Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
November 2025
The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics
Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Accept settingsHide notification onlyCookie settingsWe may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.
Privacy policy
New Hope for more effective treatments for patients with HER2+ breast cancer
, /in E-News /by 3wmediaThis month in Breast Cancer Research and Treatment, Khalil and his colleagues at Case Western Reserve University proved the power of persistence; from a pool of more than 30,000 possibilities, they found 38 genes and molecules that most likely trigger HER2+ cancer cells to spread.
By narrowing what was once an overwhelming range of potential culprits to a relatively manageable number, Khalil and his team dramatically increased the chances of identifying successful treatment approaches to this particularly pernicious form of breast cancer. The HER2+ subtype accounts for approximately 20 to 30 percent of early-stage breast cancer diagnoses, which are estimated to be more than 200,000 new breast cancer diagnoses each year in this country, leading to approximately 40,000 deaths annually. Several cancer chemotherapy drugs do work well at early stages of the disease — destroying 95 to 98 percent of the cancer cells in HER2+ tumors.
“Eventually though, many of these patients develop resistance to the drugs, and the 2 to 5 percent of the remaining breast cancer cells begin to grow and cause tumours again,” said Khalil, assistant professor in the Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine. “We want to develop a strategy to target the genes responsible for enhancing HER2 oncogenic activity and increase the chances of eliminating the tumour entirely at the early stages of the disease.”
In this study, Khalil, also a member of the Case Comprehensive Cancer Center, and colleagues chose an innovative approach that went beyond merely comparing gene expression in normal and in HER2+ cancer-affected breast tissue. Other scientists tried such a straightforward comparison but found themselves swamped by hundreds and even thousands of gene expression differences. Instead, Khalil designed a study where the offending genes would stand out. He and colleagues compared gene expression differences among HER2+ breast cancer tissues of uncontrolled HER2 activity with those having greatly diminished HER2 activity. Ultimately their work revealed 35 genes and three long intervening noncoding RNA (lincRNAs) molecules were most associated with the active HER2+ cells.
To obtain special breast cancer tissues in HER2-active and HER2-diminished states, Khalil collaborated with oncologist Lyndsay Harris, MD, who had served as correlative science principal investigator for a clinical trial of the drug trastuzumab, which involved Brown University, Yale University and Cedars-Sinai. Harris, now professor of medicine, CWRU School of Medicine, and director of the Breast Cancer Program, University Hospitals Seidman Cancer Center, obtained the preserved HER2+ breast cancer tissues for Khalil’s study from two intervals — before and then during the trastuzumab clinical trial. The drug works by disrupting HER2 activity, which in turn prevents this recalcitrant protein from launching uncontrolled cell growth.
From this collection of HER2+ breast cancer tissue, Khalil and colleagues got to work on determining which genes and other genetic components stood out. First, they applied RNA sequencing and then compared the sequences in tissues collected before trastuzumab curtailed HER2 activity with those collected later when HER2 activity declined sharply. Next, investigators grew the HER2+ breast cancer tissue cells in the laboratory and examined genes prominent in the cell culture (in vitro) model of the disease. Forty-four genes stood out during this portion of the investigation. Finally, Khalil and colleagues obtained publically available RNA-sequence data sets comparing HER2+ breast cancer with matched normal tissue and found that 35 of those 44 genes passed through this third filter.
“In our investigation, we essentially went from thousands of genes and narrowed it down to 35 genes,” Khalil said. “A lot of those genes made sense in terms of carcinogenesis. When they become upregulated because of increased HER2 activity, many of these genes are involved in increased transcription and increased cell proliferation, which are hallmarks of cancer cells.”
The investigators applied the same comparative analysis — RNA sequencing, growing cells in culture and inhibiting HER2 protein — to observe the role of lincRNAs. Khalil and colleagues only discovered this special group of RNA genes in humans in 2009, and scientists now are slowly unraveling the mystery of lincRNAs. For this study, investigators uncovered three standout lincRNAs that are modulated in activity when subjected to increased HER2 activity.
“For the first time, we have shown that these lincRNAs can also contribute to this HER2+ breast cancers,” Khalil said. “So we added another layer of complexity to the disease with lincRNAs. However, these lincRNAs could potentially open the door for RNA-based therapeutics in HER2+ breast cancer, a therapeutic strategy that has great potential but has not been fully tested in the clinic yet.” Case Comprehensive Cancer Center
DNA study could shed light on diseases
, /in E-News /by 3wmediaA technique that identifies how genes are controlled could help spot genetic errors which trigger disease, a study suggests. The new method focuses on those parts of DNA – known as enhancer regions – which regulate the activity of genes and direct the production of proteins that have key functions within the body.
Errors in protein production can result in a wide range of diseases in people.
The new method could help researchers pinpoint the source of disease-causing mutations in enhancers. Until now, these genetic errors have been difficult to interpret as the link between enhancers and the genes they control was not clear. Researchers at the University were part of an international collaboration that identified all the enhancers – and the genes they activate – on a single human chromosome. The team then tested the technique in zebrafish and found that genes are controlled by enhancers in a similar way, suggesting that this type of regulation takes place in all animals.
Individual genes may be under the control of many enhancers, which allow gene activation to be carefully regulated. This allows precise control of gene activity, which is important during development and in maintaining normal brain function.
This work is an important step in identifying which enhancers control which genes, and this will help us in interpreting the genetic changes we see in the part of the genome that does not code for protein. University of Edinburgh
Genome library, blood test aim to minimize statin side effects, maximize benefits
, /in E-News /by 3wmediaWith more than 200 million global users of statins, these medications are the very definition of ‘blockbuster.’ By stopping a substance the body uses to make cholesterol, statins can help stave off heart attacks and strokes — the top two causes of death worldwide. But in a significant percent of patients — up to 30 percent by some reports — statins can also eat away muscle tissue, causing weakness, muscle pain and in rare cases, potentially deadly kidney and liver damage.
And the problem could grow larger. Under the most recent heart disease prevention guidelines issued by the American Heart Association and American College of Cardiology, the potential number of candidates for statin therapy in the US jumped from 43 million to 56 million.
‘As doctors follow the current guidelines, we expect that nearly half of Americans ages 40 to 75 and most men over 60 may be prescribed a statin,’ said Joseph Kitzmiller, MD, PhD an associate director of the Center for Pharmacogenomics at The Ohio State University Wexner Medical Center. ‘We currently have a limited ability to predict clinical outcomes and potential side effects for any of those individual patients — many of whom will be on a statin for the rest of their lives. In general and for most patients, statins are largely beneficial. Unfortunately, not all patients benefit and some are harmed by statins.’
Kitzmiller, who has devoted his career to untangling the many ways that genetics influence how patients respond to their medications, thinks that statin dosage recommendations need also to consider common genetic variants the affect drug exposure.
‘The muscle toxicity associated with statins is largely about exposure, and exposure is significantly affected by a patient’s genetics,’ Kitzmiller explained. ‘If you give two people 20 milligrams of a statin, and one of them has a polymorphism, or gene variation that changes the way the body processes that statin, it may be as though you’ve given them two or three times as much medication.’
Kitzmiller is team, which is primarily studying simvastatin, have already identified a gene variation that decreases statin metabolism — making people more susceptible to adverse events.
‘For our patients carrying this genetic variant, simvastatin doesn’t break down as much in the liver. This means more of the drug is in their bloodstream, increasing their exposure and potential for muscle toxicity,’ said Kitzmiller. ‘For these people, a lower dose of simvastatin could potentially deliver the same benefits while causing fewer side effects.’
Kitzmiller also found that a patient’s likelihood for carrying a genetic polymorphism depends on their race. Recent work by his research team suggests that the effect size also varies significantly across racial groups. One genetic variant resulted in a nearly 3-fold increase in simvastatin concentrations for African-Americans but only a modest increase for Caucasians.
‘That can have incredible clinical significance, especially since African-Americans often suffer higher rates of drug adverse outcomes and higher disease mortality rates despite receiving similar or even identical treatment,’ said Kitzmiller, who is also an associate professor in the Department of Pharmacology at Ohio State’s College of Medicine.
His team has also recently developed a blood test that can simultaneously measure the quantities of three different types of statins and their metabolites, which indicates how much of a medication the body has metabolized. This type of tool is essential to help scientists establish connections between genetic profiles and the variation in how statins are absorbed, transported, distributed and excreted. Kitzmiller is in the process of developing a multigene test that could tell clinicians if their patients have any of the genetic culprits that are likely to lead to muscle problems or other side effects from statins. He hopes to bring this test to clinical trials later this year. Science Daily
Link between genetic variations, and outcomes of non-small cell lung cancer
, /in E-News /by 3wmediaNon-small cell lung cancer (NSCLC) is the most common type of lung cancer. Patients diagnosed with NSCLC have a poor prognosis, with a 5-year survival rate of only 16 percent. Researchers at Moffitt Cancer Center hope to improve NSCLC patient survival with the results of a study.
The researchers focused their attention on inherited genetic variations in genes called interleukins. They genotyped the DNA of 33 interleukin genes from 651 NSCLC patients.
“Interleukins have important roles in regulating cell growth, cell death and in the activation of the immune system,” explained Matthew Schabath, Ph.D., assistant member of the Cancer Epidemiology Program at Moffitt. “Inherited genetic variations in interleukins and other genes can change their function and promote cancer development or control a patient’s response to therapy.”
The researchers discovered that patients who had certain genetic variations in interleukin genes had a better response to either surgery or chemotherapy, resulting in improvements in overall survival, disease-free survival and the amount of time until disease recurred.
This information could be used to personalise patient care in the future. “Discovery of biomarkers based on germline DNA variations represent a potentially valuable complementary strategy which could have translational implications for predicting patient outcomes and sub-classifying patients to tailored, patient-specific treatment,” said Schabath. Moffitt Cancer Center
Telomere changes predict cancer
, /in E-News /by 3wmediaA distinct pattern in the changing length of blood telomeres, the protective end caps on our DNA strands, can predict cancer many years before actual diagnosis, according to a new study from Northwestern Medicine in collaboration with Harvard University.
The pattern – a rapid shortening followed by a stabilization three or four years before cancer is diagnosed – could ultimately yield a new biomarker to predict cancer development with a blood test. This is the first reported trajectory of telomere changes over the years in people developing cancer.
Scientists have been trying to understand how blood cell telomeres, considered a marker of biological age, are affected in people who are developing cancer. But the results have been inconsistent: some studies find they are shorter, some longer and some show no correlation at all.
The Northwestern and Harvard study shows why previous results were confusing.
In the new study, scientists took multiple measurements of telomeres over a 13-year period in 792 persons, 135 of whom were eventually diagnosed with different types of cancer, including prostate, skin, lung, leukaemia and others.
Initially, scientists discovered telomeres aged much faster (indicated by a more rapid loss of length) in individuals who were developing but not yet diagnosed with cancer. Telomeres in persons developing cancer looked as much as 15 years chronologically older than those of people who were not developing the disease.
But then scientists found the accelerated aging process stopped three to four years before the cancer diagnosis.
“Understanding this pattern of telomere growth may mean it can be a predictive biomarker for cancer,” said Lifang Hou, MD, PhD, the lead study author and associate professor in Preventive Medicine-Cancer Epidemiology and Prevention. “Because we saw a strong relationship in the pattern across a wide variety of cancers, with the right testing these procedures could be used to eventually diagnose a wide variety of cancers.” Hou also is a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.
The Northwestern and Harvard study is believed to be the first to look at telomere length at more than one time point before diagnosis. That’s significant because cancer treatment can shorten telomeres. Post treatment, it’s uncertain whether their length has been affected by the cancer or the treatment.
“This likely explains why the previous studies have been so inconsistent,” Dr. Hou said. “We saw the inflection point at which rapid telomere shortening stabilizes. We found cancer has hijacked the telomere shortening in order to flourish in the body.”
Telomeres shorten every time a cell divides. The older you are, the more times each cell in your body has divided and the shorter your telomeres. Because cancer cells divide and grow rapidly, scientists would expect the cell would get so short it would self-destruct. But that’s not what happens, scientists discovered. Somehow, cancer finds a way to halt that process. Feinberg School of Medicine
Unsuspected DNA modification raises possibility of new carrier of heritable epigenetic information
, /in E-News /by 3wmediaScientists don’t know the exact molecular nature of the epigenetic information that one generation transmits to the next. The list of candidate carriers includes proteins, noncoding RNA and the histones around which DNA winds itself. Or it could be modifications to the DNA itself that somehow get replicated when cells divide.
Now, a Harvard Medical School team has written a new chapter in the epigenetics story, with their discovery of a new position for an epigenetic modification to DNA that potentially carries heritable epigenetic information.
Over the past 20 years, a growing body of evidence has implicated chemical marks that are added to the DNA. The best studied modifications scientists have found occur when a methyl group marks the C. More ancient organisms have other modifications, including methylation of the A.
Yang Shi, HMS professor of cell biology, overturned dogma in the field in 2004 when he showed that methylation of histones is not static. Adding a methyl group to histones—the spool around which the DNA double helix wraps to form chromosomes—can help turn a gene on or off; so does removing a methyl group. The discovery of enzymes that specifically remove methyl groups highlights the dynamic nature of histone methylation regulation, a process that is critical for stem cell biology, development and differentiation, and when it goes awry, can lead to many human diseases. Their surprising discovery was made in C. elegans, a transparent roundworm that is a widely studied model organism.
Scientists previously thought that C. elegans simply had no DNA methylation because their C letters showed no signs of the methyl modification that other animals have. It is also unknown how they can transmit epigenetic modifications across generations.
Shi’s team reports that C. elegans does in fact carry DNA methylation, but not on the C position. They found epigenetic modifications to adenine at the same location previously thought to exist only in more primitive organisms.
They also identified the enzymes that act to methylate and demethylate the A. Further bolstering their case, they showed that a transgenerational epigenetic inheritance system in C. elegans, which displays a generationally progressive reduced fertility, also progressively accumulates A methylations.
“We have identified what we think is a fundamental new layer of regulation that occurs in animals,” said Eric Greer, formerly a postdoctoral fellow in the Shi lab and now HMS assistant professor of pediatrics at Boston Children’s Hospital. “We’re excited about this because this is a modification that hasn’t previously been shown to occur in Metazoa, of which humans and worms are members.”
The more common C modification may overshadow the A modification in more recently evolved animals, said co-lead author Andres Blanco, an HMS postdoctoral fellow in pediatrics in the Shi lab.
“Maybe it’s not the dominant form of DNA methylation, but maybe it has a smaller role that is nonetheless extremely important,” he said. Harvard Medical School
Researchers use ‘knockout humans’ to connect genes to disease risk
, /in E-News /by 3wmediaResearchers at The University of Texas Health Science Center at Houston (UTHealth) are helping to make precision medicine a reality by sequencing entire exomes of people to assess chronic disease risk and drug efficacy.
For years, scientists have been using a method called “knockout mice,” which allows them to study gene functions by inactivating a gene in mice and then observing how it affects the mice. Now, UTHealth researchers are using new methods to study naturally occurring “knockout humans.”
Rather than genetically engineer human gene mutations in the lab, UTHealth researchers scanned 8,554 exomes, the protein-encoding portion of the genome, of African Americans and European Americans in the United States for naturally occurring mutations that inactivate a certain gene. A typical human exome has dozens of these loss-of-function gene variants.
“Years ago, we found a mutation that knocks out a gene that lowers your cholesterol. That turned into drugs that can help with cholesterol. That was with one gene. We are now sequencing lots of people and looking at where people are losing function from every gene in their body,” said Eric Boerwinkle, Ph.D., senior author, professor and chair of the Human Genetics Center and the Department of Epidemiology, Human Genetics and Environmental Sciences at UTHealth School of Public Health.
The study participants were part of Atherosclerosis Risk in Communities (ARIC), a study conducted by the National Heart, Lung and Blood Institute (NHLBI). The group was measured for 20 phenotypes related to chronic diseases, such as serum magnesium levels, triglyceride levels, blood pressure and cholesterol.
By observing how certain mutations affect health, researchers were able to identify eight new relationships between genes and diseases and confirm the already established relationship between gene variant PCSK9 and lower blood cholesterol and lower heart disease risk.
A heterozygous form of gene TXNDC5 was found to be related to Type 1 Diabetes progression and elevated fasting glucose levels. A recessive form of C1QTNF8 was related to elevated serum magnesium levels and participants who had a mutation of SEPT10 had significantly reduced lung function.
“Loss-of-function variation in certain genes, such as TXNDC5, may predispose individuals to develop disease. More research is needed to determine the exact mechanisms of these newly discovered relationships,” said Boerwinkle, who is also the Kozmetsky Family Chair in Human Genetics at UTHealth. University of Texas at Houston Health Science Center
Fracture’ prints, not fingerprints, help solve child abuse cases
, /in E-News /by 3wmediaMuch like a finger leaves its own unique print to help identify a person, researchers are now discovering that skull fractures leave certain signatures that can help investigators better determine what caused the injury.
Implications from the Michigan State University research could help with the determination of truth in child abuse cases, potentially resulting in very different outcomes.
Until now, multiple skull fractures meant several points of impact to the head and often were thought to suggest child abuse.
Roger Haut, a University Distinguished Professor in biomechanics, and Todd Fenton, a forensic anthropologist, have now proven this theory false. They’ve found that a single blow to the head not only causes one fracture, but may also cause several, unconnected fractures in the skull. Additionally, they’ve discovered that not all fractures start at the point of impact – some actually may begin in a remote location and travel back toward the impact site.
“It’s a bit like smashing raw hamburger into a patty on the grill,” Haut said. “When you press down on the meat to flatten it, all the edges crack. That’s what can happen when a head injury occurs.”
Because piglet skulls have similar mechanical properties as infant human skulls – meaning they bend and break in similar ways – Haut and Fenton used the already deceased specimens in their research and found they were able to classify the different fracture patterns with a high degree of accuracy.
“Our impact scenarios on the piglet skulls gave us about an 82 percent accuracy rate, while on the older skulls, it improved to about 95 percent,” Fenton said.
To help them get to this level of accuracy, both researchers teamed up with Anil Jain, a University Distinguished Professor in computer science and engineering at MSU, to develop a mathematical algorithm to help classify the fractures.
“A major issue in child death cases is you never really know what happened,” Haut said. “The prosecutor may have one idea, the medical examiner another, and the defendant a completely different scenario.”
Fenton and Haut’s close relationship with medical examiners often results in them being called upon in certain, hard-to-determine cases. They’ve used this new knowledge to help solve these cases, but both are also looking to use Jain’s algorithm in an online resource that will provide even more assistance to investigators.
The team is currently developing a database, or Fracture Printing Interface, that will allow forensic anthropologists and investigators to upload human fracture patterns from different abuse cases and help them determine what most likely caused an injury.
Michigan State UniversityResearchers get a closer look at how the Huntington’s gene works
, /in E-News /by 3wmediaHuntington’s disease is caused by a mutation in the Huntington’s disease gene, but it has long been a mystery why some people with the exact same mutation get the disease more severely and earlier than others. A closer look at the DNA around the Huntington’s disease (HD) gene offers researchers a new understanding of how the gene is controlled and how this affects the disease. These findings set the stage for new treatments to delay or prevent the onset of this devastating brain disease.
Huntington’s disease is a genetic disorder that gets passed down in families, but symptoms generally don’t appear until later in life. It affects the brain and gradually worsens, causing problems with coordination and movement, mental decline and psychiatric issues. While every person has two copies of each gene – one on each chromosome – a single mutation in one copy of the HD gene means the person will suffer from the disease.
The HD gene is controlled by surrounding regions of DNA that function to turn the gene on and off. Dr. Blair Leavitt, professor in UBC’s Department of Medical Genetics, and his colleagues took a closer look at this part of the genetic code. They identified critical regions where proteins, called transcription factors, can bind to the DNA and control the function of the HD gene. Changes in these DNA regions can play both good and bad roles in the disease. In some cases, the DNA changes increase the severity of the disease and speed up the onset and in other cases it protects the person by delaying the onset of the disease.
“The gene for Huntington’s was discovered over twenty years ago but there is very little known about how the expression of this important gene is controlled,” said Leavitt, who is also a scientist with the Centre for Molecular Medicine and Therapeutics. “This study helps us understand how small genetic differences in the DNA surrounding the HD gene can both delay and accelerate the disease.”
Researchers found that when the DNA change is found on a normal chromosome with no HD mutation, it turns off the expression of the good gene and allows the mutant gene on the other chromosome to predominate, speeding up the onset of the disease. If the DNA change is found on a chromosome with the HD mutation, it turns off the bad gene and offers individuals some protection from the disease.
According to Leavitt, these findings provide critical evidence to support the development of new drugs that decrease the expression of the mutant HD gene, an approach called gene silencing. Leavitt is already involved in the testing of one gene silencing treatment that shows great promise, and will begin the first human trial of this therapy for HD later this year. University of British Columbia
New insights into how DNA differences influence gene activity, disease susceptibility
, /in E-News /by 3wmediaResearchers funded by the National Institutes of Health Genotype-Tissue Expression (GTEx) project have created a new and much-anticipated data resource to help establish how differences in an individual’s genomic make-up can affect gene activity and contribute to disease. The new resource will enable scientists to examine the underlying genomics of many different human tissues and cells at the same time, and promises to open new avenues to the study and understanding of human biology.
GTEx investigators reported initial findings from a two-year pilot study in several papers. These efforts provide new insights into how genomic variants – inherited spelling differences in the DNA code – control how, when and how much genes are turned on and off in different tissues, and can predispose people to diseases such as cancer, heart disease and diabetes.
‘GTEx was designed to sample as many tissues as possible from a large number of individuals in order to understand the causal effects of genes and variants, and which tissues contribute to predisposition to disease,’ said Emmanouil Dermitzakis, Ph.D., professor of genetics at the University of Geneva Faculty of Medicine, Switzerland, and a corresponding author on the main Science paper. ‘The number of tissues examined in GTEx provides an unprecedented depth of genomic variation. It gives us unique insights into how people differ in gene expression in tissues and organs.’
In the main paper, researchers analysed the gene activity readouts of more than 1,600 tissue samples collected from 175 individuals and 43 different tissues types. One way that researchers evaluate gene activity is to measure RNA, which is the readout from the genome’s DNA instructions. Investigators focused much of their analyses on samples from the nine most available tissue types: fat, heart, lung, skeletal muscle, skin, thyroid, blood, and tibial artery and nerve.
The genomic blueprint of every cell is the same, but what makes a kidney cell different from a liver cell is the set of genes that are turned on (expressed) and off over time and the level at which those genes are expressed. GTEx investigators used a methodology – expression quantitative trait locus (eQTL) analysis – to gauge how variants affect gene expression activity. An eQTL is an association between a variant at a specific genomic location and the level of activity of a gene in a particular tissue. One of the goals of GTEx is to identify eQTLs for all genes and assess whether or not their effects are shared among multiple tissues.
Investigators discovered a set of variants with common activity among the different tissue types. In fact, about half of the eQTLs for protein-coding genes were active in all nine tissues. They identified approximately 900 to 2,200 eQTL genes – genes linked to nearby genomic variants – for each of the nine tissues studied, and 6,486 eQTL genes across all the tissues. ‘We didn’t know how specific this regulation would be in different tissues,’ said co-corresponding author Kristin Ardlie, Ph.D., who directs the GTEx Laboratory Data Analysis and Coordination Center at the Broad Institute of MIT and Harvard in Cambridge, Massachusetts. ‘The analysis showed a large number of variants whose effects are common across tissues, and at the same time, there are subsets of variants whose effects are tissue-specific.’
Comparing tissue-specific eQTLs with genetic disease associations might help provide insights into which tissues are the most relevant to a disease. The researchers also found a great deal of eQTL sharing among tissues, which can help explain how genomic variants affect the different tissues in which they are active. National Human Genome research Institute