Why some brain cancers resist treatment

Scientists at The University of Texas MD Anderson Cancer Center may have discovered why some brain cancer patients develop resistance to standard treatments including radiation and the chemotherapy agent temozolomide.

Simply put, it’s all in their DNA, and it could open up new avenues for treating certain kinds of brain cancer.

DNA, the body’s essential storehouse for genetic information. In the case of glioblastoma, the most common and aggressive type of glioma or brain cancer, it can also allow the disease to progress more quickly when it is “enhanced,” allowing damaged or mutated cancer cells to repair themselves.

“A major obstacle to effective treatment is acquired resistance to treatment,” said Wei Zhang, Ph.D., professor of Pathology. “Enhanced DNA repair can allow these cancer cells to survive, contributing to resistance and tumour recurrence. We have identified Aktr3 as having the ability to robustly stimulate glioma progression.”

Akts are proteins known as kinases that regulate cell signalling. They’re involved in many bodily processes such as cell growth, cell death and tumour growth. Akts are thought to contribute to the development and progression of many cancers including prostate, breast, liver, colorectal and others. One form of this protein, Akt3, appears to be especially prevalent in the brain.

Zhang’s findings describe his team’s study results showing how Akt3 activates key DNA repair pathways.

In Zhang’s research, he reveals that Akt3 is tied to DNA’s “repair panel,” somehow boosting activation of DNA repair proteins, leading to increased DNA repair, and subsequently to cancer treatment resistance.

“This activation led to enhanced survival of brain tumour cells following radiation or treatment with temozolomide,” said Zhang. “Our work has potentially broad application to multiple cancer types in which Akt3 is expressed. Blocking this pathway may help prevent or alleviate therapeutic resistance resulting from enhanced DNA repair.” MD Anderson Cancer Center

Protein clue to sudden cardiac death

A protein has been shown to have a surprising role in regulating the ‘glue’ that holds heart cells together, a finding that may explain how a gene defect could cause sudden cardiac death.

A team led by Oxford University researchers was looking at how a protein, iASPP, might be involved in the growth of tumours. However, serendipitously they found that mice lacking this gene died prematurely of sudden cardiac death. More detailed investigations showed that these mice had an irregular conductance in the right side of the heart, a condition known as arrhythmogenic right ventricular cardiomyopathy (ARVC).

The researchers discovered that iASPP had a previously unknown role in controlling desmosomes – one of the main structures that ‘glue’ individual heart muscle cells (cardiomyocytes) together. The genetic defect was shown to weaken desmosome function at the junctions of heart muscle cells: this affected the structural integrity of the heart, making mice lacking iASPP prone to ARVC.

Further studies of heart tissue from human patients who had died from ARVC showed that some of them have similar defects in desmosomes as in the mice suggesting that the faulty iASPP gene could also be responsible for ARVC deaths in humans. This finding also explains why a previously reported cattle herd with spontaneous iASPP gene deletion died of sudden cardiac death.

‘We set out to investigate how this protein might cause cancer and found by chance that it could play a key role in this rare genetic heart condition,’ said Professor Xin Lu, Director of the Ludwig Institute for Cancer Research at Oxford University, the lead investigator of the report. ‘It took my DPhil student Mario Notari, the lead author of the study, over two years of further detective work, in collaboration with our colleagues in Oxford and London, to show how a single faulty gene can affect the function of desmosomes, one of the main structures that ‘glue’ heart muscle cells together. Our studies suggest that these changes can threaten the structural integrity of the heart and predispose humans and animals to AVRC.’

ARVC is uncommon in humans, affecting around 1 in 2000 people in the UK [1], and is a leading cause of sudden cardiac death, which is estimated to kill around 100,000 people a year in the UK [2]. Whilst approximately 50% of human ARVC cases are related to known genetic defects in desmosomes, the cause of the other 50% of cases still remains unknown. The new study suggests that mutations in the gene encoding the iASPP protein may contribute to the development of ARVC in these previously-unexplained cases. University of Oxford

Classification of colon tumours

A study by researchers at IRB Barcelona explains the basis for the classification of colon tumours in good or bad prognosis by analysing the tissue surrounding the tumour cells.

The scientists are currently developing a test that enables the identification of patients at risk of relapse after surgical removal of the tumour by measuring 4-6 genes expressed by the tumour microenvironment.

The researchers also propose to test in patients a particular drug that blocks the metastatic capacity of colorectal cancers in mice.

This drug has been tested using novel technology that allows the growth of mini colon cancers, also known as organoids, derived from patient samples.
About 40–50% of all colorectal patients relapse in the form of metastasis. In the last three years, several molecular classifications have been proposed to identify colorectal cancer patients at risk of relapse. Scientists headed by ICREA researcher Eduard Batlle at the Institute for Research in Biomedicine (IRB Barcelona) explain why these classifications work and reveal, in fact, that they can be simplified and improved by looking exclusively at the genes that are expressed in the tissue around the tumour, known as the stroma or tumour microenvironment.

“We have re-evaluated the classifications under our perspective and confirmed that colon cancer relapse occurs in patients in which tumour cells have the capacity to disrupt the tissue surrounding the tumour,” explains Eduard Batlle, head of the Colorectal Cancer Laboratory at IRB Barcelona. The team of scientists have examined the genetic profile of around 1,000 tumours from patients all over the world. “The conclusion is indisputable. The key to the classifications lies in whether the stroma of the tumour is altered or not and it is this property that confers malignancy to colon tumours. Patients with unaltered stroma are essentially cured after surgery.”

This new approach to addressing different types of colon tumour will soon have a practical application for doctors. On one hand, the scientists demonstrate that tumour cells communicate with the stroma through the hormone TGF-beta and that metastasis could be prevented in these patients by interfering with this communication. “We propose exploring the possibility of using TGF-beta inhibitors to treat colon cancer”. Several TGF-beta inhibitors are being tested for other kinds of tumours. “The data are impressive. It would be most pertinent for oncologists and pharmaceutical companies to come to an agreement in order to start clinical assays in patients with poor prognosis colon cancer” says Alexandre Calon, postdoctoral researcher and first author of the article. To test the use of these inhibitors, the scientists at IRB Barcelona have developed technology that allows them to grow mini colon tumours in vitro, also known as organoids, from samples taken from patients. “These organoids reproduce the behaviour of the original tumour and are therefore a powerful tool for personalised cancer treatment,” explains Batlle. 

Furthermore, the IRB Barcelona researchers are very close to achieving a diagnostic test named Colostage to identify those patients at the greatest risk of a relapse in the form of metastasis. “By focusing on the genetic programme of the tissue surrounding the tumour we can identify the vast majority of patients that will experience relapse. This would allow better discrimination of which patients to treat and follow up, as the use of radiotherapy or chemotherapy would benefit only this group” ensures the researcher. In addition, this test will help identify those patients more likely to benefit from the use of TGF-beta inhibitors in clinical trials. IRB Barcelona

Determining effectiveness of Huntington’s disease treatments

A new genetic discovery in the field of Huntington’s disease (HD) could mean a more effective way in determining severity of this neurological disease when using specific treatments. This study may provide insight for treatments that would be effective in slowing down or postponing the death of neurons for people who carry the HD gene mutation, but who do not yet show symptoms of the disease.

The work was led by researchers at Boston University School of Medicine (BUSM) and currently appears in BMC Medical Genomics.

HD is a fatal, inherited neurological disease that usually manifests between 30 and 50 years of age. The disease is caused by a genetic defect that is passed from parent to child in the huntingtin gene. Having too many repeated elements in the gene sequence causes the disease and an increasing number of repeats leads to earlier onset and increased severity of the disease.

The researchers studied the brains of people who died from HD and those who died of other, non-neurological diseases and identified a very specific genetic signal that strongly correlates disease severity and extent of neuronal, or brain cell death. The genetic signal, also called a microRNA, silences certain genes in the DNA. Genes that lead to the toxic effects of the huntingtin gene may be silenced by these microRNAs, in particular the miR-10b-5p microRNA.

‘The findings that we found most interesting were the microRNAs that reflect the extent of the neuron death in the brain, since it is this process that causes the debilitating symptoms of the disease and eventually leads to the death of the individual,’ explained senior author Richard H. Myers, PhD, Director of the Genome Science Institute at BUSM.

According to the researchers these findings may represent a more effective way to tell whether or not HD treatments may be slowing down the pace of the death of brain cells. ‘If miR-10b-5p measurements can provide a faster and more effective way to determine whether or not a specific treatment is protecting brain neurons, it may be possible to study more potential treatments for HD more quickly. Equally importantly, it may become feasible to perform these trials in people who are HD gene carriers, but who do not yet show symptoms, by giving evidence for which trials may postpone onset and provide more healthy years of life,’ added Myers.

These findings also suggest that other microRNAs may also be important markers of severity for other neurological diseases such as Parkinson’s disease and Alzheimer’s disease. Further research is already being conducted in Parkinson’s Disease by Myers and his colleagues. EurekAlert

Mutation may cause early loss of sperm supply

Brown University biologists have determined how the loss of a gene in male mice results in the premature exhaustion of their fertility. Their fundamental new insights into the complex process of sperm generation may have direct applications to a similar loss of fertility in men.

What the team discovered is that the loss of the gene that makes the protein TAF4b causes a deficit in the number of progenitor cells at an embryonic stage of a male mouse’s reproductive development. Lacking those important precursor cells means that the mice struggle to develop a robust stem cell infrastructure to sustain sperm production for the long term. The affected mice are fertile at first, but quickly deplete the limited sperm supply that they can generate.

“What’s fascinating about these mice is they can reproduce,” said Richard Freiman, senior author of the new study in the journal Stem Cells. “Mice can usually reproduce until they are two years old, but these mice can only reproduce until they are four months old.”

TAF4b is a protein that affects how genes are regulated and transcribed, and its absence has profound impacts on the reproductive system. In previous work, Freiman’s research group has shown that female mice without TAF4b are totally infertile and that their ovaries age prematurely. But in experiments with males, led by lab members Lindsay Lovasco and Eric Gustafson, the effect proved more subtle.

Sperm generation follows from a complex chain of events that the research shows begins before a male mouse is even born. In their experiments, the team compared the development of mice with and without the TAF4b gene. In mice with TAF4b, progenitor cells for sperm in the male embryo arise and proliferate normally, laying the groundwork in the testes for a robust pool of spermatogonial stem cells to develop. Those stem cells are the ones that produce a renewable supply of sperm. Without TAF4b, there were fewer progenitor cells and consequently fewer stem cells. They still produce sperm at first, but they can’t renew production for the long haul. Ultimately the testes, which develop normally, become unproductive and atrophy.

What’s not yet clear from the research is why the process fades out rather than just continuing, albeit at a very low level of productivity. One possibility is the low supply of spermatogonial stem cells drives the body to invest all its meagre resources in immediate sperm production, leaving none of the stem cells in a more flexible state that can perpetually renew the supply. Another possibility is that regardless of supply, TAF4b is simply needed to see the renewal process through, for instance by maintaining some stem cells in their regenerative state.

Not only do humans have a gene for TAF4b, but a coincidental study last year in the Journal of Medical Genetics provides evidence that it also matters for sperm count. That research reported that four Turkish brothers who carried a mutation in the TAF4b gene had low sperm counts. Their mutation was in the same region of their gene as the one Freiman’s team generated in the mice.

“The human implications are very exciting,” he said. “It is possible that those men, as teenagers, were able to make functional sperm.”

Certainly more research is needed, Freiman said, but if TAF4b mutation plays out in men the way it plays out in mice, his hope is that detecting the mutation in teenage boys could allow doctors to freeze their sperm so that when they are older and want to have children, they could draw on that banked supply. Brown University

New target identified in fight against Alzheimer’s, multiple sclerosis

Highlighting a potential target in the treatment of multiple sclerosis (MS) and Alzheimer’s disease, new research suggests that triggering a protein found on the surface of brain cells may help slow the progression of these and other neurological diseases.

Working with mice, two research teams at Washington University School of Medicine in St. Louis independently linked the protein to the ability to clear debris from the brain. Such waste builds up both as a by-product of daily mental activities and as a result of misdirected immune system attacks on brain cells. If too much debris is present in the brain for too long, it can contribute to neurological disease.

In one study, scientists showed that Alzheimer’s brain plaques build up more slowly in mice that have a defective version of the TREM2 protein. In another, researchers showed that mice lacking the same protein had trouble cleaning up debris in the brain produced by damage to a protective coating on nerve cells. The problem is thought to occur in MS and other neurological disorders.

“We’ve been very interested in identifying ways to control naturally occurring mechanisms that help clean and repair the brain, and these new studies provide clear evidence that TREM2 could be just such a target,” said Laura Piccio, MD, PhD assistant professor of neurology and senior author of one of the studies.

Scientists are looking for ways to activate the protein to slow or prevent  damage caused by neurological disorders.

Previous studies have linked rare forms of the TREM2 gene to early-onset dementia and increased risk of Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis (ALS).

Scientists knew the protein was found on brain cells called microglia, which help maintain and repair the central nervous system. The new studies are among the first to provide clear evidence that the protein plays an integral role in at least some of these processes.

In Alzheimer’s disease, amyloid beta, a by-product of brain metabolism that is normally cleared from the brain, builds up to form plaques. Researchers in the laboratories of Marco Colonna, MD, the Robert Rock Belliveau MD Professor of Pathology, and John Cirrito, PhD, associate professor of neurology, bred mice lacking the gene with mice genetically engineered to have an Alzheimer’s-like condition.

First author Yaming Wang, PhD, a postdoctoral research scholar, monitored the build-up of amyloid plaques in the mice offspring as they aged and found that the absence of the gene significantly accelerated the accumulation of the plaques.

“We found that microglia cluster around amyloid plaques when TREM2 is present, presumably because the cells are getting ready to absorb the plaques and break them down,” said Colonna. “When TREM2 is absent, this clustering does not occur.”

In MS, misdirected immune cell attacks damage myelin, a protective coating on nerve cells, leaving myelin fragments in brain tissue. Failure to promptly remove this debris can worsen damage caused by the condition and inhibit repair mechanisms.

For the MS study, Piccio and colleagues at the John L. Trotter MS Center at Washington University School of Medicine and Barnes-Jewish Hospital gave a compound called cuprizone to mice that lacked the TREM2 gene. Cuprizone causes loss of myelin in a manner somewhat similar to that seen in people with MS.

“When we give normal mice this chemical, they can clear most of the myelin fragments from the brain,” Piccio said. “But when we gave cuprizone to mice that did not have the gene and looked at their brains four, six and 12 weeks later, we could still see evidence of damaged myelin.”

Motor coordination in these mice also was significantly more impaired after cuprizone exposure. This may reflect enhanced damage to brain cells resulting from the lingering presence of damaged myelin in the brain.

Colonna and his colleagues showed that TREM2 detects molecules associated with amyloid beta and with damaged neurons. They believe that the protein helps keep microglia from self-destructing as debris is cleared from the brain.

“This is a mechanism that is very common in immune cells,” he explained. “When a signal activates immune cells and they start attacking an invader or working to repair an injury, they start using energy very rapidly. If the cells do not receive a second signal confirming the need for their services, this increased energy usage will kill them.” University of Washington in St. Louis

CHOPS syndrome found, tied to key events in early development

Analysing a puzzling multisystem disorder in three children, genetic experts have identified a new syndrome, shedding light on key biological processes during human development. The research also provides important information to help caregivers manage the disorder, and may offer clues to eventually treating it.

“This syndrome illuminates a very important pathway in early human development — a sort of master switch that controls many other genes,” said study leader Ian D. Krantz, MD, co-director of the Individualized Medical Genetics Center at The Children’s Hospital of Philadelphia (CHOP). Krantz, a medical geneticist, is an attending physician in CHOP’s comprehensive human genetics program.

The investigators named the disorder CHOPS syndrome, with the acronym representing a group of symptoms seen in the affected children: cognitive impairment and coarse facies (facial features), heart defects, obesity, pulmonary involvement, short stature and skeletal dysplasia (abnormal bone development).

The central research finding is that mutations in the gene AFF4 disrupt a crucial group of proteins called the super elongation complex (SEC). The SEC controls the transcription process by which DNA is copied into RNA, enabling genes to be expressed in a developing embryo. The timing of this biological process is tightly regulated, so anything that interferes with this timing can disturb normal development in a variety of ways.

“Because the SEC involves such a crucial process in cell biology, it has long been a focus of study, particularly in cancer,” said Krantz. “CHOPS syndrome is the first example of a human developmental disorder caused by germline mutations in the SEC.”

Originating in the embryo, germline mutations are passed along to every cell in a developing organism, with harmful effects in multiple organs and biological systems. The mutated AFF4 gene produces mutated proteins, which then accumulate and cause a cascade of abnormalities in other genes controlled by AFF4.

“AFF4 has a critical role in human development, regulating so many other genes,” said Krantz. “When it is mutated, it can damage the heart and skeleton, and lead to intellectual disability, among other effects.”

The current study sequenced the exomes (the protein-coding portions of DNA) of three unrelated children treated at CHOP for a complex developmental disorder. All three patients had some symptoms similar to those found in patients with Cornelia deLange syndrome (CdLS), a rare multisystem disease long studied at CHOP. Krantz led research that discovered the first causative gene for CdLS in 2004.

The research team’s DNA analysis and studies of gene expression patterns determined that the new syndrome is genetically distinct from CdLS, even while sharing some common molecular mechanisms. Although only the three children in the study are known to definitely have CHOPS syndrome, Krantz expects diagnoses to increase with the dissemination of this discovery and the ongoing spread of faster, lower-cost gene-sequencing technology.

The research findings offer practical and emotional benefits for families, said Krantz. Physicians may now order more appropriate tests to monitor and manage specific medical issues arising from CHOPS syndrome. “This also means families and children can end their ‘diagnostic odyssey’ — the frustrating procession of tests and unsuccessful treatments that often occurs in trying to find an answer for families who have a child affected by a complex, undiagnosed disorder,” he added. CHOP Research Institute

Long-term culture of human liver stem cells

AMSBIO reports on the recent publication in Cell by Dr Meritxell Huch, Prof Hans Clevers et al. of ground-breaking research using Cultrex BME2 reduced growth factor (organoid growth matrix) to enable long-term (>1 year) culture of genome-stable bipotent stem cells from adult human liver. These results open up new experimental avenues towards the use of human liver material expanded in vitro as an alternative cell source for disease modelling, toxicology studies, drug testing, regenerative medicine and gene therapy.
Failure in the management of liver diseases can be attributed to the shortage of donor livers as well as to our poor understanding of the mechanisms behind liver pathology. The value of any cultured cell as a disease model or as a source for cell therapy transplantation depends on the fidelity and robustness of its expansion potential as well as its ability to maintain a normal genetic and epigenetic status.
The research by Huch, Clevers et al. shows that primary human bile duct cells can readily be expanded in vitro as bipotent stem cells into 3D liver organoids using AMSBIO’s reduced growth factor basement membrane extract Cultrex BME2 as extracellular matrix (ECM). In this novel culture system, adult liver stem cells maintain their ability of self-renewal, differentiating into functional hepatocyte cells in vitro and generating bona fide hepatocytes upon transplantation. Extensive analysis of the genetic stability of cultured organoids in vitro demonstrates that the expanded cells preserve their genetic integrity over months in culture (agreeing with the authors’ previous observations in a mouse model). Organoids derived from patients with genetic disorders can be used to model liver disease in vitro.
Commenting on this research, Dr. Huch said “We have obtained culture conditions that allow us to long-term expand genetically stable human donor liver cells in organoid culture. One of the clues to this success is the use of ECM that allows the cells to grow in 3D. BME2 has been our ECM of choice for these experiments.”
AMSBIO has been working with the variability of the cellular microenvironment and how it affects the physiological relevance of cell culture. Factors contributing to this variability include: organ specific stromal cells, growth factors, proteoglycan and protein composition, and stiffness or tensile strength of the basement membrane extract or extracellular matrix. Matrices from AMSBIO not only support cells and cell layers, but also play an essential role in tissue organization that affects cell adhesion, migration, proliferation, and differentiation. Cultrex® Basement Membrane Extract (BME) is a soluble form of basement membrane purified from Engelbreth-Holm-Swarm (EHS) tumour. The extract gels at 37°C to form a reconstituted basement membrane. Major components of BME include laminin, collagen IV, entactin, and heparan sulfate proteoglycan.  These extracted proteins can be used in multiple applications, under a variety of cell culture conditions, for maintaining growth or promoting differentiation of primary endothelial, epithelial, smooth muscle and stem cells. BME can also be utilized in cell attachment, neurite outgrowth, angiogenesis, in vitro cell invasion and in vivo tumorigenicity assays. The new BME 2 is a proprietary formulation that has a higher tensile strength than similar products such as Matrigel®.
Dr Meritxell Huch is based at the Gurdon Institute, University of Cambridge, UK; and Professor Hans Clevers is Professor and Director of the Hubrecht Institute and President of the Royal Netherlands Academy of Arts and Sciences.

www.amsbio.comhttp://tinyurl.com/ouyktb3

Anticancer virus solution provides an alternative to surgery

Researchers at Okayama demonstrate that injection of a virus solution followed by tumour removal can eradicate cancer metastasis in lymph nodes without the need for preventative surgery.
While early-stage gastrointestinal cancers can be treated non-surgically, once the cancer has invaded to a particular depth, preventative – ‘prophylactic’ – surgery is routine. The frequency of lymph node metastasis increases significantly once the cancer has penetrated the submucosal layers, and as there is no way of determining whether the cancer has metastasized in the lymph nodes they will be surgically removed just in case. Now researchers at Okayama University and the University of California in San Diego have demonstrated that injection of a viral solution can eradicate lymph node metastasis making prophylactic surgery unnecessary.
To treat early stage cancers a saline solution is injected creating a fluid cushion, which raises and isolates the tumour. The tumour is then readily removed by equipment through a standard endoscopic viewing tube inserted in the gastrointestinal tract. However if the cancer has already penetrated the submucosal layer it will be prone to relapse in the lymphatic system.
Toshiyoshi Fujiwara and his colleagues adapted the standard endoscopic treatment by injecting a solution of Telomelysin – a virus known to kill epithelial and mesenchymal malignant cells – instead of saline solution.  They tested the treatment in a mouse model, injecting green-fluorescent-protein-labelled cancer cells into the submucosal layers of the rectum, which developed lymph node metastasis. Fluorescence imaging showed that cancer cells were successfully eliminated by the treatment with virus solution, in contrast to mice treated with saline solution instead. In addition, treated mice showed no relapse four weeks after the treatment
In their report of the results the researchers conclude, “From a clinical view point, this new, simple, and robust strategy is a more realistic and promising bench-to-bedside translation than prophylactic surgery for ablation of potential lymph node metastases in early gastrointestinal cancer patients.”
Early stage gastrointestinal cancers are defined by the level of the cancer invasion reaching no further than the submucosa. Endoscopic treatment removes these tumours by dissecting the submucosal layers.
For esophageal gastric and colorectal submucosally invaded cancers, the frequency at which the cancer is found to metastasize in the lymph nodes is approximately 10 to 20%. The lymphatic system distributes fluids, proteins, chemicals, cells and drugs. This makes it a major pathway for the spread of metastatic cancers so that cancerous invasion of the lymphatic system is particularly problematic. It is very difficult to determine whether the cancer has metastases in the lymph nodes. As a result lymph node surgery just in case is routine when treating esophageal gastric and colorectal submucosal cancers, even though in many cases it may not have been necessary.
Previous research has demonstrated that certain viruses replicate in cancer cells and break them down, and may be developed for cancer treatments. The researchers further exploited the role of the lymph system in mediating proteins and fluids, a function which makes it more prone to exposure to a virus injected in the surrounding area. They experimented with Telomelysin – a telomerase-dependent, tumour-killing replicating adenoviral agent (OBP-301). The virus is known to kill epithelial and mesenchymal malignant cells.  
The researchers first tested the virus on green-fluorescent-protein-labelled colorectal cancer cell lines with. Using fluorescence imaging, they observed rapid cell death in response to injection with the virus while there was no such response in cell lines treated with mutant strains of the virus that had replication deficiencies.
The researchers demonstrated how their treatment exploited the lymph node function using mouse models injected with red-fluorescent-protein-labelled lymph node metastasized cancer cells. After six days the virus labelled with green fluorescent protein was injected and fluorescence images showed the position of the virus coincided with the metastatic foci in the lymph nodes.

Kikuchi S, Kishimoto H, Tazawa H, Hashimoto Y, Kuroda S, Nishizaki M, Nagasaka T, Shirakawa Y, Kagawa S, Urata Y, Hoffman RM, Fujiwara T: Biological Ablation of Sentinel Lymph Node Metastasis in Submucosally Invaded Early Gastrointestinal Cancer. Mol Ther. 2014 Dec 19.

Study investigates inherent contamination in deep well microplates

An independent academic study provides a detailed analysis of deep well microplates and the significant levels of contamination found in more than 50% of the commercially available plates tested.
The study gives data on a large range of microplates from numerous manufacturers based in Europe, USA and China. Mass spectral data shows that persistent contamination from a range of compounds found in the raw polymer master batch continues to be evident in many of the microplates tested. The effect of extractables leached out of the deep well plates identified in this report depends on the exact application for which the plate was designed but is highly likely to significantly affect their performance and contaminate samples stored in them.
The authors of the report conclude it is likely that a low grade polypropylene was used in the production of a significant proportion of the deep well microplates that leached extractables when tested.

http://tinyurl.com/qaxn89a