New gene subgroup in prostate cancer

Prostate cancer researchers have drawn a molecular portrait that provides the first complete picture of localized, multi-focal disease within the prostate and also unveils a new gene subgroup driving it.

The discoveries are a further step along the road to personalizing prostate cancer medicine say study co-leads, Dr. Robert Bristow, a clinician-scientist at Princess Margaret Cancer Centre, and Dr. Paul Boutros, an investigator at the Ontario Institute for Cancer Research.

‘Our research shows how prostate cancers can vary from one man to another – despite the same pathology under the microscope – as well as how it can vary within one man who may have multiple tumour types in his prostate,’ says Dr. Bristow. He goes on to say, ‘these sub-types may be important to determining the response to surgery or radiotherapy between patients.’

The study involved molecular profiling of 74 patients with Gleason Score 7 index tumours. (Gleason is the classification system used to evaluate aggressiveness in prostate tumours). Of these, whole-genome sequencing was done on 23 multiple tumour specimens from five patients whose prostates were removed at surgery.  By carefully analysing the genetics of each focus of cancer within each prostate, the researchers could assign ‘aggression scores’ to each cancer which revealed that even small cancers can contain aggressive cells capable of altering a patient’s prognosis.

Dr. Boutros, explained that the more detailed analysis clearly identified that two members of the MYC cancer gene family were at play in disease development, and that one of them – ‘C-MYC’ – was the culprit driving aggressive disease. The other one – ‘L-MYC’ – is already known to be implicated in lung and other cancers.

‘This discovery of a new prostate cancer-causing gene gives researchers a new avenue to explore the biology of the disease and improve treatment,’ says Dr. Paul Boutros, a principal investigator at the Ontario Institute for Cancer Research.

‘By showing that mutations in prostate cancer vary spatially in different regions of a tumour, this study will aid in the development of new diagnostic tests that will improve treatment by allowing it to be further personalized.’ University Health Network

Scientists unveil prostate cancer’s ‘Rosetta Stone’

Almost 90% of men with advanced prostate cancer carry genetic mutations in their tumours that could be targeted by either existing or new cancer drugs, a landmark new study reveals.

Scientists in the UK and the US have created a comprehensive map of the genetic mutations within lethal prostate cancers that have spread around the body, in a paper being hailed as the disease’s ‘Rosetta Stone’.

Researchers say that doctors could now start testing for these ‘clinically actionable’ mutations and give patients with advanced prostate cancer existing drugs or drug combinations targeted at these specific genomic aberrations in their cancers.

The study was led in the UK by scientists at The Institute of Cancer Research, London, in collaboration with researchers from eight academic clinical trials centres around the world.

Uniquely, doctors at The Royal Marsden NHS Foundation Trust and at hospitals in the US were able to collect large numbers of samples of metastatic cancers – cancers that had spread from the original tumour to other parts of the body.

Normally these samples are extremely hard to access, and this is the first study in the world to carry out in-depth analysis of metastatic prostate cancers that are resistant to standard treatments.

Researchers analysed the genetic codes of metastatic tumours from the bone, soft tissues, lymph nodes and liver of 150 patients with advanced prostate cancer.

Nearly two thirds of the men in the study had mutations in a molecule that interacts with the male hormone androgen which is targeted by current standard treatments – potentially opening up new avenues for hormone therapy.

Mutations in the BRCA1 and BRCA2 genes – most famous for their roles in breast cancer – were found in nearly 20% of patients. Recent work at the ICR and The Royal Marsden has shown that these patients can be treated effectively by drugs called PARP inhibitors.

Researchers also discovered new mutations, never detected before in prostate cancer, but which do occur in other cancers. These include mutations in the PI3K and RAF gene families which can also be targeted by existing drugs, either currently in trials or approved for use in the clinic.

The researchers also took blood tests to analyse patients’ own genomes, and found that 8% were born with DNA errors that predisposed them to prostate cancer. They said this could strengthen the case for genetic screening for people with a family history of the disease.

Institute for Cancer Research

Treatment for genetically caused emphysema is effective

A landmark clinical study provides convincing evidence that a frequently overlooked therapy for genetically-caused emphysema is effective and slows the progression of lung disease.

Alpha-1 antitrypsin deficiency is an inherited disorder that can cause emphysema even without exposure to tobacco smoke.  Alpha-1 antitrypsin (AAT) is a protein made in the liver that protects the lungs. With this disorder, the AAT protein builds up in liver cells and doesn’t reach the lungs to protect them. Augmentation therapy involves regular infusions of purified AAT protein to raise the level of the protein in the blood and lungs. Although the therapy has been available for more than 25 years, it has seen limited use because doctors have been unsure that it works.

The study, ‘Intravenous augmentation treatment and lung density in severe α1 antitrypsin deficiency (RAPID): a randomised, double-blind, placebo-controlled trail,’ will change how clinicians understand this treatment and encourage them to consider its early use before the condition causes severe emphysema.

By using CT scans to measure the lung density of patients in the trial, the researchers were able to overcome some of the challenges that have been associated with studying the effectiveness of the treatment.  ‘This treatment has now been studied in our centre using the most sensitive measure of lung structure – a radiologic measurement of lung density –  allowing us to detect changes far earlier than can be seen with standard breathing tests,’ said Dr. Kenneth Chapman, Director of the Asthma and Airways Centre at Toronto Western Hospital and the Canadian research lead for the multicentre trial. ‘We can now say with certainty that augmentation therapy is effective and should be given to patients with emphysema caused by this deficiency.’

According to the Canadian Medical Association Journal, up to five per cent of people with chronic obstructive pulmonary disease (COPD) are thought to have alpha-1 antitrypsin deficiency, yet only four to five per cent of those with a deficiency have been identified.  Even when the deficiency is diagnosed, there has typically been a delay of five to 10 years before this specific genetic problem has been identified as the cause of respiratory problems.

‘Augmentation therapy not only preserves lung structure, but likely adds years of life,’ said Dr. Chapman. ‘Patients with this condition need access to timely diagnosis and treatments to ensure they receive the best possible care’.  Dr. Chapman added that this treatment is used only for this specific type of emphysema and is not of benefit to those with more common types of emphysema, chronic bronchitis or COPD. University Health Network

Genetic biomarker may predict cancer patients’ response to immunotherapy drug

In a report of a proof-of-principle study of patients with colon and other cancers for whom standard therapies failed, researchers at the Johns Hopkins Kimmel Cancer Center say that mistakes in so-called mismatch repair genes, first identified by Johns Hopkins and other scientists two decades ago, may accurately predict who will respond to certain immunotherapy drugs known as PD-1 inhibitors. Such drugs aim to disarm systems developed by cancer cells to evade detection and destruction by immune system cells.

“This study gives us a solid clue about how immunotherapy may work in cancer and how to guide immunotherapy treatment decisions based on the genetic signatures of a cancer rather than class of cells or organ of origin,” says Luis Diaz Jr., M.D., an oncologist at the Johns Hopkins Kimmel Cancer Center.

“Defects in mismatch repair genes are found in a small percentage of many cancer types, and this type of biomarker for immunotherapy response could apply to tumours containing errors in other DNA repair genes, as well,” says Dung Le, M.D., an oncologist at the Johns Hopkins Kimmel Cancer Center. “Using a predictive biomarker can help us direct the use of immunotherapy drugs to patients who are more likely to respond, avoiding giving people expensive and time-consuming treatments that are not likely to work or delaying the use of other treatments.” John Hopkins Medicine

Study shows colorectal cancer genetically different in older and younger patients

While the overall rate of colorectal cancer (CRC) is declining, CRC specifically among young patients is increasing. Previous studies have shown that CRC in patients younger than 50 years old tends to be more aggressive than CRC in older patients. A University of Colorado Cancer Center study offers early evidence of genetic differences between CRC in young and old patients, possibly pointing toward different treatments and strategies in combating the young form of the disease.

“We saw differences in two important gene signalling pathways, PPAR and IGF1R, which are involved in regulating cell development, metabolism, and growth,” says Christopher Lieu, MD, investigator at the CU Cancer Center and assistant professor of medical oncology at the University of Colorado School of Medicine.

Alterations in these signalling pathways have been implicated in the development of several types of cancer.

The study compared the genetics of 5 colorectal cancer tumours from younger patients (median age 31) to 6 tumours from older patients (median age 73), sequencing 45 million “reads” from each tumour. The group then explored the data for significant differences between groups. In addition to the pathways PPAR and IGF1R, the study showed that younger CRC tumour samples were enriched for pathways responsible for metabolizing drugs.

“Chemotherapies challenge cancer cells and younger people may metabolize these chemotherapies differently than older patients. This may explain why our traditional chemotherapy treatments may be less effective for younger patients with metastatic colorectal cancer,” says Todd Pitts, MS, research instructor in the Developmental Therapeutics Program at the CU Cancer Center, and the study’s lead author. (Pitts notes that this hypothesis will require additional exploration.)

The group plans to validate the finding of these differences in a larger patient population. Then, if PPAR and/or IGF1R prove to in fact be important drivers of CRC in young patients, the group hopes to explore trials of drugs targeting these potential tumour drivers. Toward this goal, the group has gathered the important resource of tumour samples grown from the tissues of young CRC patients, allowing further preclinical genetic and drug testing. University of Colorado Cancer Centre

Analysis of fluid that bathes the human eye identifies 386 new proteins as biomarker candidates

Researchers conducting a comprehensive proteomics analysis of human aqueous humour samples identified 763 proteins – including 386 proteins detected for the first time – in this clear fluid that helps maintain pressure in the eye and nourishes the cornea and the lens. These proteins could have a role in disease processes affecting the eye and serve as valuable biomarkers for the development of diagnostics and drug candidates to improve visual health.

A team of researchers from the United States and India, led by Akhilesh Pandey, MD, PhD, Johns Hopkins University School of Medicine (Baltimore, MD) and Krishna Murthy, DO, MRCOphth (Lon) Institute of Bioinformatics (Bangalore, India), used high-resolution mass spectrometry to analyse and identify the proteins isolated from aqueous humour samples collected from 250 individuals. More than a third of the proteins were located outside of cells, in the extracellular matrix, and are involved in cell communication and signal transduction. Others have roles in cell growth, differentiation, and proliferation.

Among the proteins unique to this study are growth factors, immunomodulators, and proteins that regulate blood vessel formation. Other enzymes have a role in metabolism and the energy needs of ocular components such as the lens and cornea. For example, sorbitol dehydrogenase, one of the 386 novel proteins identified in the aqueous humour, plays an important role in the metabolism of glucose in the lens. EurekAlert

Findings reveal new insights into how DNA differences influence gene activity

Researchers funded by the National Institutes of Health Genotype-Tissue Expression (GTEx) project, including scientists from the Broad Institute of MIT and Harvard, have created a new and much-anticipated data resource to help establish how differences in an individual’s genomic make-up can affect gene activity and contribute to disease. The new resource will enable scientists to examine the underlying genomics of many different human tissues and cells at the same time, and promises to open new avenues to the study and understanding of human biology.
GTEx investigators reported initial findings from a two-year pilot study in several papers. These efforts provide new insights into how genomic variants – inherited spelling differences in the DNA code – control how, when, and how much genes are turned on and off in different tissues, and can predispose people to diseases such as cancer, heart disease, and diabetes.

“GTEx was designed to sample as many tissues as possible from a large number of individuals in order to understand the causal effects of genes and variants, and which tissues contribute to predisposition to disease,” said Emmanouil Dermitzakis, Ph.D., professor of genetics at the University of Geneva Faculty of Medicine, Switzerland, and a corresponding author. “The number of tissues examined in GTEx provides an unprecedented depth of genomic variation. It gives us unique insights into how people differ in gene expression in tissues and organs.”

NIH launched the GTEx Project in 2010 to create a data resource and tissue bank for scientists to study how genomic variants may affect gene activity and disease susceptibility. Investigators are collecting more than 30 tissue types from autopsy and organ donations in addition to tissue transplant programs. The DNA and RNA from those samples are then analysed using cutting-edge genomic methods. The project will eventually include tissue samples from about 900 deceased donors.

“GTEx will be a great resource for understanding human biological function, and will have many practical applications in areas such as drug development,” said NHGRI Program Director Simona Volpi, Pharm.D., Ph.D. “Scientists studying asthma or kidney cancer, for example, will be interested in understanding how specific variants influence the biological function of the lung, kidney, and other organs.” Broad Institute

Panel recommends improvements in oestrogen testing accuracy

Unreliable oestrogen measurements have had a negative impact on the treatment of and research into many hormone-related cancers and chronic conditions. To improve patient care, a panel of medical experts has called for accurate, standardized oestrogen testing methods in a statement published in the Endocrine Society’s Journal of Clinical Endocrinology & Metabolism (JCEM).
The panel’s recommendations are the first to address how improved testing methods can affect clinical care, and were developed based on discussions at an oestrogen measurement workshop hosted by the Endocrine Society, AACC and the Partnership for Accurate Testing of Hormones (PATH).

Oestrogen is primarily produced in the ovaries and is also produced in small amounts by the adrenal glands, which is why men as well as women have oestrogen in their bodies. It is critical for fertility in women, and also plays a role in many health conditions, from precocious puberty to cancers of the breast, ovary, prostate and liver. Accurate blood tests for oestrogen are necessary to diagnose patients with these conditions and ensure they receive appropriate, effective treatment. Many medical studies also rely on oestrogen tests, such as research assessing the connection between oestrogen levels and the risk of breast or prostate cancer.

“Accurate data on patients’ oestrogen levels are needed to ensure appropriate and effective patient care, reduce the need for retesting, and enable clinicians to implement the latest research in patient care,” said one of the authors and co-chair of the PATH Steering Committee, Hubert Vesper, PhD. “Research studies, however, found high inaccuracies among different oestrogen tests, especially when the test is measuring low oestrogen levels in postmenopausal women, men and children.”

The expert panel called for improving the accuracy of measurements through standardization, and recommended clinicians, researchers and public health officials support standardization programs like CDC’s and other efforts to ensure oestrogen measurement is accurate and consistent.

The panel also advised clinicians and researchers to consider the purpose of the test when selecting an oestrogen measurement method. Clinicians and researchers currently use several methods to measure oestrogen, including mass spectrometry and immunoassays. The experts agreed both methods are valid, but that one may be more effective than the other depending on the situation. For instance, mass spectrometry—the more expensive, but also more sensitive testing method—may be appropriate in people who tend to have low oestrogen levels, including postmenopausal women and children beginning puberty.

Additionally, the experts recommended that medical journals require authors to fully explain the oestrogen measurement testing methods used in studies. Ensuring researchers explain the processes they used will help the field move toward standardized methods. The Endocrine Society

An immune system marker for therapy-resistant prostate cancer

You are a patient who has just been treated for a serious illness but neither you nor your doctor knows how likely it is that you – in comparison with other patients — will actually be helped by the treatment. This is often the situation with prostate cancer, one of the deadliest and most highly prevalent cancers. While hormone therapy can help, patient responses vary widely, and it’s still unclear why some types of prostate cancer seem to be resistant to the therapy.

A team led by Associate Professor Lloyd Trotman at Cold Spring Harbor Laboratory (CSHL) shows how signalling by an immune system component called interleukin-6 (IL-6) appears to play an important role in driving particularly aggressive and therapy-resistant prostate cancer.

“Our research suggests that IL-6 could be a marker for when the disease switches to a more dangerous state that is ultimately hormone therapy-resistant,” says Trotman.

The results could have important implications for human prostate cancer. “The gain could be immense, because today’s problem is that the variability in response of humans to hormone therapy is amazing,” Trotman says. “For one man this therapy might be great, might reduce disease burden dramatically for many, many, years, and be an extreme benefit,” he says. “For others there’s almost no response, and it’s still not clear to clinicians who is who.”

Being able to predict which patients would benefit from hormone therapy “would be amazing,” Trotman says. “We are really hopeful that translating the IL-6 discovery into the clinics could help us stratify patients into good responders and bad responders. For any hospital this would be a major breakthrough.”

Trotman and his team, which included Dawid Nowak, Ph.D., a postdoctoral investigator who is the paper’s first author, looked for cellular signals that led to metastasis and hormone therapy resistance in a genetically engineered mouse model for metastatic prostate cancer. They found that the combined loss of two genes, PTEN and p53 — closely associated with prostate cancer metastasis — led to the secretion of IL-6. Signalling by IL-6 was then responsible for activating a powerful cancer gene called MYC, which drives cell proliferation and disease progression.

“It suggested immediately that cell-cell communication is very, very important to make the cells resistant to therapy and very aggressive,” says Trotman.

The involvement of the MYC pathway suggests that it could potentially serve as a target of drugs against prostate cancer, Trotman says. The team’s next step is to study IL-6 signalling in humans. “IL-6 detection in blood has been developed to a high art,” Trotman says. “There are very good tools, which have been tested in the hospital setting.”  Cold Spring Harbor Laboratory 

Discovery of new genetic mutation in aortic disease allows better diagnosis

Thoracic aortic aneurysm and dissection (TAAD), an enlargement or tearing of the walls of the aorta in the chest, is, together with abdominal aortic aneurysms, responsible for about 2% of all deaths in Western countries. The aorta is the largest artery in the body, and carries blood from the heart. About one out of every five patients with TAAD has a family member with the same disorder, therefore indicating a genetic cause. However, the relevant genetic mutations discovered so far only explain about 30% of all cases. Through the study of a large family with TAAD features, an international team of genetic researchers have now discovered that a mutation in the TGFB3 gene is also responsible for the condition.

Elisabeth Gillis, MSc, a PhD student in the Centre for Medical Genetics at Antwerp University Hospital, Antwerp, Belgium, explains that she and colleagues from seven other countries are the first to link this particular genetic mutation to serious aortic disorders. This is important, she says, because it means that the TGFB3 gene can be included in diagnostic screening. ‘Armed with this knowledge, we can screen patients with symptoms of TAAD, and also family members without symptoms. Early identification of a risk of aortic aneurysm formation will allow us to implement preventive treatment with medication aimed at slowing down the process of aneurysm and, ultimately, replacement of the aorta before a significant risk of dissection arises’, she will say.

An aortic aneurysm occurs where there is a weakness in the walls of the aorta, creating an outward bulge. Weakness in the aorta is dangerous, because it can lead to rupture (dissection) which is life-threatening.

The researchers studied 9 patients from a large Flemish-Dutch family with the cardiovascular, skeletal and facial features typical of a form of TAAD, called Loeys-Dietz syndrome. They screened DNA from each family member without finding any genetic mutations known at that stage to be connected with TAAD. However, further investigation revealed two candidate genomic regions that appeared to be involved, one of which contained the TGBF3 gene. ‘This gene was an obvious candidate because it has previously been shown that the TGFbeta-signalling pathway has a key role in the formation of aortic aneurysm,’ says Ms Gillis.

After sequencing the gene, the researchers identified a mutation that was present in all affected family members. Finally, 470 TAAD patients were screened for TGFB3 mutations, and causal mutations were found in ten other families.

‘This is an important finding because incidence of TAADs may be much higher than currently reported,’ says Ms Gillis. ‘Acute aortic dissections may be disguised as heart attacks, and we know that the genetic component of TAAD is strong – in about 20% of patients, it is also found in family members. Therefore anything we can do to enable early identification of people at risk will help. However, aortic aneurysm formation is not yet fully understood, so reversing the risk of dissections remains a challenge, even though effective treatments are available.’ EurekAlert