Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
November 2025
The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics
Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Accept settingsHide notification onlyCookie settingsWe may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.
Privacy policy
Protein implicated in osteosarcoma’s spread acts as air traffic controller
, /in E-News /by 3wmediaThe investigation of a simple protein has uncovered its uniquely complicated role in the spread of the childhood cancer, osteosarcoma. It turns out the protein, called ezrin, acts like an air traffic controller, coordinating multiple functions within a cancer cell and allowing it to endure stress conditions encountered during metastasis.
It’s been known that ezrin is a key regulator of osteosarcoma’s spread to the lungs, but its mechanism was not known. Osteosarcoma is a tumour of bone that afflicts children, adolescents and young adults. In most cases, the tumour is localized in the extremities and can be completely removed by surgery or amputation.
“The main cause of death in osteosarcoma patients is not the tumour on their limbs, but the failure of their lungs when the cancer spreads there,” explains Aykut Üren, MD, professor of oncology at Georgetown Lombardi Comprehensive Cancer Center.
Üren and his colleagues have developed molecules that block ezrin’s function and prevent osteosarcoma spread in mouse models. In an attempt to explain the molecular mechanisms underlying ezrin-mediated cancer metastasis, the researchers discovered this previously unrecognized role for ezrin.
“Conventionally ezrin was believed to be functioning only on the inner surface of cancer cells,” Üren says, “but our new discovery indicates that ezrin may operate deeper in the core of the cell and regulate expression of critical genes that are important for cancer’s spread.”
The scientists say that ezrin functions in a new capacity that is unusual for its family of proteins. They found that ezrin’s unusual interaction with another protein called DDX3 results in modulation of genes that give cancer cells an edge in surviving harsh conditions.
“Knowing exactly how ezrin works will help our team develop the ezrin-targeting small molecules as potential new drugs to prevent the spread of cancer cells to lungs in osteosarcoma patients,” Uren says.
“Implications of our findings go beyond cancer research,” says the study’s first author Haydar Çelik, PhD. “Because this work suggests a new molecular mechanism on how ezrin is involved in the regulation of mRNA translation, these observations may provide important clues for scientists investigating how viruses enter and replicate in human cells too.” Georgetown Lombardi Comprehensive Cancer Center
Bacterial biofilms may play a role in lupus
, /in E-News /by 3wmediaLupus, multiple sclerosis, and type-1 diabetes are among more than a score of diseases in which the immune system attacks the body it was designed to defend. But just why the immune system begins its misdirected assault has remained a mystery.
Now, researchers at Temple University School of Medicine (TUSM) have shown that bacterial communities known as biofilm play a role in the development of the autoimmune disease systemic lupus erythematosus — a discovery that may provide important clues about several autoimmune ailments.
A team led by TUSM researchers Çagla Tükel, PhD, and Stefania Gallucci, MD, show how bacterial biofilms found in the gut can provoke the onset of lupus in lupus-prone mice. Dr. Tükel is an Assistant Professor of Microbiology and Immunology at TUSM, and Dr. Gallucci is Associate Chair, Microbiology and Immunology, as well as an Associate Professor in Microbiology and Immunology at TUSM. Both are members of the Temple Autoimmunity Center.
‘This work stresses the importance of considering infections as a possible trigger for lupus,’ Dr. Gallucci said. ‘Very little was known about how biofilms interact with the immune system because most of the research has been looking at how biofilms protect bacteria, how they make bacteria resistant to antimicrobials such as antibiotics, but almost nothing was known about what biofilms do to the immune response,’ she said.
Biofilm is a densely packed bacterial community that excretes proteins and other substances. Those substances form a matrix that protects the bacteria from antimicrobials, the immune system, and other stressors. Biofilms can occur in our guts, among the bacteria that help us digest. They exist as dental plaque, or arise in urinary tract infections. They also can find a home on man-made surfaces such as intravenous catheters. Central to the lupus story is a biofilm protein deposit called an amyloid. In the common gut bacteria E. coli, as well as the bacteria often responsible for severe gastrointestinal distress that accompanies food poisoning, Salmonella Typhimurium, amyloids are called curli because of their curly fibre-like appearance.
Also part of the biofilm is DNA excreted by bacteria. The Temple team discovered that when curli amyloids and DNA meet, they form remarkably durable bonds in the biofilm. When the researchers attempted to separate the DNA from these bonds using a variety of enzymes as well as chemicals, the curli wouldn’t let go. Curli-DNA complexes speed up the creation of the biofilm, the researchers learned. And the Temple researchers found it is also in this composite of curli-plus-DNA that autoimmune trouble appears to arise.
It’s long been known that infection is associated with lupus flares — a flare in lupus is when symptoms worsen. Indeed, infections play a role in between 20 percent and 55 percent of lupus patient mortality. Up to 23 percent of hospitalizations in lupus patients are due to infectious disease complications. Further, the bacteria Salmonella are more aggressive in lupus patients, with the ability to create potentially lethal complications.
The new research shows that the complexes formed from curli amyloid and DNA in the biofilms of both Salmonella and E. coli give rise to not only inflammation, but the self-attacking antibodies of lupus.
To demonstrate the role of biofilms in immune response, the researchers wanted to see how the sentinels of the immune system, called dendritic cells, reacted to a biofilm. The dendritic cells sent ‘tendrils’ into the biofilm and ate up part of it to signal other molecules. Further, they produced large amounts of chemicals called proinflammatory cytokines. These cytokines are important in inciting the immune system to act. Among the cytokines was Type-1 interferon, known to be associated with lupus.
‘I was super excited when I saw how activated the dendritic cells were on the biofilm ‘ Dr. Gallucci said. The levels of cytokines released when dendritic cells were exposed to curli-DNA complexes actually exceeded the most robust response known previously — the response to lipopolysaccharide (LPS).
To test if the immune response seen in the laboratory would be enough to induce autoimmunity and the attack on self that occurs in lupus, the researchers used mice that are prone to develop autoimmune disease. As is the case with many diseases, lupus is the result of a genetic propensity that lies dormant in the absence of an environmental trigger. The researchers wanted to see if the curli-DNA complexes could provide that trigger. They injected susceptible mice with the amyloid-DNA composites or a placebo. Within two weeks, the researchers found the kind of antibodies that attack ‘self,’ known as autoantibodies. The autoantibodies, which target double-stranded DNA, are a diagnostic hallmark of lupus. The response was remarkably fast. It normally takes mice four to five months to develop autoantibodies.
Another strain of mice that do not develop lupus spontaneously but are genetically predisposed to autoimmunity also reacted to the curli-DNA composites with rapid production of autoantibodies. A third strain of mice with no propensity for any autoimmune disease, developed autoantibodies within two weeks of injection, but at lower levels than in the mice with a propensity toward lupus.
All mice developed the autoantibodies whether the curli-DNA composites came from Salmonella or from the kind of E. coli that’s found in a healthy digestive system. In fact, three of the four bacterial families that contain curli genes are found in the gut: Bacteroidetes, Proteobacteria, and Firmicutes, suggesting a possible source of vulnerability in susceptible patients. ‘How that happens, I think that will be the next level of our project,’ Dr. Gallucci said. The research team is already looking at mouse models to see what may lead to the escape of curli-DNA complexes from the gut. Further, the team is collaborating with rheumatologist Dr. Roberto Caricchio, Director of the Temple Lupus Clinic, to see if the patients show signs of exposure to the curli-DNA complexes.
‘The next step is to explore the mechanism of how these composites are stimulating autoimmunity,’ Dr. Tükel said. ‘The beneficial bacteria found in our guts can cause problems when they cross the intestinal barrier and reach to places they shouldn’t be. Thus, besides infectious bacteria, a leaky gut could cause many problems. We are now starting to understand how the bacteria in our gut may trigger complex human diseases including lupus. So it’s critical for us to understand the biology of the bacterial communities and their interactions with the immune system.’ EurekAlert
Epigenetic driver of glioblastoma provides new therapeutic target
, /in E-News /by 3wmediaCancer’s ability to grow unchecked is often attributed to cancer stem cells, a small fraction of cancer cells that have the capacity to grow and multiply indefinitely. How cancer stem cells retain this property while the bulk of a tumour’s cells do not remains largely unknown. Using human tumour samples and mouse models, researchers at University of California, San Diego School of Medicine and Moores Cancer Center discovered that cancer stem cell properties are determined by epigenetic changes — chemical modifications cells use to control which genes are turned on or off.
The study reports that an enzyme known as Lysine-Specific Demethylase 1 (LSD1) turns off genes required to maintain cancer stem cell properties in glioblastoma, a highly aggressive form of brain cancer. This epigenetic activity helps explain how glioblastoma can resist treatment. What’s more, drugs that modify LSD1 levels could provide a new approach to treating glioblastoma.
The researchers first noticed that genetically identical glioblastoma cells isolated from patients differed in their tumourigenicity, or capacity to form tumours, when transplanted to mouse models. This observation suggested that epigenetics, rather than genetics (DNA sequence), determines tumourigenicity in glioblastoma cancer stem cells.
“One of the most striking findings in our study is that there are dynamic and reversible transitions between tumorigenic and non-tumorigenic states in glioblastoma that are determined by epigenetic regulation,” said senior author Clark Chen, MD, PhD, associate professor of neurosurgery and vice-chair of research and academic development at UC San Diego School of Medicine.
Probing further, Chen’s team discovered that the epigenetic factor determining whether or not glioblastoma cells can proliferate indefinitely as cancer stem cells is their relative abundance of LSD1. LSD1 removes chemical tags known as methyl groups from DNA, turning off a number of genes required for maintaining cancer stem cell properties, including MYC, SOX2, OLIG2 and POU3F2.
“This plasticity represents a mechanism by which glioblastoma develops resistance to therapy,” Chen said. “For instance, glioblastomas can escape the killing effects of a drug targeting MYC by simply shutting it off epigenetically and turning it on after the drug is no longer present. Ultimately, strategies addressing this dynamic interplay will be needed for effective glioblastoma therapy.”
Chen and one of the study’s first authors, Jie Li, PhD, note that the epigenetic changes driving glioblastoma are similar to those that take place during normal human development.
“Though most cells in our bodies contain identical DNA sequences, epigenetic changes help make a liver cell different from a brain cell,” said Li, an assistant project scientist in Chen’s lab. “Our results indicate that the same programming processes determine whether a cancer cell can grow indefinitely or not.” University of California – San Diego Health
UNC researchers find two biomarkers linked to severe heart disease
, /in E-News /by 3wmediaInsulin resistance affects tens of millions of Americans and is a big risk factor for heart disease. Yet, some people with the condition never develop heart disease, while some experience moderate coronary blockages. Others, though, get severe atherosclerosis – multiple blockages and deterioration of coronary arteries characterized by thick, hard, plaque-ridden arterial walls. Researchers at the UNC School of Medicine created a first-of-its-kind animal model to pinpoint two biomarkers that are elevated in the most severe form of coronary disease.
The study suggests two new targets – oxidized LDL cholesterol and glycated proteins (i.e., fructosamine or haemoglobin A1c) – that researchers can further investigate and perhaps target through medications to help people with insulin resistance avoid the worst kind of heart disease.
“If these correlations were also found in insulin resistant humans, then we would want to do everything we could to treat them because they would be at a very high risk of developing severe cardiovascular disease,” said Timothy Nichols, MD, professor of medicine and pathology and first author of the PLoS One paper.
Interestingly, Nichols and his colleagues did not set out to pinpoint the two key biomarkers. They wanted to create an insulin resistant animal model that mimicked human heart disease. They chose pigs, which are metabolically similar to humans and have hearts very much like human hearts. By feeding the animals a diet high in fat and salt over the course of a year, all the pigs became insulin resistant. That is, their bodies produced a lot of insulin but their cells did not respond to the hormone as well as normal. All the pigs also developed coronary and aortic atherosclerosis. But only about half of the pigs developed the most severe form of the disease.
When the researchers checked the pigs for high levels of insulin resistance, they found no correlation with the most severe atherosclerosis. This was a surprising and unexpected finding.
David Clemmons, MD, the Sarah Graham Kenan Professor of Medicine, professor of biochemistry and biophysics, and senior author of the PLoS One paper, knew that the scientific literature suggested a correlation between atherosclerosis and glycated proteins – proteins bonded with sugars in blood.
Clemmons and colleagues tested the pigs for high levels of fructosamine and oxidized LDL cholesterol, which are surrogates for high levels of glycated proteins. Sure enough, all the pigs with severe heart disease had elevated levels of fructosamine and oxidized LDL.
“Also, this correlation was more common in females,” Clemmons said. Fourteen of the 20 pigs that developed severe atherosclerosis were females. Fourteen of the 17 pigs that did not develop severe atherosclerosis were male. “This surprised me, so I looked in the literature for anything similar.”
Clemmons found a study from Finland published in 2005 showing that elevated glycated protein levels were strongly associated with advanced heart disease and increased mortality in women but not in men.
“The underlying causes of this correlation are unknown,” Clemmons said. “But now we have a unique animal model that very much mimics what we see in humans. Our model is a good predictor of diet-induced atherosclerosis in females.”
A next step could be to study the affected heart tissue to find abnormal biochemical reactions in the cellular pathways involved in glycated proteins and severe coronary disease. This could lead to potential new treatment approaches or tailored dietary interventions. University of North Carolina Health Care
Non-invasive prenatal testing may also detect some maternal cancers
, /in E-News /by 3wmediaA study shows that genetic test results, as revealed by non-invasive prenatal testing for foetal chromosome abnormalities, may also detect underlying conditions in the mother, including cancer. The study reports on a case series of eight women who had abnormal non-invasive prenatal testing results. While their foetuses had normal chromosomes, retrospective genomic analysis showed that the abnormal findings were due to a variety of undiagnosed cancers in the mothers.
A team of scientists and clinicians, led by Diana W. Bianchi, MD, Executive Director of the Mother Infant Research Institute at Tufts Medical Center, reports the results of their DNA sequencing analysis. Their findings demonstrate that previously undetected maternal cancers may provide a biological explanation for some prenatal screening results that differ from results of prenatal diagnostic tests.
Non-invasive prenatal screening is a recent clinical advance that provides pregnant women with information about possible chromosomal abnormalities, such as Down syndrome, in their foetuses. The screening test, which can be offered as early as the tenth week of pregnancy, analyses fragments of placental and maternal DNA that circulate in the maternal plasma. In women with cancer, the plasma sample also contains cancer DNA.
Diagnosis of cancer during pregnancy is relatively uncommon, with an incidence of about 1 in 1,000 women. Cancer detected during pregnancy most often occurs in the breast, cervix, ovary and colon, as well as melanoma, lymphoma and leukaemia. “This study provides one explanation for when non-invasive prenatal testing results are different from the foetal karyotype. It highlights the need to perform a diagnostic procedure to determine true foetal karyotype whenever non-invasive prenatal testing suggests chromosomal abnormalities,” said Dr. Bianchi, an international expert on non-invasive prenatal testing.
The cases in this study came from a larger group of 125,426 samples submitted from asymptomatic pregnant women who underwent non-invasive prenatal testing for foetal chromosomal abnormalities between 2012 and 2014. Of these, 3757 cases were positive for one or more abnormalities in the number of chromosomes 13, 18, 21, X or Y. The women’s physicians later reported ten cases of cancer to the laboratory that originally conducted the non-invasive prenatal testing. The study analysed eight of the ten cases in depth. All of the women had abnormal non-invasive prenatal test results, and most frequently, more than one chromosomal abnormality was detected, which is a very unusual result. Cancer was diagnosed during pregnancy or postpartum in these women at an average of 16 weeks following the initial non-invasive prenatal testing.
Some women were tested more than once, and some were tested both during pregnancy and after. One patient had testing after treatment for colorectal cancer, and the abnormal pattern was no longer evident, suggesting a response to treatment. “Non-invasive prenatal testing results may lead to findings of an underlying maternal condition, which, in these cases, was due to cancer,” said Dr. Bianchi. “The take-home message is that women should be aware of this possibility when they seek testing. More research needs to be done to further study this occurrence to help guide physicians on how to counsel women and manage their follow-up care.” Tufts Medical Center
Gene fuels age-related obesity and diabetes
, /in E-News /by 3wmediaPractically everyone gets fatter as they get older, but some people can blame their genes for the extra padding. Researchers have shown that two different mutations in a gene called ankyrin-B cause cells to suck up glucose faster than normal, fattening them up and eventually triggering the type of diabetes linked to obesity.
The more severe of the two mutations, called R1788W, is carried by nearly one million Americans. The milder mutation, known as L1622I, is shared by seven percent of the African American population and is about as common as the trait for sickle cell anaemia.
The findings, which were generated in mice, could help identify at-risk individuals who might be able to tip the scales back in their favour by eating better and exercising more.
“This is one of the first examples of a susceptibility gene that would only be manifested through a modern lifestyle,” said Vann Bennett, M.D., Ph.D., senior author of the study and George Barth Geller Professor of Biochemistry, Cell Biology, and Neurobiology at Duke University School of Medicine. “The obesity epidemic really took off in the 1980’s, when sugary sodas and French fries became popular. It’s not like we suddenly changed genetically in 1980, but rather we have carried susceptibility genes that were exacerbated by this new diet. We think our findings are just the beginning, and that there are going to be many genes like this.’
Bennett, who is also an investigator with the Howard Hughes Medical Institute, discovered ankyrin-B more than thirty years ago. He found that ankyrin-B acts as a kind of protein anchor, tethering important proteins to the inside of the cell’s plasma membrane. Since his initial discovery, Bennett and other researchers have implicated defects in ankyrin-B in a wide variety of human afflictions, including irregular heartbeat, autism, muscular dystrophy, aging, and, more recently, diabetes.
Diabetes is quickly becoming one of the greatest threats to public health, as waistlines expand around the world and here in the United States. If the current trends continue, one in three Americans will have diabetes by 2050. Patients with type 1 diabetes do not make enough insulin, the hormone that helps process the glucose that builds up in the bloodstream after a meal. Patients with type 2 diabetes, the form linked to obesity, make insulin but become resistant to its effects.
Several years ago, the Bennett laboratory found evidence that ankyrin-B mutations might play a role in insulin secretion and metabolism. Since then, several studies have uncovered rare ankyrin-B variants that are associated with type 2 diabetes. One mutation, called R1788W, was more common in Caucasians and Hispanics. Another, called L1622I, was found exclusively in African-Americans, a group known to be at a particularly high risk of diabetes. But it was still unclear how these changes in the genetic code could set a course for diabetes.
To get at that answer, Bennett’s MD/PhD student Jane Healy created mouse models that carried these same human genetic variants. She and her colleagues found that animals with two copies of the R1788W mutation made less insulin than normal mice. Despite this shortcoming, their blood glucose levels were normal. So the researchers performed the rodent equivalent of a glucose tolerance test –- commonly used to screen for type 2 diabetes in people — to determine how quickly glucose was cleared from the bloodstream in the mutant mice. To their surprise, the mutant mice metabolized glucose more quickly than normal mice.
“We thought that the main problem in these mice would be with the beta cells that produced and secreted insulin,’ said Healy, co-author of the study and a former trainee in Bennett’s laboratory. “Instead, our most significant finding lay with the target cells, which took up much more glucose than expected.”
Glucose doesn’t enter cells and tissues all on its own, but instead has to rely on a second molecule, called GLUT4 transporter, to gain access. Normally, GLUT4 hangs out in the cell, like a hostess waiting for party guests to arrive. When insulin is present it acts as a kind of doorbell, alerting GLUT4 to spring into action and open the door to let glucose into the cell. When insulin goes away, the GLUT4 transporters close the door, turn around, and go back into the middle of the cell.
However, postdoctoral fellow Damaris Lorenzo, Ph.D., found that wasn’t the case with the mutant mice. After conducting a number of biochemistry experiments, Lorenzo ddiscovered that the mice had lots of GLUT4 on the surface of their muscle and fat cells even when there wasn’t any insulin around. That meant that glucose could flow in without necessarily having to bother with the doorbell.
This open door policy was an advantage when they were young, because it protected the animals from low insulin levels. But when the mice got older — or switched to a particularly high-fat diet — it made the mice fatter and, eventually, led them to become insulin resistant.
The researchers believe that long ago, the R1788W mutation — and the milder L1622I mutation — may have provided an evolutionary advantage. Aging hunter-gatherer types, who weren’t as effective at chasing down their next meal, needed to gain as much fat as possible to avoid starvation. Now that high-fat, high-calorie foods are plentiful in much of the world, these variants put people at increased risk for modern afflictions like obesity and diabetes. Duke University
Newborn’s first stool could alert doctors to long-term cognitive issues
, /in E-News /by 3wmediaA newborn’s first stool can signal the child may struggle with persistent cognitive problems, according to Case Western Reserve University Project Newborn researchers.
In particular, high levels of fatty acid ethyl esters (FAEE) found in the meconium (a newborn’s first stool) from a mother’s alcohol use during pregnancy can alert doctors that a child is at risk for problems with intelligence and reasoning.
Left untreated, such problems persist into the teen years, the research team from the Jack, Joseph and Morton Mandel School of Applied Social Sciences found.
“We wanted to see if there was a connection between FAEE level and their cognitive development during childhood and adolescence—and there was,” said Meeyoung O. Min, PhD, research assistant professor at the Mandel School and the study’s lead researcher. “FAEE can serve as a marker for foetal alcohol exposure and developmental issues ahead.”
Detecting prenatal exposure to alcohol at birth could lead to early interventions that help reduce the effects later, Min said.
For this study, researchers analysed the meconium of 216 subjects for levels of FAEE. (FAEE are composed of a group of products from metabolizing alcohol; this study examined ethyl myristate, ethyl oleate ethyl linoleate and ethyl linolenate.) They then gave intelligence tests at ages 9, 11 and 15.
The conclusion: There was a link between those with high levels of FAEE at birth and lower IQ scores.
“Although we already knew a mother’s alcohol use during her pregnancy may cause cognitive deficits, what is significant is that the early marker, not previously available, predicted this, establishing the predictive validity of FAEEs for determining alcohol exposure in utero” Min said. Case Western Reserve University
Simple radiological method to predict the development of gliomas
, /in E-News /by 3wmediaDespite modern chemoradiation therapy it is still very difficult to give reliable prognoses for malignant gliomas. Surgical removal of the glioma is still the preferred method of treatment. Doctors at Universitätsklinikum Erlangen’s Department of Neurosurgery have now developed a new procedure for analysing radiological imaging scans which makes it possible to predict the course of a disease relatively precisely.
The Friedlein Grading A/B (FGA/B) classification system – named after the physician Katharina Friedlein – is a quick and precise way of determining whether surgical removal is the best possible treatment method for a given tumour. Essentially, the Erlangen-based doctors classify tumours according to their position in the brain in the context of a routine magnetic resonance imaging (MRI) scan. Tumours that are not located in functional brain regions or that are located at a certain distance from such regions are classified as FGA, while tumours that are close to or inside a functional brain region are classified as FGB.
With the FGA/B method it possible to plan the consequences of tumour surgery, which is crucial for the success of the treatment, in a precise, low-risk and quantitative manner. This makes the Friedlein Grading system the first classification system which can be easily applied in clinical practice. ‘There have already been several attempts in medicine to develop such a classification system. However, most approaches were too complicated and were based on academic values only, which made it difficult to use them in clinical practice,’ says PD Dr. Nicolai Savaskan from FAU’s Chair of Neurosurgery. ‘The FGA/B method can be applied on the basis of a standard MRI scan which glioma patients have to undergo anyway and is highly reliable despite being so simple. We hope that our colleagues in neurosurgery departments in smaller hospitals will also be able to use it successfully in everyday clinical practice.’ Universitätsklinikum Erlangen
Anti-stress hormone may provide indication of breast cancer risk
, /in E-News /by 3wmediaA new study from Lund University in Sweden shows that women with low levels of an anti-stress hormone have an increased risk of getting breast cancer. The study is the first of its kind on humans and confirms previous similar observations from animal experiments.
The recent findings on a potential new marker for the risk of developing breast cancer. The study focused on a hormone which circulates freely in the blood, enkephalin, with pain- and anxiety-reducing properties. Enkephalin also reinforces the immune system by directly affecting immune cells.
“This is the first time the role of enkephalin in breast cancer has been studied in humans, and the results were surprisingly clear. Among women with the lowest levels of the hormone, the risk of breast cancer was more than three times that of the women with the highest levels of the hormone. This is one of the strongest correlations between cancer risk and a freely circulating biomarker ever described”, said Olle Melander and Mattias Belting, both professors at Lund University and consultant physicians at Skåne University Hospital.
The findings were possible thanks to a broad approach combining the latest knowledge within cancer and cardiovascular research at Lund University; the study was based on blood samples taken from just over 1 900 women in Malmö. The women were followed up with regard to breast cancer for an average period of 15 years.
The results were adjusted for age, menopause, hormonal treatment, smoking and other factors which can affect the risk of getting breast cancer.
The current study confirms a statistical correlation between low enkephalin concentrations in the blood and increased risk of breast cancer, and it remains to be seen whether there is a causal relation showing that a low level of the hormone directly affects tumour development. The researchers also point out that geographical location and age, in spite of the adjustments in the study, may be significant. The average age of the women studied was 57.
On the other hand, the study’s results are backed up by a subsequent control study of a group of 1 500 women with a marginally higher average age. In this group, the link between low levels of the hormone and breast cancer was even stronger. Animal studies by other researchers also gave similar indications. These studies established that enkephalin can reinforce the activity of the immune system against cancer cells, as well as having a direct tumour-inhibiting effect.
The researchers at Lund University hope that, after further studies, the results will facilitate prevention and early detection of breast cancer. For those with an increased risk of breast cancer, potential preventive treatments could take the form of lifestyle interventions to reduce stress and new drugs. The findings fit well with the development towards individualised risk assessment and treatment, on the basis of each woman’s needs. Lund University
Deadly and distinctive: Cancer caused by gene deletions
, /in E-News /by 3wmediaA deadly form of T cell lymphoma is caused by an unusually large number gene deletions, making it distinct among cancers, a new Yale School of Medicine study shows.
Researchers conducted a genomic analysis of normal and cancer cells from patients with cutaneous T-cell lymphoma, a cancer of T-cells of the immune system that normally reside in the skin.
Most cancers are driven by point mutations — or single DNA nucleotides that change the function of an encoded protein — rather than deletions that remove a segment of a chromosome. However, in this form of lymphoma, gene deletions that drive cancer pathogenesis outnumbered point mutations by more than 10 to 1.
“This cancer has a very distinctive biology,” said Jaehyuk Choi, assistant professor of dermatology at Yale and lead author of the paper.
Many of the deletions occurred in genes that have been known to play a role in driving the proliferation of T-cells and are potential targets for new therapies, said Choi, a researcher with the Yale Cancer Center.
It is unclear why this cancer has such a high ratio of gene deletions compared to other cancers, said Richard Lifton, Sterling Professor of Genetics, chair of the Department of Genetics, investigator for the Howard Hughes Medical Institute, and senior author of the paper. He noted, however, that during early development DNA rearrangements can produce highly diverse T cell receptors, which enables them to recognize cells bearing viruses or other abnormal proteins. These lymphomas may arise from loss of the normal regulation of these genetic rearrangements, he explained. Yale University