Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
November 2025
The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics
Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Accept settingsHide notification onlyCookie settingsWe may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.
Privacy policy
Synthetic lethality offers a new approach to kill tumour cells
, /in E-News /by 3wmediaThe scientific community has made significant strides in recent years in identifying important genetic contributors to malignancy and developing therapeutic agents that target altered genes and proteins. A recent approach to treat cancer called synthetic lethality takes advantage of genetic alterations in cancer cells that make them more susceptible to certain drugs. Alan F. List, MD, president and CEO of Moffitt Cancer Center, co-authored an article on synthetic lethality.
“Genetic alterations in cancer in humans may involve gene inactivation, amplification or inactivation,” said List. These changes are not present in non-malignant cells. Common chemotherapeutic agents aggressively kill tumour cells irrespective of genetic alterations. They also have a negative impact on normal cells and can cause significant side effects. Synthetic lethality harnesses the genetic differences between tumour cells and normal cells to minimize the effects on normal cells, and maximize a drug’s effects on cancer cells.
Synthetic lethality can target a variety of cellular defects, including alterations in DNA repair, cell-cycle control and metabolism. This approach can also be used to target interactions between tumour cells and surrounding normal cells that promote tumour survival and oncogenes that drive tumorigenesis that are difficult to target directly. Many of the synthetic lethal drugs and targets have been identified in large-scale drug screens of the entire human genome.
An example of synthetic lethality is the recent approach being investigated to treat breast cancer patients with BRCA1 and BRCA2 mutations. BRCA1 plays an important role is repairing damaged DNA. Women who have mutations in BRCA1 or BRCA2 have an increased risk of developing breast and ovarian cancer because their cells cannot properly repair DNA. This suggests that BRCA mutated breast cancer cells may be more susceptible to drugs that target DNA. Laboratory studies have confirmed this hypothesis by showing that agents that target another DNA repair protein called PARP significantly kill BRCA mutated cells. Several PARP inhibitors are now being investigated in clinical trials in breast cancer patients, and early results are promising.
“The goal of current anticancer approaches is to offer individualized and highly selective therapy. The treatment model for many anticancer approaches has been expanded, with movement away from dose-intensive, non-targeted cytotoxic agents to combination chemoimmunotherapy, new therapeutic combinations and targeted agents,” said List. Synthetic lethality approaches may provide an additional avenue for individualized patient treatment. Moffitt Cancer Center
Tau, not amyloid-beta, triggers neuronal death process in Alzheimer’s
, /in E-News /by 3wmediaNew research points to malfunctioning tau, not amyloid-beta (Abeta) plaque, as the seminal event that spurs neuron death in disorders such as Alzheimer’s disease. The finding, which dramatically alters the prevailing theory of Alzheimer’s development, also explains why some people with plaque build-up in their brains don’t have dementia.
Neuronal death happens when tau, found inside neurons, fails to function. Tau’s role is to provide a structure — like a train track —inside brain neurons that allows the cells to clear accumulation of unwanted and toxic proteins.
“When tau is abnormal, these proteins, which include Abeta, accumulate inside the neurons,” explains the study’s senior investigator, Charbel E-H Moussa, MB, PhD, assistant professor of neuroscience at Georgetown University Medical Center. “The cells start to spit the proteins out, as best they can, into the extracellular space so that they cannot exert their toxic effects inside the cell. Because Abeta is ‘sticky,’ it clumps together into plaque,” Moussa says.
He says his study suggests the remaining Abeta inside the neuron (that isn’t pushed out) destroys the cells, not the plaques that build up outside. “When tau does not function, the cell cannot remove the garbage, which at that point includes Abeta as well as tangles of non-functioning tau, and the cell dies. The Abeta released from the dead neuron then sticks to the plaque that had been forming.”
Moussa’s experiments in animal models also show less plaques accumulate outside the cell when tau is functioning; when tau was reintroduced into neurons that did not have it, plaques did not grow.
Malfunctioning tau can occur due to errant genes or through aging. As individuals grow older, some tau can malfunction while enough normal tau remains to help clear the garbage. In these cases, the neurons don’t die, he says. “That explains the confusing clinical observations of older people who have plaque build-up, but no dementia,” Moussa says.
Moussa has long sought a way to force neurons to clean up their garbage. In this study, he shows that nilotinib, a drug approved to treat cancer, can aid in that process. Nilotinib helps the neuron clear garbage, but requires some functional tau, he says.
“This drug can work if there is a higher percentage of good to bad tau in the cell,” Moussa says. “There are many diseases of dementia that have malfunctioning tau and no plaque accumulation, such as frontal temporal dementia linked to Parkinsonism,” Moussa says. “The common culprit is tau, so a drug that helps tau do its job may help protect against progression of these diseases.” Georgetown University Medical Center
Molecular tumour markers could reveal new therapeutic targets for lung cancer treatment
, /in E-News /by 3wmediaAnalysis of 607 small cell lung cancer (SCLC) lung tumours and neuroendocrine tumours (NET) identified common molecular markers among both groups that could reveal new therapeutic targets for patients with similar types of lung cancer, according to research.
This study examined the clinical specimens of 607 total cases of SCLC tumours (375) and lung NET (232), which included carcinoid, atypical carcinoid and large-cell neuroendocrine tumors. Biomarker testing was achieved through a combination of DNA sequencing (Next-Generation Sequencing (NGS) or Sanger-based); immunohistochemistry (IHC) to identify which proteins are present; and in situ hybridization (ISH) testing, a form of gene amplification, to determine if any of the markers that can cause cancer cells to grow or to become resistant to treatment are present.
Sequencing data were obtained from 201 total specimens (SCLC=115, NET=86). The 115 SCLC tumors harboured a wide spectrum of gene markers. Sequencing revealed mutations in p53 (57 percent), RB1 (11 percent), ATM, cMET (6 percent), PTEN (6 percent), BRAF (3 percent), SMAD4, KRAS (3 percent), ABL1, APB, CTNNB1, EGFR, FBXW7, FGFR2 (2 percent), HNF1A, HRAS, JAK3 (2 percent), MLH1 and PIK3CA (1 percent).
Multiple genes of interest were found in the NET group of 86 tumours, including 66 pulmonary neuroendocrine carcinomas and 20 carcinoid tumours. Among the neuroendocrine tumours, mutations were seen in p53 (44 percent), FGFR2 (9percent), ATM (9 percent), KRAS (6 percent) and PIK3CA (4 percent) as well as EGFR (2 percent) and BRAF (4 percent). Analysis of the carcinoid tumours revealed fewer markers, with notable mutations in p53 (11 percent), HRAS (11 percent), and BRAF (6 percent).
EGFR amplification was verified for 11 percent (5) of the 46 SCLC tumours tested. No SCLC tumours displayed amplification of cMET or HER2. The neuroendocrine tumours exhibited amplification of EGFR (13 percent), cMET (3 percent), and HER2 (4 percent) amplification, while the carcinoid tumours only showed amplification in EGFR (8 percent).
The overexpression of cKIT (64 percent vs. 37 percent), RRM1 (54 percent vs. 28 percent), TOP2A (91 percent vs. 48 percent), TOP01 (63 percent vs. 43 percent), and TS (46 percent vs. 25 percent) was found more frequently in SCLC tumours compared to lung NET, respectively (p=0.0001 for all). Low expression of PTEN was more often identified in SCLC tumours compared to lung NET (56 percent vs. 36 percent; p=0.001).
Molecular profiling of these lung cancer subtypes is not routinely performed, however, numerous mutations were found to be in common with non-small cell lung cancer tumours. Specifically, an EGFR mutation was noted in one small cell lung cancer specimen and one neuroendocrine specimen, an ALK rearrangement was detected in a neuroendocrine tumor, and HER2 amplification was seen in a neuroendocrine specimen.
“Even cancers that appear to be very similar can be dramatically different at the molecular level, and these differences may reflect unique vulnerabilities that could positively impact therapeutic options and decisions,” said Stephen V. Liu, MD, senior study author and Assistant Professor of Medicine in the Division of Hematology/Oncology at Georgetown University’s Lombardi Comprehensive Cancer Center in Washington, DC. “We are pleased that this research confirms these rarer subtypes; it calls for additional investigation on a larger scale. Once confirmed, molecular profiling of small cell tumours and NET could become standard, as it is currently for non-small cell lung cancers, which will be especially important as more molecularly targeted chemotherapy agents are developed.” ASTRO
Sebia launches Hemoglobins Atlas as interactive educational aid
, /in E-News /by 3wmediaDeveloped for the first time, the Hemoglobins Atlas is dedicated to helping Sebia’s capillary electrophoresis users orientate their diagnosis of hemoglobinopathies. Hemoglobin electrophoresis is an established technique routinely used in clinical laboratories for screening samples for hemoglobinopathies (hemoglobin variants and thalassemia). The assay is based on the principle of capillary electrophoresis in free solution. Sebia’s capillary electrophoresis technology allows fast and efficient separation of hemoglobin fractions and detection of the major hemoglobin variants and thalassemia patterns. The high sensitivity and specificity offered by capillary electrophoresis makes it a reliable first line screening method. To mark the tenth year of this technology, the company has developed the CDRom Hemoglobin Atlas as a reference compendium that will help laboratories increase their diagnostic knowledge of hemoglobinopathies. The Atlas is dedicated to the Sebia customers who use the Capillarys and Minicap instruments. The instruments perform sequences automatically, from sampling to final clear-cut profile, with precise quantification, exceptionally sharp separation and presumptive identification of the most common hemoglobins. Professor Piero Giordano, Emeritus associated professor and clinical biochemical molecular geneticist at Leiden University medical centre in the Netherlands, has collaborated as scientific counsellor on all of the research data. He also helped to develop the content. “As an interactive educational aid, the Atlas will cover as many variants as possible, from common to rare and in variable genotype combinations,” said Professor Giordano. “Presumed risk information is also included. If a lab result ends up in the files without any preventive follow up, the diagnostic efforts of the lab will have been wasted. For this reason we are now sharing all of the relevant confirmed and frequent patterns that are associated with severe diseases.” “Our customers will find the new Atlas a valuable companion in deciding how and when to confirm their provisional findings, either with a simple sickle test or with molecular diagnosis,” said Benoit Adelus, Sebia president and CEO. “We aim to keep this Atlas interactive by offering constant updates. Soon we will also provide extranet access for Sebia customers.” The Sebia Hemoglobins Atlas will be updated with new cases on a regular basis. All Sebia users are invited to contribute to the enrichment of the Atlas database by sharing their collection of capillary electrophoresis profiles displaying rare hemoglobin variants with their Sebia representative. The company enjoys an ongoing collaboration with Professor Giordano. Plans for the next version of the Atlas are already underway. The second edition will provide more case studies and additional user-friendly features.
www.sebia.com
Defective NPC1L1 gene found to protect against heart disease
, /in E-News /by 3wmediaBy combing through the DNA of more than 100,000 people, researchers at Broad Institute, Massachusetts General Hospital, and elsewhere have identified rare, protective genetic mutations that lower the levels of LDL cholesterol — the so-called “bad” cholesterol — in the blood. The researchers’ findings reveal that these naturally occurring mutations also reduce a person’s risk of coronary heart disease by about 50 percent. Remarkably, the mutations disrupt a gene called Niemann-Pick C1-Like 1 (NPC1L1) — the molecular target of the FDA-approved drug ezetimibe, often used as a treatment for high LDL.
“Protective mutations like the one we’ve just identified for heart disease are a treasure trove for understanding human biology,” said Sekar Kathiresan, a senior author of the study, Broad associate member, and director of preventive cardiology at Massachusetts General Hospital. “They can teach us about the underlying causes of disease and point to important drug targets.”
Over the past several years, evidence has been mounting that certain loss-of-function mutations — mutations that reduce or completely eliminate a gene’s ability to work — can, at the same time, protect against disease. With this latest discovery, the list now stands at four genes that have been found to offer protective effects against either heart or metabolic disease. (The genes PCSK9, AP0C3, and now NPC1L1 have been found to protect against heart disease, and SLC30A8 has been shown to protect against type 2 diabetes.)
The scientific community is interested in these protective mutations not only because of what they can reveal about the biological basis of disease, but also for their ability to suggest potential paths toward new therapeutics. From a pharmaceutical perspective, it is much more feasible to develop a drug that disables, rather than activates, a gene.
Kathiresan’s long-standing interest in the genetics of blood cholesterol and heart disease first led him to uncover rare mutations in the NPC1L1 gene in just a handful of patients. He wondered if other patients carried similar mutations, so he set off on a massive hunt.
With the combined expertise of Broad Institute’s Genomics Platform, led by Stacey Gabriel, and major support from the National Human Genome Research Institute, Kathiresan and his colleagues sequenced the exomes (the protein-coding portions of the genome) of over 20,000 people of European, African, or South Asian ancestry. They discovered 15 distinct mutations in NPC1L1, all of which serve to inactivate or dampen gene activity. Roughly 1 in 650 people carries one of these inactivating NPC1L1 mutations.
“When it comes to rare variant studies, there is simply no substitute for extremely large sample sizes,” said co-author Gabriel, director of Broad Institute’s Genomics Platform. “This has become crystal clear through our work on NPC1L1 as well as several other similar projects here at the Broad. We now know the right path to get statistically robust results, and that’s the path we are on.”
After defining the mutational landscape of NPC1L1 in the initial study group of 20,000 people, Kathiresan and his colleagues correlated those mutations with LDL levels. The researchers examined the genomes of another 91,000 people and found that those with inactivating mutations in NPC1L1 tended to have lower LDL levels than those without such mutations. The reductions averaged about 12mg/dL, a 10 percent drop that is similar to what is seen in patients receiving ezetimibe therapy.
Individuals who carry inactivating NPC1L1 mutations also have a lower risk of coronary heart disease — roughly half the risk compared to those individuals without those mutations. Broad Institute
Thyroid cancer genome analysis finds markers of aggressive tumours
, /in E-News /by 3wmediaA new comprehensive analysis of thyroid cancer from The Cancer Genome Atlas Research Network has identified markers of aggressive tumours, which could allow for better targeting of appropriate treatments to individual patients.
The finding suggests the potential to reclassify the disease based on genetic markers and moves thyroid cancer into a position to benefit more from precision medicine.
“This understanding of the genomic landscape of thyroid cancer will refine how it’s classified and improve molecular diagnosis. This will help us separate those patients who need aggressive treatment from those whose tumour is never likely to grow or spread,” says Thomas J. Giordano, M.D., Ph.D., professor of pathology at the University of Michigan Medical School.
Giordano is the project co-lead for TCGA thyroid cancer analysis along with Gad Getz, Ph.D., director of Cancer Genome Computational Analysis at the Broad Institute of MIT and Harvard.
Thyroid cancer incidence has increased three-fold over the last 30 years and is the most rapidly increasing cancer in the United States. While the tumours are often slow-growing and easily treated with a combination of surgery, thyroid hormone and radioactive iodine, some patients will develop more aggressive and deadly thyroid cancers.
In this TCGA study the researchers analysed nearly 500 thyroid cancer samples to identify all genetic mutations that play a role. They found several new cancer genes as well as new variations of existing genes.
Overall, the thyroid cancer genome is relatively quiet, with fewer genetic mutations involved than in other common cancers, the researchers found. This may explain why the disease is often slow-growing.
Fewer mutations meant the researchers were able to look at the signalling pathways involved and understand what drives thyroid tumours. This approach helped them understand the genetic drivers of more of these cancers, reducing the percentage of “dark matter” cases – those with unknown genetic drivers – from 25 percent to 3.5 percent.
Those drivers can be broken down into two primary oncogenic groups: BRAF plus similar mutations and RAS plus similar mutations. But within these two primary groups, especially the BRAF group, several different subtypes of thyroid cancer exist. Currently, all thyroid cancers associated with BRAF, for example, had been considered essentially the same. That’s not the case.
“This study integrated a wide variety of genomic data to not only identify cancer drivers, but to compare how these different drivers behave,” said Getz, who is also director of the Bioinformatics Program at the Massachusetts General Hospital Cancer Center and an associate professor of pathology at Harvard Medical School. “Interestingly, we found that subsets of BRAF-mutated thyroid cancers are driving cancer through distinct mechanisms, and that some of these subsets are associated with higher risk and less differentiated cancers.”
The researchers used this understanding to create measures or scores that can determine how a tumour signals and how aggressive a thyroid tumour is. These scores are being tested in a clinical trial to assess if it can lead to more targeted treatment recommendations.
“These findings are a major step forward in how doctors and patients will address thyroid cancer diagnosis and treatment. Researchers around the world will be using this data, coming back to it and asking other scientific questions,” says Carolyn Hutter, Ph.D., M.S., program director in the division of genomic medicine at the National Human Genome Research Institute.
An initial recommendation is for the pathology and scientific communities to consider reclassifying thyroid cancer based on molecular subtypes to better reflect their underlying molecular properties. This would allow doctors to identify the slow-growing tumours from the aggressive tumours and recommend appropriate treatments. Broad Institute
Genotype found in 30 percent of ALS patients speeds up disease progression
, /in E-News /by 3wmediaMice bred to carry a gene variant found in a third of ALS patients have a faster disease progression and die sooner than mice with the standard genetic model of the disease, according to Penn State College of Medicine researchers. Understanding the molecular pathway of this accelerated model could lead to more successful drug trials for all ALS patients.
Amyotrophic lateral sclerosis, commonly known as Lou Gehrig’s disease, is a degeneration of lower and upper motor neurons in the brainstem, spinal cord and the motor cortex. The disease, which affects 12,000 Americans, leads to loss of muscle control. People with ALS typically die of respiratory failure when the muscles that control breathing fail.
Penn State researchers were the first to discover increased iron levels in the brains of some patients with the late-onset neurodegenerative disorders Parkinson’s disease and Alzheimer’s disease. A decade ago, they also identified a relationship between ALS and excess iron accumulation when they found that 30 percent of ALS patients in their clinic carried a variant of a gene known as HFE that is associated with iron overload disease.
For this study, the researchers crossbred mice with the HFE gene variant with the standard mice used in ALS research.
‘When we followed the disease progression and the behaviour of our crossbred mice compared to the standard mice, we saw significant differences,’ said James Connor, vice chair of neurosurgery research and director of the Center for Aging and Neurodegenerative Diseases. The crossbred mice performed significantly worse on tests of forelimb and hindlimb grip strength and had a 4 percent shorter life span.
‘The disease progression was much faster in the crossbred mice than in the standard mice,’ Connor said. ‘What we found is that when ALS happens in the presence of the HFE gene variant, things go downhill more quickly.’
The lead investigator on this project, graduate student Wint Nandar, noticed that the HFE gene variant sped up disease progression and death in females but not males. Males with ALS die faster, on average, than females.
Connor said the variant may not have had time to accelerate the pace of the disease in male mice. An accelerated progression may show up in clinical trials in human males, who live longer with the disease than mice.
The researchers also studied how the HFE gene modified the pace of the disease in mice. The crossbred mice showed increased oxidative stress and microglial activation. Microglial cells normally help with repair in the body, but when over-activated they can promote unhealthy inflammation.
‘They can make things worse instead of better,’ Connor said.
The mice were also found to have disruption of the neurofilaments, the tiny cables that transport nutrients through nerve cells.
‘It’s a much worse environment when the gene variant is present,’ Connor said. ‘This makes it much easier for the disease to take off.’
The findings could help direct more successful clinical testing of new drug treatments, which have traditionally had disappointing results. Because patients with H63D HFE have an accelerated form of the disease, their results could skew study findings.
‘There might be drugs out there that work for 70 percent of the ALS population even though the studies don’t show that when all of the data are looked at without consideration of the genetic background,’ Connor said.
Separating the data out could help find effective treatments for both those with the gene variant and the rest of the ALS population.
‘How a drug is going to work on a carrier of the gene variant could be worse or it could be better, but it’s likely going to be different,’ Connor said. Penn State
Test to rapidly diagnose bloodstream infection
, /in E-News /by 3wmediaA new bloodstream infection test created by UC Irvine researchers can speed up diagnosis times with unprecedented accuracy, allowing physicians to treat patients with potentially deadly ailments more promptly and effectively.
The UCI team, led by Weian Zhao, assistant professor of pharmaceutical sciences, developed a new technology called Integrated Comprehensive Droplet Digital Detection. In as little as 90 minutes, IC 3D can detect bacteria in milliliters of blood with single-cell sensitivity; no cell culture is needed.
“We are extremely excited about this technology because it addresses a long-standing unmet medical need in the field,” Zhao said. “As a platform technology, it may have many applications in detecting extremely low-abundance biomarkers in other areas, such as cancers, HIV and, most notably, Ebola.”
Bloodstream infections are a major cause of illness and death. In particular, infections associated with antimicrobial-resistant pathogens are a growing health problem in the U.S. and worldwide. According to the Centers for Disease Control & Prevention, more than 2 million people a year globally get antibiotic-resistant blood infections, with about 23,000 deaths. The extremely high mortality rate for blood infections is due, in part, to the inability to rapidly diagnose and treat patients in the early stages.
Recent molecular diagnosis methods, including polymerase chain reaction, can reduce the assay time to hours but are often not sensitive enough to detect bacteria that occur at low concentrations in blood, as is common in patients with blood infections.
The IC 3D technology differs from other diagnostic techniques in that it converts blood samples directly into billions of very small droplets. Fluorescent DNA sensor solution infused into the droplets detects those with bacterial markers, lighting them up with an intense fluorescent signal. Zhao said that separating the samples into so many small drops minimizes the interference of other components in blood, making it possible to directly detect target bacteria without the purification typically required in conventional assays.
To identify bacteria-containing droplets among billions of others in a timely fashion, the team incorporated a three-dimensional particle counter developed by UCI biomedical engineer Enrico Gratton and his colleagues that tags fluorescent particles within several minutes.
“The IC 3D instrument is designed to read a large volume in each measurement, to speed up diagnosis,” Gratton said. “Importantly, using this technique, we can detect a positive hit with very high confidence.” University of California, Irvine
It’s not always the DNA
, /in E-News /by 3wmediaDamage to DNA is an issue for all cells, particularly in cancer, where the mechanisms that repair damage typically fail. The same agents that damage DNA also damage its sister molecule messenger RNA (mRNA), which ferries transcripts of the genes to the tens of thousands of ribosomes in each cell. But little attention has been paid to this damage.
“There may be cases where messenger RNA is just as important as DNA,” said Carrie Simms, PhD, a postdoctoral associate in Zaher’s lab. “Clearly oxidative damage to RNA is somehow involved in neurodegenerative diseases, such as Alzheimer’s and ALS. It’s not necessarily causing the disease; it may just be some sort of by-product; but it’s in the mix.”
“Under normal conditions only about 1 percent of the cellular mRNAs are oxidized,” Zaher said, “but if you have oxidative stress, for whatever reason, a higher percentage can be damaged.
One of the hallmarks of Alzheimer’s is oxidative stress, and studies have shown that in people with advanced Alzheimer’s, half of the RNA molecules in the neurons may be oxidized.
Zaher, Simms and their colleagues report that when they fed oxidized mRNA to ribosomes, the nanomachines that convert mRNA to protein, the ribosomes jammed and stopped.
A stuck ribosome could be rescued by factors that released it from the mRNA and chewed up the damaged transcipt. But if the factors involved in this quality-control system were absent, damaged mRNA accumulated in the cell, just as it does in Alzheimer’s.
The three cellular processes essential to life—making copies of DNA, copying DNA into mRNA, and translating the mRNA into protein—have been penalized for billions of years by evolution, are astonishingly accurate, because evolution has heavily penalized any sloppiness.
Errors in DNA copying occur only once every billion events. When DNA is transcribed to mRNA, there is a mistake about once every ten thousand events .and when the mRNA is translated to protein, there might be an error once every thousand events.
To test the robustness of translation, the Zaher lab set out to break it, by giving faulty mRNA transcripts to ribosomes. They damaged one letter in a three-letter mRNA coding unit, oxidizing a G (the base guanine), to create what is called 8-oxo-G.
“We chose this oxidized base,” he said,” because we knew that when DNA is copied, an oxidized G causes a mistake. Instead of pairing with a C, as it normally would, 8-oxo-G will pair with an A.”
He thought the ribosome would read the three-letter codon C[8-oxo-G]C not as CGC but rather as CAC and conseqeuntly put the wrong amino acid in the protein chain it was making.
But when 8-oxo-G was added to a soup that contained all the factors needed to translate mRNA into protein, something surprising happened.
“We expected that we might get aberrant proteins,“ Simms said. “But the ribosome didn’t make mistakes. It just stopped. It couldn’t deal with the mRNA at all”
The scientsts could tell it was stuck because levels of the protein the faulty mRNA encodes plummeted.
To make sure it was the presence rather than the position of the 8-oxo-G that mattered, Simms made mRNAs with the 8-oxo-G in each of the three positions of the three-letter coding unit. Each time the ribosome stalled.
Knowing they had found something interesting, the scientists upped their game. Simms built a longer 300-nucleotide mRNA to use as a probe. And instead of adding the damaged mRNA to a reconstituted bacterial system, she put it in extracts of plant and animal cells.
“We couldn’t look at ribosomes in the extracts,” Simms said, “but we could look at the proteins they made. They made short proteins, exactly the length you’d expect if the ribosome were stopping at the damaged base. “
A single mRNA typically has several ribosomes traveling along it, all simultaneously translating this transcript into protein. When the first ribosome stops, the others pile up behind it.
“You get this small product that is telling you the ribosome cannot go through the 8-oxo-G and then you get even smaller products that are telling you there are multiple ribosomes stuck behind the first ribosome. So the backed up ribosomes make a ladder of peptides,” Zaher said.
“This is a problem,” he said. “Among other things, the ribosome is an expensive machine that the cell has invested a lot of energy in making, and now it’s stuck on an mRNA. You need those ribosomes back.”
Fortunately ribosomes have three quality-control systems that keep watch for errors in the mRNA and rescue the ribosome if spot serious mistakes. One of these systems is “no-go decay.” When ribosomes are stuck and can’t go forward, they recruit factors that come in to pry open the ribosome, chew up the mRNA and add a tag to the defective peptide that marks it for degradation.”
But no-go decay was originally discovered by throwing artificial roadblocks in the ribosome’s way: mRNAs with large hairpin turns in them that the ribosome could not unwind or plow through.
“Four billion years of evolution has made sure your genome does not have sequences that make hairpins, so these are clearly not the intended targets for no-go decay,” Zaher said.
To find out, the scientists turned to yeast cells. If the yeast’s ribosomes jammed on the oxidized mRNA but were rescued by no-go decay, very little damaged mRNA would accumulate in the cell. This proved to be the case.
Simms then deleted the gene for a factor that releases the ribosome from the mRNA when it jams. In these knockout yeast the level of oxidized mRNA went up. Then she deleted the gene for a factor that is recruited to degrade the mRNA after the ribosome is released, and again the level of oxidized mRNA rose. Without no-go decay, the cells were clearly in trouble.
“The system that translates mRNA into protein is highly conserved, so what’s true for yeast is probably true for people as well,” said Zaher. Washington University in St. Louis.
A signature for success
, /in E-News /by 3wmediaA team led by Ludwig and Memorial Sloan Kettering (MSK) researchers has published a landmark study on the genetic basis of response to a powerful cancer therapy known as immune checkpoint blockade. Their paper describes the precise genetic signatures in melanoma tumours that determine whether a patient will respond to one such therapy. It also explains in exquisite detail how those genetic profiles translate into subtle molecular changes that enable the immune system attack of cancer cells in response to immune checkpoint blockade.
“The genetic signature we have found will be invaluable to understanding the biological mechanisms that drive therapeutic responses to immunotherapy for metastatic melanoma,” says Jedd Wolchok, MD, PhD, director of the Ludwig Collaborative Laboratory and associate director of the Ludwig Center for Cancer Immunotherapy at MSK, who co-led the study with Timothy Chan, MD, PhD, of MSK’s Human Oncology and Pathogenesis Program. “Further, our strategy can now be applied to determine the genetic signatures associated with the efficacy of a number of other immunotherapies and cancers.”
Few approaches to treating cancer have generated as much excitement as immunotherapy, in which the immune system is engaged to destroy malignancies. One class of such treatments targets CTLA-4, a molecule expressed on the surface of killer T cells that ordinarily blocks their proliferation. Antibody drugs that block CTLA-4 thus stimulate killer T cell responses—which can target cancer cells—and significantly extend survival for many melanoma patients. Yet not all patients respond equally to this treatment: some, remarkably, survive many years; others fail to respond at all.
“There is a subset of melanoma patients who are living far longer than anyone would have expected in the past, largely because of this treatment and other recently developed targeted and immunologic treatments,” says Wolchok. “But we did not know how to identify them, and that’s what really drove this investigation.”
Cancer cells are swift but sloppy proliferators, generating countless mutations across their genome as they multiply. Those mutations are often expressed as changes in the chains of amino acids that make protein molecules. Like all cells, cancer cells chop up and hold out short fragments of such proteins—each about 9 amino acids in length—for the immune system to assess. These “peptides” are held up and presented to immune cells by a protein complex known as MHC Class I, which varies significantly between people.
“Previous studies by Jedd and others had shown that the particular MHC type of a patient doesn’t appear to influence the efficacy of CTLA-4 blockade,” says Chan. “So we decided to see if the tumour genome has anything to say about whether or not people respond to this therapy. The result was entirely unexpected, and the answer is exceedingly important.”
Chan, Wolchok and their colleagues initially hypothesized that tumours that harboured highly mutated cells would be most responsive to CTLA-4 blockade. To test that hypothesis, they sequenced and compared all of the genes expressed as proteins (collectively known as the “exome”) in tumours taken from 25 patients treated with anti-CTLA-4 antibodies and found that this was, to some degree, true. “But looking at the data a little more deeply,” says Wolchok, “we saw that there were outliers—patients who had over one thousand mutations who didn’t respond, and some with just a few dozen who did. This was a strong indication that the quality of the mutations matters.”
A sophisticated computational analysis of the cancer genomes revealed that a set of core peptide sequences—each four amino acids long (tetrapeptides)—within MHC Class I-presented peptides were unequivocally associated with response to treatment. To test the prognostic power of this genetic signature, the researchers sequenced the exomes of tumours from another 39 melanoma patients treated with CTLA-4 blockade. They found that all those in this set who had responded to the therapy had at least one and typically several more of the tetrapeptides they had identified. Those who failed to respond did not. Their results show that the mutant DNA sequences, can occur anywhere in the genome—not just within mutant “driver” genes that are already known to contribute to cancer.
“The more mutated the tumor’s genome is,” says Chan, “the more likely it is that immunotherapy will work. Since tumours induced by tobacco—such as those of non-small cell lung cancer—have more mutations than most other cancers except melanoma, this finding has enormous medical implications for these genetically diverse cancers.”
It also helps explain, says Wolchok, why the relatively more mutated cancers have been found in clinical trials to be the most responsive to checkpoint blockade. Ludwig Cancer Research