Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
November 2025
The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics
Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Accept settingsHide notification onlyCookie settingsWe may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.
Privacy policy
Blood test results vary from drop to drop in finger prick tests
, /in E-News /by 3wmediaWhen it comes to needles and drawing blood, most patients agree that bigger is not better. But in the first study of its kind, Rice University bioengineers have found results from a single drop of blood are highly variable, and as many as six to nine drops must be combined to achieve consistent results.
The study examines the variation between blood drops drawn from a single finger-prick. The results suggest that health care professionals must take care to avoid skewed results as they design new protocols and technologies that rely on finger-prick blood.
“We began looking at this after we got some surprising results from our controls in an earlier study,” said lead investigator Rebecca Richards-Kortum, Rice’s Malcolm Gillis University Professor and director of Rice 360°: Institute for Global Health Technologies. “Students in my lab are developing novel, low-cost platforms for anaemia, platelet and white blood cell testing in low-resource settings, and one of my students, Meaghan Bond, noticed there was wide variation in some of the benchmark tests that she was performing on hospital-grade blood analysers.”
The benchmark controls are used to gauge the accuracy of test results from the new technology under study, so the variation among the control data was a sign that something was amiss. What wasn’t immediately clear was whether the readings resulted from a problem with the current experiments or actual variations in the amount of haemoglobin, platelets and white blood cells (WBC) in the different drops of blood.
Richards-Kortum and Bond designed a simple protocol to test whether there was actual variation, and if so, how much. They drew six successive 20-microliter droplets of blood from 11 donors. As an additional test to determine whether minimum droplet size might also affect the results, they drew 10 successive 10-microliter droplets from seven additional donors.
All droplets were drawn from the same finger-prick, and the researchers followed best practices in obtaining the droplets; the first drop was wiped away to remove contamination from disinfectants, and the finger was not squeezed or “milked,” which can lead to inaccurate results. For experimental controls, they use venipuncture, the standard of care in most hospitals, to draw tubes of blood from an arm vein.
Each 20-microliter droplet was analysed with a hospital-grade blood analyser for haemoglobin concentration, total WBC count, platelet count and three-part WBC differential, a test that measures the ratio of different types of white blood cells, including lymphocytes and granulocytes. Each 10-microliter droplet was tested for haemoglobin concentration with a popular point-of-care blood analyser used in many clinics and blood centres.
“A growing number of clinically important tests are performed using finger-prick blood, and this is especially true in low-resource settings,” Bond said. “It is important to understand how variations in finger-prick blood collection protocols can affect point-of-care test accuracy as well as how results might vary between different kinds of point-of-care tests that use finger-prick blood from the same patient.”
Bond and Richards-Kortum found that haemoglobin content, platelet count and WBC count each varied significantly from drop to drop.
“Some of the differences were surprising,” Bond said. “For example, in some donors, the haemoglobin concentration changed by more than two grams per deciliter in the span of two successive drops of blood.”
Bond and Richards-Kortum found that averaging the results of the droplet tests could produce results that were on par with venous blood tests, but tests on six to nine drops blood were needed to achieve consistent results.
“Finger-prick blood tests can be accurate and they are an important tool for health care providers, particularly in point-of-care and low-resource settings,” Bond said. “Our results show that people need to take care to administer finger-prick tests in a way that produces accurate results because accuracy in these tests is increasingly important for diagnosing conditions like anaemia, infections and sickle-cell anemia, malaria, HIV and other diseases.” Rice University
Nanotechnology-based sensor developed to measure microRNAs in blood, speed cancer detection
, /in E-News /by 3wmediaA simple, ultrasensitive microRNA sensor developed by researchers from the School of Science at Indiana University-Purdue University Indianapolis, the IU School of Medicine and the IU Melvin and Bren Simon Cancer Center holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
In a study the IUPUI researchers describe their design of the novel, low-cost, nanotechnology-enabled reusable sensor. They also report on the promising results of tests of the sensor’s ability to identify pancreatic cancer or indicate the existence of a benign condition by quantifying changes in levels of microRNA signatures linked to pancreatic cancer.
‘We used the fundamental concepts of nanotechnology to design the sensor to detect and quantify biomolecules at very low concentrations,’ said Rajesh Sardar, Ph.D., who developed the sensor. ‘We have designed an ultrasensitive technique so that we can see minute changes in microRNA concentrations in a patient’s blood and confirm the presence of pancreatic cancer.’ Sardar is an assistant professor of chemistry and chemical biology in the School of Science at IUPUI and leads an interdisciplinary research program focusing on the intersection of analytical chemistry and the nanoscience of metallic nanoparticles.
‘If we can establish that there is cancer in the pancreas because the sensor detects high levels of microRNA-10b or one of the other microRNAs associated with that specific cancer, we may be able to treat it sooner,’ said Murray Korc, M.D., the Myles Brand Professor of Cancer Research at the IU School of Medicine and a researcher at the IU Simon Cancer Center. Korc worked with Sardar to improve the sensor’s capabilities and led the testing of the sensor and its clinical uses as well as advancing the understanding of pancreatic cancer biology.
‘That’s especially significant for pancreatic cancer, because for many patients it is symptom-free for years or even a decade or more, by which time it has spread to other organs, when surgical removal is no longer possible and therapeutic options are limited,’ said Korc. ‘For example, diagnosis of pancreatic cancer at an early stage of the disease followed by surgical removal is associated with a 40 percent five-year survival. Diagnosis of metastatic pancreatic cancer, by contrast, is associated with life expectancy that is often only a year or less.
‘The beauty of the sensor designed by Dr. Sardar is its ability to accurately detect mild increases in microRNA levels, which could allow for early cancer diagnosis,’ Korc added.
Over the past decade, studies have shown that microRNAs play important roles in cancer and other diseases, such as diabetes and cardiovascular disorders. The new IUPUI nanotechnology-based sensor can detect changes in any of these microRNAs.
The sensor is a small glass chip that contains triangular-shaped gold nanoparticles called ‘nanoprisms.’ After dipping it in a sample of blood or another body fluid, the scientist measures the change in the nanoprism’s optical property to determine the levels of specific microRNAs.
‘Using gold nanoprisms may sound expensive, but it isn’t because these particles are so very tiny,’ Sardar said. “It’s a rather cheap technique because it uses nanotechnology and needs very little gold. $250 worth of gold makes 4,000 sensors. Four thousand sensors allow you to do at least 4,000 tests. The low cost makes this technique ideal for use anywhere, including in low-resource environments in this country and around the world.’ IUSM
Genetic risk factor can lead to hyperinflammatory disorder, death after viral infection
, /in E-News /by 3wmediaA group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a study.
Researchers at Cincinnati Children’s Hospital Medical Center, the University of Alabama Birmingham and Children’s of Alabama led the study. They suggest people with other types of infections and identical gene mutations also may be prone to the disorder, known as reactive HLH (rHLH), or haemophagocytic lymphohistiocytosis.
HLH causes the immune system to essentially overwhelm the body with inflammation that attacks vital organs, often leading to death. Study authors raise the possibility of screening children for HLH genes to identify those who may be at risk during a viral infection.
“Viruses that cause robust immune responses may be more likely to trigger rHLH in genetically susceptible people,” said Randy Cron, M.D., Ph.D., a senior investigator on the study and physician in paediatric rheumatology at UAB and Children’s of Alabama. “Prenatal screening for mutations in common HLH-associated genes may find as much as 10 percent of the general population who are at risk for HLH when an inflammation threshold is reached from H1N1 or other infection triggers.”
This study is the first to identify mutations of HLH-associated genes in H1N1 cases where patients had clinical symptoms of rHLH and a related condition called macrophage activation syndrome, or MAS. An outbreak of H1N1 in 2009 turned into a global pandemic. H1N1 has since become part of the viral mix for the annual flu season and preventive vaccine, the authors note. University of Alabama Birmingham
Effort to standardize diagnosis of kidney disease
, /in E-News /by 3wmediaKidney disease is a major health concern worldwide. It’s estimated that 1 in 3 American adults are at risk of developing kidney disease, and 26 million adults already have kidney disease. Many are undiagnosed. Because kidney disease can go undetected until it’s too late, effective and consistent diagnosis is essential. Physicians on Mayo Clinic’s Rochester, Minn., campus – one of the world’s leading kidney disease centers – are at the forefront of an effort to standardize the diagnosis of kidney disease.
In a paper, Mayo Clinic researchers provide a detailed recommendation for standardizing the diagnosis of glomerulonephritis. This is a term used to describe various conditions involving inflammation of the glomeruli, which is the basic filtering unit in the kidneys. Inflammation prevents the kidneys from properly filtering toxins out of the blood and regulating fluid levels in the body, and, ultimately, can lead to permanent damage to the kidneys and potential kidney failure.
“Earlier this year, we convened renal pathologists and nephrologists from around the world at Mayo Clinic to begin work on an effort that could transform the way kidney disease is diagnosed for patients everywhere,” says Sanjeev Sethi, M.D., Ph.D, professor, Department of Laboratory Medicine and Pathology, Mayo Clinic. “It was time to move the field toward diagnosing glomerulonephritis based on the underlying cause of the disease, which leads to a more personalized diagnosis and more targeted treatment for the patient.”
According to convention, glomerulonephritis historically has been classified by the pattern of inflammation in the glomerulus; however, this does not speak to the underlying cause of the disease. The recommendations published by Mayo Clinic provide a detailed approach to classifying and reporting glomerulonephritis that is based on pathology and etiology.
“The approach outlined in the consensus paper provides a detailed approach to diagnosing kidney disease that has many advantages for clinicians and patients,” says Fernando Fervenza, M.D., Ph.D., professor, Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic. “In addition to being focused on the individual patient’s pathology and potential cause of disease, this approach makes the data more adaptable should new diseases be identified by future research. It aligns with database reporting, and it focuses on information that is relevant to the patient and [his or her] potential treatment options.”
Drs. Sethi and Fervenza led the development of the consensus paper, which has been endorsed by the Renal Pathology Society with funding from the Fulk Foundation. The recommendations provided by the consensus report likely will form the basis of how glomerulonephritis is diagnosed and reported worldwide. Based on the recommendations, the kidney biopsy report will be disease and etiology based. This will provide the treating physician a clear pathway toward appropriate testing and evaluation of the underlying kidney disease, followed by correct and specific management of the underlying cause of the glomerulonephritis. The standardized reporting will make it easier for physicians to interpret the kidney biopsy report from various institutions. This is particularly true for Mayo physicians who see patients from different institutions. Thus, based on the etiology-driven kidney biopsy report, a patient visiting Mayo Clinic can be directed to the physician with expertise in the specific area, resulting in targeted, cost effective evaluation, and appropriate treatment of the underlying cause of kidney disease. Mayo Clinic
New protein biomarker highlights damaged brain wiring after concussion
, /in E-News /by 3wmediaPhysicians and others now recognize that seemingly mild, concussion-type head injuries lead to long-term cognitive impairments surprisingly often. A brain protein called SNTF, which rises in the blood after some concussions, signals the type of brain damage that is thought to be the source of these cognitive impairments, according to a study led by researchers from the Perelman School of Medicine at the University of Pennsylvania, and the University of Glasgow, Glasgow, UK.
“The brain protein specifically indicates the presence of nerve fibre damage that we call diffuse axonal injury,” said senior author Douglas H. Smith, MD, director of the Penn Center for Brain Injury and Repair and the Robert A. Groff Professor of Neurosurgery. “Our findings also confirm that even relatively mild, concussion-type brain impacts can cause permanent damage of this kind.”
The results suggest that blood tests for SNTF might one day be used to diagnose diffuse axonal injury and predict cognitive impairment in concussion patients. Penn Medicine
New test may improve diagnosis and treatment of pancreatobiliary and other gastrointestinal cancers
, /in E-News /by 3wmediaBy collecting samples from the portal vein — which carries blood from the gastrointestinal tract, including from the pancreas, to the liver — physicians can learn far more about a patient’s pancreatic cancer than by relying on peripheral blood from a more easily accessed vein in the arm.
Primary tumours shed cancerous cells, known as circulating tumour cells (CTCs), into the blood. These have been widely studied as prognostic biomarkers for various cancers. Because these cells are often larger, irregularly shaped and tend to cluster together, they get trapped in smaller vessels.
The authors hypothesized that most cells released from a gastrointestinal tumour would flow into the portal vein and then get sequestered by the narrow vessels in the liver. These cells would not reach the peripheral venous system. CTCs from gastrointestinal tumours are rarely identified in the peripheral blood until the cancer is widely metastatic.
To test this theory, researchers from the University of Chicago used an ultrasound-guided endoscope and a small needle to take blood from the portal vein during routine diagnostic endoscopies. They found CTCs in 100 percent of 18 patients with suspected tumours in the pancreas and bile ducts. Tests using peripheral blood samples, the standard method, detected tumours cells in only 4 of the 18 patients.
To test this theory, researchers from the University of Chicago used an ultrasound-guided endoscope and a small needle to take blood from the portal vein during routine diagnostic endoscopies. They found CTCs in 100 percent of 18 patients with suspected tumors in the pancreas and bile ducts. Tests using peripheral blood samples, the standard method, detected tumors cells in only 4 of the 18 patients.
‘We demonstrated that this method is potentially quite valuable as well as non-invasive, feasible and safe,’ said study director Irving Waxman, MD, professor of medicine and surgery and director of the Center for Endoscopic Research and Therapeutics at the University. ‘We had no complications related to portal vein blood acquisition.’ University of Chicago
New tech promises fast, accurate stroke diagnosis
, /in E-News /by 3wmediaAlex Travis, associate professor at the Baker Institute for Animal Health, co-authored the study that led to the development of a new stroke diagnosis tool.
Minutes count when treating stroke, but current diagnostics take as long as three hours, careful lab work and skilled technicians to arrive at a conclusive diagnosis. Scientists at Cornell’s Baker Institute for Animal Health have developed a device that helps diagnose stroke in less than 10 minutes using a drop of blood barely big enough to moisten your fingertip.
Having demonstrated proof of principle, the technology eventually could be expanded and used in point-of-care testing devices to diagnose other conditions in humans and animals, including traumatic brain injury (concussion), some forms of dementia, and even some types of cancer and heart disease.
The study’s lead author, Roy Cohen, a research scientist at the Baker Institute, says the technology represents the successful pairing of two big goals in medical diagnostics – small size and simplicity, a combination that means testing could be carried out at a patient’s bedside.
“Three-quarters of stroke patients suffer from ischemic stroke – a blockage of a blood vessel in the brain. In those cases, time is of the essence, because there is a good drug available, but for a successful outcome it has to be given within three or four hours after the onset of symptoms,” says Cohen. “By the time someone identifies the symptoms, gets to the hospital and sits in the emergency room, you don’t have much time to obtain the full benefit of this drug.” Enhancing the speed of diagnosis could save many people from suffering lasting effects of ischemic stroke, he says.
To diagnose stroke, a condition in which blood flow to an area of the brain is limited or cut off, the technology will one day detect several bloodborne biomarkers, molecules that appear in the blood when the stroke occurs. The technology uses enzymes attached to nanoparticles to detect the biomarker molecules and convert that detection into light.
To demonstrate the effectiveness of this new approach, the researchers focused on the biomarker neuron-specific enolase (NSE), a substance found in higher concentrations in the blood of victims of stroke and other conditions. By measuring the amount of light produced from various samples, Cohen and his colleagues can determine the concentration of NSE in the sample. At each step of the way, the signal from the NSE is amplified, so even minute quantities give off enough light for detection.
The idea to tether the enzymes, says co-author Alex Travis, associate professor of reproductive biology at the Baker Institute for Animal Health, came from the hardworking enzymes tethered to the shafts of sperm tails. These sperm enzymes efficiently turn sugars into energy that powers the flagellum and moves the sperm along. The fact that they’re attached to the sperm tail instead of floating around in solution enables the enzymes to efficiently pass the substrate along from point to point and get the most “bang for the buck” from a sugar molecule, according to Travis.
Going forward, Travis and his team will collaborate with a private company to develop the stroke-detecting technique for clinical testing and eventually make it available for use in hospitals. But he’s also excited to expand the system to diagnose other conditions.
“This system could be tailored to detect multiple biomarkers,” says Travis. “That’s the strength of the technique. You could assemble a microfluidic card based on this technology that could detect 10 biomarkers in different wells, and the readout would be the same for each one: light.” Using the same detection system for multiple different biomarkers would make for a simple system in a relatively small package, he says. Cornell University
Proteome analysis for detection of diabetic nephropathy
, /in E-News /by 3wmediaThe German Institute for Quality and Efficiency in Health Care (IQWiG) examined the benefit of a diagnostic-therapeutic strategy using urinary proteome analysis for detection of diabetic nephropathy (DN) versus a conventional diagnostic strategy in patients with diabetes mellitus and arterial hypertension. After publication of the preliminary report in June 2015, interested persons and parties had the opportunity to comment on the preliminary results.
No studies relevant for the research question were identified in the systematic literature search conducted by IQWiG. As no references to relevant studies were submitted in the commenting procedure either, the Institute maintains its conclusion: Due to a lack of studies, the patient-relevant benefit or harm of proteome analysis for detection of DN is equally unclear as the diagnostic or prognostic accuracy of this type of analysis.
Can impending diabetic nephropathy be detected earlier?
DN is a chronic kidney disease caused by chronic hyperglycaemia (high blood sugar levels) in patients with diabetes mellitus and can be negatively influenced by arterial hypertension (high blood pressure). It can lead to permanent failure of the kidneys (end-stage renal disease).
When clear symptoms occur the disease is already far progressed. Proteome analysis is a new diagnostic method in which the concentration of several biomarkers in the urine is determined by means of mass spectrometry. The values calculated in this analysis are supposed to allow earlier and more precise clinical conclusions on DN than conventional diagnostic methods.
The commission awarded to IQWiG by the Federal Joint Committee (G‑BA) specifies two aims: Firstly, the Institute was to assess the patient-relevant benefit or harm of a diagnostic-therapeutic strategy using proteome analysis versus a conventional strategy in patients with diabetes mellitus and arterial hypertension. Secondly, the diagnostic and prognostic accuracy of proteome analysis for the detection of DN was to be assessed.
No completed studies relevant for these assessments were identified by IQWiG’s researchers up to publication of the preliminary report in June 2015. The PRIORITY study will run up to the end of 2107. It is yet unclear how informative its results will be for the present research question.
No comments with references to further relevant studies were submitted in the public commenting procedure either. This seems astonishing in view of the promising PR messages disseminated in the past months – in part specifically in reference to the current benefit assessment – by a provider of screening tests based on proteome analyses.
This was commented on by Stefan Sauerland, Head of IQWiG’s Department of Non-Drug Interventions, as follows: “One cannot just postulate a `monumental breakthrough`, which proteome analysis is supposed to represent. The benefit for the respective patients has to be proven. As long as the `numerous studies and scientific publications´ proudly referred to do not include a single study proving the benefit of the test for the early detection of diabetic nephropathy, one should not be surprised by a negative conclusion of the assessment.”
Thus both the patient-relevant benefit or harm of a diagnostic-prognostic strategy using proteome analysis for detection of DN, as well as the diagnostic and prognostic accuracy of this type of analysis, remain unclear. German Institute for Quality and Efficiency in Health Care
A different kind of anaesthesia a possible treatment for stress induced cardiomyopathy
, /in E-News /by 3wmediaStress induced cardiomyopathy after cerebral haemorrhage has been shown to increase the risk of further brain damage. These patients can now be identified by a simple blood test, and a possible treatment for stress induced cardiomyopathy has been discovered – a different kind of anaesthesia than that currently being used.
Stress induced cardiomyopathy is a relatively recently discovered disease where part of the heart muscle ceases to function and results in the heart having reduced pumping capacity. Approximately 90 percent of those affected are upper middle-aged women. The onset is similar to a heart attack, with chest pain and difficulty breathing, but stress induced cardiomyopathy follows a different course.
With stress induced heart failure, the heart spontaneously recovers within a few weeks and thus the prognosis has been seen as good; but, new findings show the prognosis to be approximately the same as for acute ischemic heart disease.
In a new thesis from Sahlgrenska Academy, all patients from the region that suffered a specific type of cerebral haemorrhage (subarachnoid haemorrhage) were followed for two years. In conjunction with the haemorrhage, patients experience a strong stress component. Stress induced cardiomyopathy is therefore relatively common (10-20 percent of the patients) following this type of cerebral haemorrhage, which can cause significant brain damage.
“We saw that patients with stress induced cardiomyopathy had an increased risk of further brain damage in the aftermath of a cerebral haemorrhage and had a worse long-term prognosis, even after we made adjustments for other risk factors,” says Jonatan Oras, PhD Student at Sahlgrenska Academy.
In the thesis, two biomarkers were identified that can be used to identify patients who suffer from stress induced heart failure.
“With a blood test, we are now able to quickly identify patients with stress induced heart failure and apply the right measures sooner,” says Jonatan Oras.
In the experimental part of the thesis, an animal model was used with rats to find a possible treatment for stress induced heart failure. It was found that if the animals were anesthetized with a particular anaesthetic (isoflurane), they did not develop heart failure and the heart muscle retained its elasticity and pumping capacity.
“When we used other anaesthetics, including those currently in use in healthcare, we saw no cardioprotective effect. This is the first potential cardioprotective treatment for stress induced cardiomyopathy to be presented,” says Jonatan Oras.
Further studies of this possible treatment for stress induced cardiomyopathy on patients at risk of developing stress induced cardiomyopathy should be conducted,” Jonatan Oras points out. Sahlgrenska Academy
New gene map reveals cancer’s Achilles’ heel
, /in E-News /by 3wmediaToronto researchers led by U of T Professor Jason Moffat switched off almost 90 per cent of the entire human genome, to find the genes essential for cell survival
Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.
A team of Toronto researchers, led by Professor Jason Moffat from the University of Toronto’s Donnelly Centre, with a contribution from Stephane Angers from the Faculty of Pharmacy, have switched off, one by one, almost 18,000 genes, 90 per cent of the entire human genome, to find the genes that are essential for cell survival.
By turning genes off in five different cancer cell lines, including brain, retinal, ovarian, and two kinds of colorectal cancer cells, the team uncovered that each tumour relies on a unique set of genes that can be targeted by specific drugs. The finding raises hope of devising new treatments that would target only cancer cells, leaving the surrounding healthy tissue unharmed.
“It’s when you get outside the core set of essential genes, that it starts to get interesting in terms of how to target particular genes in different cancers and other disease states,” says Moffat, who is also a professor in the department of molecular genetics and a Senior Fellow at the Canadian Institute For Advanced Research (CIFAR).
Sequencing of the human genome 12 years ago allowed scientists to compile a list of parts – our 20,000 genes – that make up our cells and bodies. Despite this major achievement, we still didn’t understand the function of each gene, or how some genes make us sick when they go wrong. To do this, scientists realized they would have to switch genes off, one by one across the entire genome to determine what processes go wrong in the cells. But the available tools were either inaccurate or too slow.
The recent arrival of the gene editing technology CRISPR has finally made it possible to turn genes off, swiftly and with pinpoint accuracy, kicking off a global race among multiple competing research teams. The Toronto study, along with the paper from Harvard and MIT , found that roughly 10 per cent of our genes are essential for cell survival.
These findings show the majority of human genes play more subtle roles in the cell because switching them off doesn’t kill the cell. But if two or more of such genes are mutated at the same time, or the cells are under environmental stress, their loss begins to count.
Because different cancers have different mutations, they tend to rely on different sets of genes to survive. Moffatt’s team have identified distinct sets of “smoking gun” genes for each of the tested cancers – each set susceptible to different drugs.
“We can now interrogate our genome at unprecedented resolution in human cells that we grow in the lab with incredible speed and accuracy. In short order, this will lead to a functional map of cancer that will link drug targets to DNA sequence variation,” says Moffat.
His team has already shown how this can work. In his study, metformin, a widely prescribed diabetes drugs successfully killed brain cancer cells and those of one form of colorectal cancer – but was useless against the other cancers he studied. However, the antibiotics chloramphenicol and linezolid were effective against another form of colorectal cancer, and not against brain or other cancers studied. These data illustrate the clinical potential of the data in pointing to more precise treatments for the different cancers – and show the value of personalized medicine. University of Toronto