have identified two microRNA molecules that control chronic inflammation, a discovery that one day may help researchers prevent certain fatal or debilitating conditions before they start.
‘We’re living at a time where the aging population is growing,’ said Ryan O’Connell, D.Phil., assistant professor of pathology, whose lab made the discovery. ‘The question is: how can we predict and prevent the onset of disorders that emerge upon growing older?’
After three years of research and building on previous studies, the scientists determined that if a particular microRNA is genetically removed from mice, the animals will develop chronic inflammation spontaneously and die early from subsequent ailments such as cancer or an autoimmune disorder. However, mice that also lack a second type of microRNA don’t develop chronic inflammation. So one microRNA prevents the condition while the other promotes it, identifying a key system in the body that modulates this harmful state.
Certain types of immune cells, called T follicular helper cells, are known to promote the production of antibodies that attack our own tissues and contribute to chronic inflammation. O’Connell and colleagues found that the microRNAs at issue are produced by and act to control these important cell types.
‘Now we know which cells in the body we need to get miRNA inhibitors delivered to if we want to reduce chronic inflammatory conditions,’ said O’Connell, noting that the next step is human research. One question would be whether patients with chronic inflammation who received an inhibitor of a certain microRNA would see their chronic inflammation indicators decrease, preventing fatal conditions from emerging.
Previous studies have shown that chronic inflammation is linked to the development of certain conditions including diabetes, lupus, arthritis, obesity, cancer, neurodegeneration and cardiovascular disease along with a shortened life span. The challenge is that chronic inflammation happens at a low level and is typically not detected by doctors. But certain biomarkers such as elevated levels of cytokines or antibodies can indicate the condition.
‘Everyone waits until they have bad symptoms to go see the doctor,’ he said. ‘However, the goal of medicine is to take a person who is not sick yet and be able to analyze something we can test that can help predict whether they’re going to be sick in the future — and take appropriate measures to prevent terrible outcomes.’ EurekAlert
Scientists identify trigger for crucial immune system cell
, /in E-News /by 3wmediaScientists at The Scripps Research Institute (TSRI) have identified the long-sought activating molecules for a rare but crucial subset of immune system cells that help rally other white blood cells to fight infection.
In the process, the team also uncovered a previously unsuspected link between the mammalian immune system and the communication systems of simpler organisms such as bacteria.
The findings could lead to novel therapeutic approaches for diseases such as type 1 diabetes that are the result of immune system over-activity, as well as new ways to boost the effectiveness of vaccines, according to study leader Luc Teyton, a professor in TSRI’s Department of Immunology and Microbial Science.
When a virus, bacteria or foreign substance invades the body, specialised cells known as dendritic cells present in the skin and other organs capture the trespassers and convert them into smaller pieces called antigens that they then display on their cell surfaces. White blood cells known as T and B cells recognize the antigens to launch very specific attacks on the invaders.
Dendritic cells also activate a specialized population of T cells known as natural killer T (NKT) cells. Once activated, NKT cells can commandeer the functions of dendritic cells to make them more effective and also recruit and coordinate the responses of T- and B-type cells.
“Because of their dual functions, NKT cells are a bridge between the body’s innate immunity, which is characterised by rapid but less specific responses to pathogens, and adaptive or acquired immunity, which is composed of specialised white blood cells that can remember past invaders,” Teyton said.
Previous studies indicated that NKT cells are activated by molecules known as glycolipids that dendritic cells produce and then display on their outer surfaces. It was widely assumed that the activating molecules were a class of glycolipids known as beta-glycosylceramides, an important component of nervous system cells.
However, this hypothesis had not been thoroughly examined, in part because there is no chemical test currently available to distinguish between two forms of the molecule that have slightly different configurations—beta-glycosylceramide and alpha-glycosylceramide. In addition, when scientists attempt to create either form synthetically for testing, there is always the possibility of small contamination of one by the other.
“When you’re making glycolipids, there is no completely faithful way of controlling the form that you’re making,” Teyton said. ‘You’re favouring the making of one, but you cannot say for sure that you don’t have a small amount of the other form.”
In their new study, Teyton and his colleagues, who included scientists from Brigham Young University, the La Jolla Institute for Allergy & Immunology and the University of Chicago, abandoned the chemical approach altogether. Instead, they combined a series of biochemical and biological assays to create a test that was sensitive enough to distinguish between the two different forms of glycolipids.
“Biological assays are exquisitely sensitive to low amounts of otherwise unmeasurable molecules,” said study first author Lisa Kain, a research technician in Teyton’s lab.
The scientists used custom antibodies to identify and eliminate alpha-glycosylceramides from their test batches. When the team was confident that their test batch contained only beta forms of the glycolipid, they tested it on NKT cells gathered from mice. To their surprise, however, nothing happened. Contrary to the conventional wisdom, the beta-glycosylceramides failed to activate the NKT cells.
“We were very skeptical about the early results,” Teyton said. “We thought we had used the wrong antibody.”
Next, the team combined enzymes designed to digest molecular linkages found only on beta-glycosylceramides with mice NKT cells inside test tubes. Surprisingly, the NKT cells were still being activated.
Finally, when the team used antibodies to disable alpha-glycosylceramides inside live mice, not only did the NKT cells fail to activate, they disappeared altogether from organs such as the thymus, where NKT cells are produced.
These multiple lines of evidence strongly indicated that it was the alpha form of the glycolipids that were the triggers for NKT cells. “What we thought was the contaminant turned out to be the activating molecule we were looking for,” Teyton said.
The results were surprising for another reason. Until that moment, scientists did not think mammalian cells were capable of producing alpha forms of the glycolipids. The molecules were thought to exist only in bacteria and other simple organisms, which use them primarily as a means of communicating with one another. The findings thus suggest that the roots of a crucial part of the mammalian immune response are even more ancient than previously thought.
“Nobody expected this,” Teyton said. “It’s like discovering that all languages share a common origin.”
Now that scientists know that alpha-glycosylceramides are made by our own body and activate NKT cells, they might be able to exploit it to create new therapies. For example, Teyton said, researchers could use enzymes to reduce alpha-glycosylceramide levels in order to suppress an overactive immune response, which happens with diseases such as type 1 diabetes. Or they could combine the molecules with antigens to create vaccines that elicit a faster and more efficient immune response.
“This opens up an avenue of new therapeutic approaches that we’ve never even thought about,” Teyton said. The Scripps Research Institute
Researchers develop personalized ovarian cancer vaccines
, /in E-News /by 3wmediaResearchers at the University of Connecticut have found a new way to identify protein mutations in cancer cells. The novel method is being used to develop personalized vaccines to treat patients with ovarian cancer.
“This has the potential to dramatically change how we treat cancer,” says Dr. Pramod Srivastava, director of the Carole and Ray Neag Comprehensive Cancer Center at UConn Health and one of the principal investigators on the study. “This research will serve as the basis for the first ever genomics-driven personalised medicine clinical trial in immunotherapy of ovarian cancer, and will begin at UConn Health this fall,” Srivastava says.
Dr. Angela Kueck, a gynecological oncologist at UConn Health, will run the initial clinical study, once it is approved by the FDA. The research team will sequence DNA from the tumours of 15 to 20 women with ovarian cancer, and use that information to make a personalized vaccine for each woman.
The researchers focused their clinical trial on patients with ovarian cancer because the disease usually responds well to surgery and chemotherapy in the short term, but often returns lethally within a year or two. That gives researchers the perfect window to prepare and administer the new therapeutic vaccines, and also means they may be able to tell within two years or so whether the vaccine made a difference. If the personalized vaccines prove to be safe and feasible, they’ll design a Phase II trial to test its clinical effectiveness by determining whether they prolong patients’ lives.
In order for the immune system to attack cancers, it first has to recognize them. Every cell in the body has a sequence of proteins on its exterior that acts like an ID card or secret handshake, confirming that it’s one of the good guys. These protein sequences, called epitopes, are what the immune system ‘sees’ when it looks at a cell. Cancerous cells have epitopes, too. Since cancer cells originate from the body itself, their epitopes are very similar to those of healthy cells, and the immune system doesn’t recognize them as bad actors that must be destroyed.
But just as even the best spy occasionally slips up on the details, cancer cell epitopes have tiny differences or mistakes that could give them away, if only the immune system knew what to look for.
“We want to break the immune system’s ignorance,” Srivastava says. For example, there could be 1,000 subtle changes in the cancer cell epitopes, but only 10 are “real,” meaning significant to the immune system. To find the real, important differences, Mandoiu, the bioinformatics engineer, took DNA sequences from skin tumours in mice and compared them with DNA from the mice’s healthy tissue.
Previous researchers had done this but looked at how strongly the immune system cells bound to the cancer’s epitopes. This works when making vaccines against viruses, but not for cancers. Instead, Srivastava’s team came up with a novel measure: they looked at how different the cancer epitopes were from the mice’s normal epitopes. And it worked. When mice were inoculated with vaccines made of the cancer epitopes differing the most from normal tissue, they were very resistant to skin cancer.
Theoretically, this approach could work for other cancers, although the research has yet to be done. University of Connecticut
Middle-aged adults were more susceptible to the flu last year because of a new viral mutation
, /in E-News /by 3wmediaA team of scientists, led by researchers at The Wistar Institute, has identified a possible explanation for why middle-aged adults were hit especially hard by the H1N1 influenza virus during the 2013-2014 influenza season. The findings offer evidence that a new mutation in H1N1 viruses potentially led to more disease in these individuals. Their study suggests that the surveillance community may need to change how they choose viral strains that go into seasonal influenza vaccines, the researchers say.
“We identified a mutation in recent H1N1 strains that allows viruses to avoid immune responses that are present in a large number of middle-aged adults,” said Scott Hensley, Ph.D., a member of Wistar’s Vaccine Center and an assistant professor in the Translational Tumour Immunology program of Wistar’s Cancer Center.
Historically, children and the elderly are most susceptible to the severe effects of the influenza viruses, largely because they have weaker immune systems. However, during the 2013-2014 physicians saw an unusually high level of disease due to H1N1 viruses in middle-aged adults—those who should have been able to resist the viral assault. Although H1N1 viruses recently acquired several mutations in the haemagglutinin (HA) glycoprotein, standard serological tests used by surveillance laboratories indicate that these mutations do not change the viruses’ antigenic properties.
However, Wistar researchers have shown that, in fact, one of these mutations is located in a region of HA that allows viruses to avoid antibody responses elicited in some middle-aged adults. Specifically, they found that 42 percent of individuals born between 1965 and 1979 possess antibodies that recognize the region of HA that is now mutated. The Wistar researchers suggest that new viral strains that are antigenically matched in this region should be included in future influenza vaccines.
“Our immune systems are imprinted the first time that we are exposed to influenza virus,” Hensley said. “Our data suggest that previous influenza exposures that took place in the 1970s and 1980s influence how middle-aged people respond to the current H1N1 vaccine.”
The researchers noted that significant antigenic changes of influenza viruses are mainly determined using anti-sera isolated from ferrets recovering from primary influenza infections. However humans are typically re-infected with antigenically distinct influenza strains throughout their life. Therefore, antibodies that are used for surveillance purposes might not be fully reflective of human immunity. Wistar Institute
Peanut in house dust linked to allergy
, /in E-News /by 3wmediaA new study led by researchers at King’s College London in collaboration with the University of Manchester and the University of Dundee has found a strong link between exposure to peanut protein in household dust during infancy and the development of peanut allergy in children genetically predisposed to a skin barrier defect.
Around 2% of school children in the UK and the US are allergic to peanuts. Severe eczema in early infancy has been linked to food allergies, particularly peanut allergy. A major break-through in the understanding of eczema developed with the discovery of the FLG gene which codes for the skin barrier protein filaggrin. Mutations in the FLG gene result in an impaired skin barrier which is thought to allow allergens to penetrate the skin and predispose the body towards an allergic response.
Immunology, looked at the amount of peanut protein children were exposed to in household dust in their first year of life by vacuuming dust from the living room sofa and measuring peanut in the dust. A group of 577 children were assessed at 8 and 11 years of age for peanut allergy and their DNA was checked for FLG mutations. The study was conducted in children recruited to the Manchester Asthma and Allergy Study.
A strong link was found between early-life exposure to peanut protein in household dust and peanut allergy in children with FLG mutations. A three-fold increase in house dust peanut exposure during infancy was associated with a three-fold increase in risk of school-age peanut allergy. One in five children with peanut allergy had an FLG mutation. There was no significant effect of environmental peanut exposure in children without FLG mutations.
Dr Helen A Brough, first author from the Department of Paediatric Allergy, Division of Asthma, Allergy & Lung Biology, King’s College London, said: “Our findings provide evidence that peanut allergy may develop via the skin in children with mutations in the gene that codes for filaggrin which damage the function of this important skin protein. These findings are also an example of how an individual’s response to their environment can be modified by their genes. Our study raises the possibility of being able to identify a group of children with FLG mutations through genetic testing in the future, and altering their environmental exposure to peanut early in life to reduce the risk of developing peanut allergy.” King’s College London
Circulating tumour cells provide genomic snapshot of breast cancer
, /in E-News /by 3wmediaTumour cells isolated from the blood of patients with triple negative breast cancer reveal similar cancer-driving mutations as those detected from standard biopsy, suggesting that circulating cells could one day replace tissue biopsies
The genetic fingerprint of a metastatic cancer is constantly changing, which means that the therapy that may have stopped a patient’s cancer growth today, won’t necessarily work tomorrow. Although doctors can continue to biopsy the cancer during the course of the treatment and send samples for genomic analysis, not all patients can receive repeat biopsies. Taking biopsies from metastatic cancer patients is an invasive procedure that it is frequently impossible due to the lack of accessible lesions. Research suggest that tumour cells circulating in the blood of metastatic patients could give as accurate a genomic read-out as tumour biopsies.
“Counting the number of circulating tumour cells (CTCs) can tell us whether a patient’s cancer is aggressive, or whether it is stable and responding to therapy,” says the article’s first author Sandra V. Fernandez, Ph.D., assistant professor of Medical Oncology at Thomas Jefferson University. “Our work suggests that these cancer cells in the blood also accurately reflect the genetic status of the parent tumour or its metastases, potentially giving us a new and easy to source of genomic information to guide treatment.”
First discovered for their diagnostic potential in 2004, circulating tumour cells are beginning to be used in the clinic to help guide treatment decisions and track a patient’s progress as the cancer progresses. Although other studies have pooled the collected CTCs and compared their collective genetic signature to that of the primary tumour, this is the first study to look at the genomic signature of individual tumour cells in circulation. In order to isolate single tumour cells from the blood, the authors used a new technology, DEPArrayTM , in their laboratory.
The researchers compared tissue biopsies surgically removed from two patients with inflammatory breast cancer with circulating tumour cells (CTCs). Breast tissue samples from both patients showed a specific mutation in a region of a cancer-driving gene, p53. The authors studied this mutation in several CTCs isolated from both patients. They found that in several of the CTCs collected, the mutations matched with the tumour biopsy, however in one patient, some of circulating tumour cells had an additional mutation. “Since inflammatory breast cancer is a very rapidly changing disease, we think this additional mutation may have been acquired after the original surgical biopsy was taken,” said Dr. Fernandez. In the case where an additional p53 mutation was found, the blood to isolate CTCs were drawn one year later than the breast tissue biopsy was taken.
Although further work analyzing a greater number of genes and samples is needed, the work shows that CTCs offer the possibility of capturing the most current genomic information in an easy-to-obtain sample such as blood, thus helping guide treatment decisions. It also suggests that it may be necessary to test more than one cell for the most accurate reading, as the CTC population appears to be heterogenous. Thomas Jefferson University (TJU)