Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
November 2025
The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics
Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Accept settingsHide notification onlyCookie settingsWe may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.
Privacy policy
Study identifies first genetic mutation associated with Aicardi syndrome
, /in E-News /by 3wmediaA genetic mutation responsible for a debilitating childhood neurological condition known as Aicardi syndrome has been identified by the Translational Genomics Research Institute (TGen).
In a study researchers identified mutations to a gene known as TEAD1, which not only affects formation of the brain but also the retina, the part of the eye responsible for helping turn light into nerve impulses.
In addition, the TGen study found that – contrary to previous studies – Aicardi syndrome may also occur in boys, as well as girls.
Within five months of birth, children with Aicardi syndrome experience: spasms or seizures; ice-cream-scoop-like divots in the retina known as chorioretinal lacunae; and a partial or complete absence of a key brain structure called the corpus callosum, which normally connects the two sides, or hemispheres, of the brain.
‘Discovering the first gene mutation associated with Aicardi syndrome is a revolutionary finding with many implications about how children with this disorder might be best identified and treated in the future,’ said Dr. Matt Huentelman, Co-Director of TGen’s Center for Rare Childhood Disorders and the study’s senior author.
To identify genetic factors in the cellular pathways involved in AIC, TGen researchers sequenced the genomes of 10 children with the disorder, as well as their parents. By screening the billions of pieces of genetic information, they discovered a mutation in TEAD1.
‘Discovery of a specific genetic change associated with AIC will help improve diagnosis, provide a better understanding of the disease biology, and lead to better treatment approaches,’ said Dr. Vinodh Narayanan, Medical Director of TGen’s Center for Rare Childhood Disorders and one of the study’s authors.
TEAD1 has previously been associated with Sveinsson’s syndrome, an inherited progressive weakening of the eye’s retina and choroid, a layer of nerves and blood vessels that connects the retina to the optic nerves. The TGen study suggests that TEAD1 mutations can lead to other chorioretinal complications, such as chorioretinal lacunae.
The TGen study also found that the children in this study also share a potential pathogenic, or disease-causing, mechanism: the altered expression of genes associated with neuronal development; retinal development; cell-cycle control; and synaptic plasticity, the ability of synapses to strengthen or weaken over time in response to increases or decreases in their activity.
Most surprising was the finding that AIC might also be more common among boys than previously thought because the TEAD1 mutation is on an autosome, a chromosome not linked to sex.
AIC had been strongly presumed by geneticists to be an X-linked-dominant disorder occurring almost exclusively in females. However, no gene on the X chromosome has ever been conclusively associated with AIC.
‘Our study strongly challenges this notion by demonstrating a deleterious mutation of TEAD1 on an autosome,’ said Dr. Isabelle Schrauwen, a Research Assistant Professor in Dr. Huentelman’s lab and the lead author of the study. ‘These findings are of clinical importance because they demonstrate AIC linked to autosomal mutations, and therefore for the first time rule-in a likely much higher frequency of AIC in boys.’ Translational Genomics Research Institute (TGen)
Discovery promises new treatments to thwart colon cancer
, /in E-News /by 3wmediaScientists at St. Jude Children’s Research Hospital have discovered how an immune system protein, called AIM2 (Absent in Melanoma 2), plays a role in determining the aggressiveness of colon cancer. They found that AIM2 deficiency causes uncontrolled proliferation of intestinal cells. Surprisingly, they also discovered that AIM2 influences the microbiota—the population of gut bacteria—apparently fostering the proliferation of “good” bacteria that can protect against colon cancer.
The team, led by Thirumala-Devi Kanneganti, Ph.D., a member of the St. Jude Department of Immunology said that the findings could have important applications for prevention, prognosis and treatment.
“Since reduced AIM2 activity in colorectal cancer patients is associated with poor survival, it might be useful to detect the level of AIM2 expression in polyps taken from colonoscopy and use this as one of the biomarkers for prognosis,” Kanneganti said.
Kanneganti and her team believe that it might be possible to prevent the disease or reduce its risk by treating susceptible people to increase AIM2 activity and give them healthy donor bacteria. “In people who already have colorectal cancer, therapies that boost the expression of AIM2, such as interferons, might reduce tumour progression. Also, transferring healthy microbiota or a group of ‘good’ bacteria to patients with colorectal cancer at the early stage of disease may prolong survival,” Kanneganti said.
Cancer researchers had known that mutations in AIM2 were frequently found in patients with colorectal cancers. And a study by other researchers had found that more than half of small bowel tumours had AIM2 mutations.
However, AIM2’s established function in the cell was not in the machinery of cancer, said one of the paper’s first authors Si Ming Man, Ph.D., a postdoctoral fellow in Kanneganti’s laboratory. Rather, he said, AIM2 was known to work in the immune system to detect invading bacteria and viruses and help “alert” the immune system to battle them.
“When we found that the intestine expressed high levels of AIM2, we hypothesized that this gene may also play a role in regulating gut health,” Man said. “This was how we became interested in AIM2 and colorectal cancer.”
In their experiments with mice, the scientists used chemicals to trigger the process mimicking the development of colorectal cancer. They found that the mice showed drastically reduced AIM2 function, confirming the finding in humans with the cancer. They also found that mice genetically altered to have reduced AIM2 function, when treated with the chemicals, showed significantly more tumours than normal mice.
The scientists’ studies also showed that AIM2 played a role independent of its immune role, in suppressing abnormal expansion of intestinal stem cell populations. Conversely, malfunction of AIM2 unleashes abnormal stem cell proliferation. Stem cells are immature cells that differentiate into adult cells such as intestinal cells. These cells continuously proliferate to replace old and dying cells in the intestine.
“Many previous studies have indicated that AIM2 contributes to the immune system by acting as a pathogen sensor,” Man said. “However, our work is the first to identify AIM2’s role in controlling proliferation of intestinal stem cells. This work is truly exciting to us because we have found a new role for AIM2 in regulating colorectal cancer, and it does so by inhibiting excessive proliferation of stem cells in the large intestine.” The researchers also pinpointed the specific cellular machinery regulated by AIM2.
They decided to explore whether AIM2’s protective role might involve gut bacteria, based on studies from Kanneganti’s lab and others indicating that microbial sensors similar to AIM2 contributed to healthy gut microbiota. Indeed, the comparison of gut bacteria in normal and AIM2-deficient mice showed a different “microbial landscape” in the two types of mice.
To test whether gut bacteria might influence the progression of colon cancer, the researchers housed normal and AIM2-deficient mice together, to enable the exchange of gut bacteria. The scientists found a striking reduction in colon tumors in the AIM2-deficient mice and an increase in tumors in the normal mice.
“What this might suggest is that transfer of some of the ‘good’ microbiota from wild-type mice to replace the ‘bad’ microbiota from mice lacking AIM2 offers increased protection against colorectal cancer,” Man said. “We believe that this finding has important clinical relevance because we can potentially prevent or decelerate the progression of colorectal cancer in humans, especially in those who have mutations in the AIM2 gene, by simply giving them ‘good’ microbiota.”
“We have only scratched the surface of the role of AIM2 in controlling stem cell proliferation and the maintenance of a healthy gut microbiota,” Kanneganti said. “How exactly AIM2 does both of these functions is an exciting research area to pursue.” St Jude Children’s Research Hospital
Team discovers new genetic immunodeficiency
, /in E-News /by 3wmediaAn analysis of five families has revealed a previously unknown genetic immunodeficiency, says an international team led by researchers from Boston Children’s Hospital. The condition, linked to mutations in a gene called DOCK2, deactivates many features of the immune system and leaves affected children open to a unique pattern of aggressive, potentially fatal infections early in life.
As the researchers—led by Kerry Dobbs and Luigi Notarangelo, MD, of Boston Children’s Division of Allergy and Immunology—reported today in the New England Journal of Medicine, DOCK2 deficiency may be detectable by newborn screening and is curable with a hematopoietic stem cell transplant (HSCT).
Genetic immunodeficiencies, such as X-linked severed combined immunodeficiency (X-SCID) or Wiskott-Aldrich syndrome (WAS), are a group of devastating conditions where mutations to specific genes cause either functional defects in or interfere with production of T-cells and other components of a patient’s immune system. These defects increase a patient’s susceptibility to a range of severe infections at an early age.
Conditions for which the causative genes are known, such as X-SCID, can be screened for at birth, allowing for early detection and, when appropriate, curative treatment with a hematopoietic stem cell transplant.
‘Until recently, a correct diagnosis for babies born with SCID or other combined immunodeficiencies, such as DOCK2 deficiency, could be made only after these babies had developed serious infections, which could lead to death or compromise the efficacy of an HSCT,’ said Notarangelo, who is a professor of pediatrics at Harvard Medical School. ‘Newborn screening for these diseases is now available for most babies with SCID born in the USA, and this gives increased chances of definitive cure by performing the transplant while the baby is still well.’
In the current study, Notarangelo, Dobbs and their colleagues at the Rockefeller University and the Center for Molecular Medicine in Austria, conducted genetic, genomic and immunological analyses on five patients from Lebanon, Finland, Turkey and Honduras/Nicaragua who early in life demonstrated symptoms indicating a severe but distinctive immunodeficiency, one that left patients susceptible to a broad range of infections but particularly vulnerable to viruses. Three out of the five patients were born of closely related parents, and three were successfully treated by HSCT.
The team discovered through whole exome sequencing that all five patients harboured mutations in DOCK2, mutations that rendered the DOCK2 protein inactive. The mutations had profound effects on multiple aspects of the patients’ immune systems, causing a profound decrease in T-cells and defects in T-, B- and natural killer (NK) cell function.
The study data show that defects in DOCK2, which helps immune cells react to external chemical signals, can have a profound effect on several aspects of immunity, including unforeseen affects on how non-immune cells (such as cells of the skin) respond to viruses.
Notarangelo noted that the data expand the field’s understanding of the basic molecular mechanisms underlying human immunity, while adding a new diagnostic target for newborn screening. Boston Children’s Hospital
A microRNA may provide therapy against pancreatic cancer
, /in E-News /by 3wmediaIndiana University cancer researchers found that a particular microRNA may be a potent therapeutic agent against pancreatic cancer.
Led by Janaiah Kota, Ph.D., assistant professor of medical and molecular genetics at the IU School of Medicine and a researcher at the Indiana University Melvin and Bren Simon Cancer Center, the researchers found that restoring missing microRNA-29 (miR-29) in pancreatic cancer stromal cells reduced the viability and growth of the cancerous cells.
A thick fibrotic shell around the cancer cells is known as ‘stroma,’ which protects the pancreatic cancer cells from anticancer drugs such as chemotherapy.
‘We found that the loss of miR-29 is a common phenomenon of pancreatic cancer stromal cells, and that by restoring it, the stromal accumulation and cancer growth was reduced,’ Kota said. ‘The use of miR-29 as a therapeutic agent may be more effective in targeting reactive stroma, as a single miRNA regulates the expression of several genes associated with disease mechanisms.’
‘In healthy cells and tissues, a single miRNA controls the expression of hundreds of genes, and any alterations in their normal expression leads to abnormal overexpression of bad genes that are favourable for the growth of cancer cells and are harmful to normal cells,’ Kota explained.
Kota and his colleagues were studying the role of small non-coding RNAs called miRNAs in molecular mechanisms associated with pancreatic cancer stroma to evaluate their use for therapeutic intervention in pancreatic cancer. They found that there is loss of miR-29 in stroma of the pancreatic tumours compared to the healthy pancreas. The researchers expected its expression in stromal cells would restore normal function of stromal cells and reduce the abundance of fibrotic stromal proteins. However, they were surprised that when they co-cultured miR-29 overexpressing stromal cells with cancer cells, it also reduced the viability and growth of cancer cells for unknown factors.
They are currently performing additional studies to understand the molecular mechanisms associated with the effect of miR-29 overexpression in stromal cells on cancer cells as well as in preclinical animal models.
‘This is a novel approach that has the potential to overcome the problems associated with current anti-stromal drugs and that could lead to improved therapeutic strategies, enhanced drug delivery to the tumour bed, and, in the future, improved patient survival,’ said Murray Korc, M.D., the Myles Brand professor of cancer research at the IU School of Medicine and a researcher at the IU Simon Cancer Center. Korc is also director of the Pancreatic Cancer Signature Center.
The need for new therapies for pancreatic cancer patients is great as only 7 percent of people with the disease survive more than five years after diagnosis. According to the National Cancer Institute, there will be an estimated 48,960 new cases of pancreatic cancer and 40,560 deaths from the disease in 2015. Indiana University
Earlier, easier detection of colorectal cancer
, /in E-News /by 3wmediaChemists at Caltech have developed a new sensitive technique capable of detecting colorectal cancer in tissue samples—a method that could one day be used in clinical settings for the early diagnosis of colorectal cancer.
Colorectal cancer is the third most prevalent cancer worldwide and is estimated to cause about 700,000 deaths every year. Metastasis due to late detection is one of the major causes of mortality from this disease; therefore, a sensitive and early indicator could be a critical tool for physicians and patients.
A paper describing the new detection technique by Caltech graduate student Ariel Furst (PhD ’15) and her adviser, Jacqueline K. Barton, the Arthur and Marian Hanisch Memorial Professor of Chemistry, are the paper’s authors.
‘Currently, the average biopsy size required for a colorectal biopsy is about 300 milligrams,’ says Furst. ‘With our experimental setup, we require only about 500 micrograms of tissue, which could be taken with a syringe biopsy versus a punch biopsy. So it would be much less invasive.’ One microgram is one thousandth of a milligram.
The researchers zeroed in on the activity of a protein called DNMT1 as a possible indicator of a cancerous transformation. DNMT1 is a methyltransferase, an enzyme responsible for DNA methylation—the addition of a methyl group to one of DNA’s bases. This essential and normal process is a genetic editing technique that primarily turns genes off but that has also recently been identified as an early indicator of cancer, especially the development of tumours, if the process goes awry.
When all is working well, DNMT1 maintains the normal methylation pattern set in the embryonic stages, copying that pattern from the parent DNA strand to the daughter strand. But sometimes DNMT1 goes haywire, and methylation goes into overdrive, causing what is called hypermethylation. Hypermethylation can lead to the repression of genes that typically do beneficial things, like suppress the growth of tumours or express proteins that repair damaged DNA, and that, in turn, can lead to cancer.
Building on previous work in Barton’s group, Furst and Barton devised an electrochemical platform to measure the activity of DNMT1 in crude tissue samples—those that contain all of the material from a tissue, not just DNA or RNA, for example. Fundamentally, the design of this platform is based on the concept of DNA-mediated charge transport—the idea that DNA can behave like a wire, allowing electrons to flow through it and that the conductivity of that DNA wire is extremely sensitive to mistakes in the DNA itself.
In the present study, Furst and Barton started with two arrays of gold electrodes—one atop the other—embedded in Teflon blocks and separated by a thin spacer that formed a well for solution. They attached strands of DNA to the lower electrodes, then added the broken-down contents of a tissue sample to the solution well. After allowing time for any DNMT1 in the tissue sample to methylate the DNA, they added a restriction enzyme that severed the DNA if no methylation had occurred—i.e., if DNMT1 was inactive. When they applied a current to the lower electrodes, the samples with DNMT1 activity passed the current clear through to the upper electrodes, where the activity could be measured.
‘No methylation means cutting, which means the signal turns off,’ explains Furst. ‘If the DNMT1 is active, the signal remains on. So we call this a signal-on assay for methylation activity. But beyond on or off, it also allows us to measure the amount of activity.”
Using the new setup, the researchers measured DNMT1 activity in 10 pairs of human tissue samples, each composed of a colorectal tumour sample and an adjacent healthy tissue from the same patient. When they compared the samples within each pair, they consistently found significantly higher DNMT1 activity, hypermethylation, in the tumorous tissue. Notably, they found little correlation between the amount of DNMT1 in the samples and the presence of cancer—the correlation was with activity.
‘The assay provides a reliable and sensitive measure of hypermethylation,’ says Barton, also the chair of the Division of Chemistry and Chemical Engineering. ‘It looks like hypermethylation is good indicator of tumourigenesis, so this technique could provide a useful route to early detection of cancer when hypermethylation is involved.’ Caltech
Multiple pathways progressing to Alzheimer’s disease
, /in E-News /by 3wmediaThe amyloid cascade hypothesis of Alzheimer’s disease (AD) posits that sticky aggregations or plaques of amyloid-beta peptides accumulate over time in the brain, triggering a series of events that ultimately result in the full-blown neurodegenerative disorder. The hypothesis has been a major driver of AD research for more than 20 years.
However, in a new study researchers at University of California, San Diego School of Medicine and Veterans Affairs San Diego Healthcare System suggest the picture is not so clear-cut, reporting that early indicators or biomarkers of AD development are not fixed in a specific sequence.
“Our current ability to identify early stages of AD is limited by the focus on amyloid accumulation and the expectation that biomarkers follow the same timeline for all individuals,” said Emily C. Edmonds, PhD, a senior postdoctoral fellow in the Department of Psychiatry and first author of the study.
But, Edmonds said, “AD is complex in the sense that there may be different neurobiological pathways leading to expression of the disease. Our findings suggest that the number of abnormal biomarkers and cognitive markers an individual possesses, without regard to the temporal sequence, is most predictive of future decline.”
“Preclinical AD” is a very early stage of AD prior to the appearance of diagnosable symptoms. Current National Institute of Aging-Alzheimer’s Association (NIA-AA) criteria for preclinical AD describe a disease progression that begins with accumulation of amyloid-beta, leading to neurodegeneration, cognitive decline and, eventually, diagnosable AD.
In their study, researchers classified 570 cognitively normal participants in the Alzheimer’s Disease Neuroimaging Initiative according to NIA-AA criteria, and then separately examined the participants based upon the presence and number of abnormal biological and cognitive markers associated with preclinical AD. They found that neurodegeneration alone was 2.5 times more common than amyloid accumulation alone at baseline measurements.
They then examined only those participants who progressed to a diagnosis of mild cognitive impairment, which is an at-risk cognitive state of AD. They found that it was most common to show neurodegeneration as the first sign of early AD, and equally common to show amyloid accumulation or subtle cognitive decline as the first sign.
Edmonds said that the findings underscore the need to improve identification of persons at risk for AD through the use of multiple, diverse assessment tools. This includes sensitive learning and memory tests capable of reliably identifying cognitive changes at the earliest stages.
“At present, it is much more common for assessment of cognition to be based on insensitive screening measures or reports of cognitive problems by patients or their family members,” said Edmonds. “These blunt screening tools can be very unreliable, which might explain why cognitive decline has traditionally been viewed as occurring later in the disease process. The integration of sensitive neuropsychological measures with assessment of biomarkers of AD can enhance our ability to more accurately identify individuals who are at risk for future progression to AD.” University of California – San Diego
Key protein may affect risk of stroke
, /in E-News /by 3wmediaStudies on mice reveal that a special protein in the brain’s tiniest blood vessels may affect the risk of stroke. Peter Carlsson, professor in genetics at the University of Gothenburg, and his research team are publishing new research findings about how the blood-brain barrier develops and what makes the capillaries in the brain different from small blood vessels in other organs.
The brain’s smallest blood vessels differ from those in other organs in that the capillary walls are much more compact. The nerve cells in the brain get the nutrients they need by molecules actively being transported from the blood, instead of passively leaking out from the blood vessels.
This blood-brain barrier is vital, because it enables strict control over the substances with which the brain’s nerve cells come into contact. It has a protective function that if it fails, increases the risk of stroke and other complications.
The smallest blood vessels, the capillaries, have a type of cell called pericytes. These are essential to the development of the blood-brain barrier. Pericytes are also found in other organs, and researchers have previously been unable to find out what gives the brain’s pericytes this unique ability.
The Gothenburg research team has found that the brain’s pericytes contain a protein, FoxF2, which is not present in the pericytes of other organs, and which coordinates the changes that make the blood vessels compact. FoxF2 is needed in order for the blood-brain barrier to form during foetal development.
“Mice that have too little or too much FoxF2 develop various types of defects in the brain’s blood vessels,” explains Peter Carlsson, professor at the University of Gothenburg’s Department of Chemistry and Molecular Biology.
In humans, researchers have noted that major changes in a region of chromosome 6 have been associated with an increased risk of stroke, but it has not been known which of the genes in the area are responsible for this risk.
“The FoxF2 gene is an extremely interesting candidate, as it is located right in the middle of this region, and research is under way now in collaboration with clinical geneticists to investigate the extent to which variations in the FoxF2 gene affect people’s risk of suffering a stroke,” says Peter Carlsson. University of Gothenburg
Calcium channel essential for deep sleep
, /in E-News /by 3wmediaSleep seems simple enough, a state of rest and restoration that almost every vertebrate creature must enter regularly in order to survive. But the brain responds differently to stimuli when asleep than when awake, and it is not clear what brain changes happen during sleep. “It is the same brain, same neurons and similar requirements for oxygen and so on, so what is the difference between these two states?” asks Rodolfo Llinás, a professor of Neuroscience at New York University School of Medicine and a Whitman Center Investigator at the Marine Biological Laboratory (MBL) in Woods Hole. In a recent paper, Choi, Yu, Lee, and Llinás announced that a specific calcium channel plays a crucial role in healthy sleep, a key step toward understanding both normal and abnormal waking brain functions.
To tackle the broad question of sleep, Llinás and his colleagues focused on one crucial part of the puzzle in mice. Calcium channels, selective gates in neuron walls, are integral in neuron firing, ensuring that all parts of the brain keep talking to one other. But during sleep, calcium channel activity is increased, keeping a slow rhythm that is different from patterns found during wakefulness. Based on this clue, the scientists removed one type of calcium channel, Cav3.1, and looked at how the absence of that channel’s activity affected mouse brain function.
This calcium channel turns out to be a key player in normal sleep. The mice without working Cav3.1 calcium channels took longer to fall asleep than normal mice, and stayed asleep for much shorter periods. “They basically took cat naps,” says Llinás. Their brain activity was also abnormal, more like normal wakefulness than sleep. Most importantly, these mice never reached deep, slow-wave sleep. “This means that we have discovered that Cav3.1 is the channel that ultimately supports deep sleep,” Llinás says.
Because these mice completely lack the ability to sleep deeply, they eventually express a syndrome similar to psychiatric disorders in humans. Llinás believes that studying how the brain functions during unconsciousness is key to understanding normal consciousness, as well as abnormal brain activity. This paper begins to uncover one of the key mechanisms of normal sleep, as well as the role for one important calcium channel in overall brain function. The Marine Biological Laboratory
World’s most sensitive test to detect and diagnose infectious disease, superbugs
, /in E-News /by 3wmediaInfectious diseases such as hepatitis C and some of the world’s deadliest superbugs — C. difficile and MRSA among them — could soon be detected much earlier by a unique diagnostic test, designed to easily and quickly identify dangerous pathogens.
Researchers at McMaster University have developed a new way to detect the smallest traces of metabolites, proteins or fragments of DNA. In essence, the new method can pick up any compound that might signal the presence of infectious disease, be it respiratory or gastrointestinal.
‘The method we have developed allows us to detect targets at levels that are unprecedented,’ says John Brennan, director of McMaster’s Biointerfaces Institute, where the work was done.
‘The test has the best sensitivity ever reported for a detection system of this kind — it is as much as 10,000 times more sensitive than other detection systems,’ he says.
Using sophisticated techniques, researchers developed a molecular device made of DNA that can be switched ‘on’ by a specific molecule of their choice — such as a certain type of disease indicator or DNA molecule representing a genome of a virus — an action that leads to a massive, amplified signal which can be easily spotted.
Another important advantage of the new test, say researchers, is that the method does not require complicated equipment so tests can be run at room temperature under ordinary conditions.
‘This will be the foundation for us to create future diagnostic tests,’ explains Yingfu Li, a professor in the Departments of Biochemistry and Biomedical Sciences, Chemistry and Chemical Biology.
‘This invention will allow us to detect anything we might be interested in, bacterial contamination or perhaps a protein molecule that is a cancer marker. Our method can sensitively detect all of them, and it can do so in a relatively short period of time.’
Researchers are currently working to move the test onto a paper surface to create a portable point-of-care test, which would completely eliminate the need for lab instruments, allowing users — family physicians, for example — to run the test.
The Biointerfaces Institute has developed a series of paper-based screening technologies which enable users to generate clear, simple answers that appear on test paper indicating the presence of infection or contamination in people, food or the environment. McMaster University
Clinical Mass Spectrometry Congress Hosted by MSACL to Present Recent Advances
, /in E-News /by 3wmediaThis September 8-11, the Association for Mass Spectrometry: Applications to the Clinical Lab (MSACL) will be hosting the 2nd European Congress at the Salzburg Congress Center in Austria. The congress will be prefaced by two days of Short Courses covering the topics of Getting Started with Quantitative LC-MS/MS in the Diagnostic Laboratory, Development and Validation of Quantitative LC-MS/MS Assays for Use in Clinical Diagnostics, Whole-Cell Pathogen Detection by MALDI-TOF MS and Advanced Proteomics Approaches, and A Newbie’s Introduction to the R Statistical Programming Language. The congress will open with an Exhibitor and Poster reception on Wednesday evening to kick-off the main scientific program presented over the following two days, including 36 research-based Podium presentations and Plenary presentations from Linda Thienpont, Douglas Kell, Andy Hoofnagle, Wiebke Arlt and Donald Hunt. Notably, the scientific program will also include a Newbies / Fundamentals track covering introductory topics such as the basic mass spectrometry, compound-specific tuning, developing MRM transitions, LC method development, and sample preparation basics.
From inception, it has been MSACL’s mission to educate with the aim of developing an understanding of the value of mass spectrometry in the clinic, as well as technical aspects of use, while supporting the growth and attendance of young scientists who are shaping the field. To this end, MSACL provides an expansive Travel Grant program to recruit the attendance of Young Investigators, Trainees and Lab Directors. This year, MSACL is providing 144 grants for the 2015 US conference and 68 for the upcoming 2015 EU congress – approximately 15% of attendees. This investment in the future is supported by the generosity and foresight of Thermo Scientific, Waters, Shimadzu and Cambridge Isotope Labs, companies committed towards driving education, in order to accelerate the implementation of mass spectrometry in the clinic.
View the MSACL 2015 EU Preliminary Program at https://www.msacl.org/2015_EU_program.
Poster abstracts are being accepted for consideration through July 15.
If you are interested in attending the US version of MSACL, Travel Grant applications as well as Podium and Poster Abstracts may be submitted for the MSACL 2016 US conference to be held in Palm Springs, California from February 21-25, 2016.
MSACL is a non-profit educational association dedicated to the advancement of mass spectrometry in the clinical laboratory. More information is available at http://www.msacl.org