Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
November 2025
The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics
Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Accept settingsHide notification onlyCookie settingsWe may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.
Privacy policy
How RNA editing may promote tumour growth
, /in E-News /by 3wmediaA new study provides insight on the potential role played by RNA (ribonucleic acid) editing in cancer.
The findings may further our understanding of an emerging mechanism implicated in tumour initiation and progression, and may thus lead to the development of better treatment options in the future.
In every healthy human cell, the genetic information hard-wired into the DNA is transcribed into messenger RNA, which is in turn translated into proteins, the workhorses of all body tissues and organs. The prevailing view is that most malignancies are caused by DNA mutations, which can lead to the aberrant activation or inactivation of the corresponding protein products and to the consequent out-of-control growth and proliferation of malignant cells. RNA editing, the process by which ‘mutations’ of the RNA sequence are introduced post-transcriptionally, has the potential to impact a variety of cellular processes yet the precise mechanism of how has been poorly understood until now.
Previous studies have shown that more than one million sites in the genome are edited to various degrees. Despite the fact that a majority of these editing sites fall within regions that are not translated to protein, it has been shown that the differences in RNA editing levels between tumour and normal tissues are associated with different clinical outcomes. Currently, only a few coding RNA editing sites have been functionally characterized. However, it is still a puzzle whether and how the majority of the RNA editing events in the un-translated regions affect tumour growth.
Researchers from Boston University School of Medicine (BUSM) analysed 14 tumour types, and identified more than 2,000 genes showing significant changes in RNA editing level between tumour and normal tissues.
“This study suggests that RNA editing may serve as an important epigenetic mechanism of cellular regulation beyond the genetic/DNA level,” explained corresponding author Stefano Monti, PhD, associate professor of medicine at BUSM. “We show that the effect of one epigenetic component can be offset by changes in another epigenetic component. Thus, it is important to have a comprehensive picture of changes in the cancer genome, which may point to vulnerabilities amenable to targeted treatment,” added lead author Liye Zhang, PhD, postdoctoral fellow at BUSM. Boston University School of Medicine
New cytoplasmic role for proteins linked to neurological diseases, cancers
, /in E-News /by 3wmediaResearchers at UT Southwestern Medical Center have identified a second role for a class of RNA-binding proteins, revealing new insights about neurological diseases and conditions associated with this protein such as autism, epilepsy, and certain types of cancer.
“These data should promote a re-evaluation of those diseases to see if this new function that we’ve identified contributes to those defects,” said senior study author Dr. Michael Buszczak, Associate Professor of Molecular Biology and with the Hamon Center for Regenerative Science and Medicine at UT Southwestern.
The study indicates that RNA-binding fox (Rbfox) proteins oversee translation of messenger RNA, or mRNA, into proteins. Using the fruit fly Drosophila as a model, researchers showed that the Rbfox1 protein, in particular, has this regulatory role.
Rbfox1 proteins were known to play a key role in splicing together coding portions of genes called exons to form mRNA, which is subsequently translated to form proteins. Splicing largely takes place within the nucleus of cells, where many Rbfox1 proteins are found. But there are also variants of Rbfox1 proteins found in the cytoplasm – the portion of the cell outside the nucleus – and the function of those cytoplasmic proteins had not been understood.
“We found that cytoplasmic Rbfox1 represses the production of specific proteins,” Dr. Buszczak said.
The lead author of the study, UT Southwestern Molecular Biology graduate student Arnaldo Carreira-Rosario, found that Rbfox1 binds to specific elements at the ends of mRNA molecules, preventing these mRNAs from being translated into proteins. If Rbfox1 proteins are lost and mRNA is no longer repressed, that could lead to aberrant growth of cells, or cancers.
The researchers found that cytoplasmic forms of Rbfox1 were required for germ cell development in Drosophila. “Without this protein, the germ cells are blocked in a very specific stage of differentiation and just linger there. They can’t differentiate into mature eggs,” said Dr. Buszczak, an E.E. and Greer Garson Fogelson Scholar in Medical Research.
This block leads to sterility in female Drosophila and, in other contexts, can result in an inappropriate proliferation of cells, which underlies cancer.
Work by co-author Dr. Mani Ramaswami of Trinity College Dublin in Ireland points to a link between the newly identified function of Rbfox1 proteins and neuronal development and function, which could have important implications for a number of the neuronal disorders linked to disruption of Rbfox1.
“The idea is that loss of Rbfox1 causes disease by disrupting protein expression, not RNA splicing,” Dr. Buszczak said. “If this interpretation is correct, then it has implications for how one would develop therapeutics to treat the disease in question.” UT Southwestern Medical Center
Molecule needed for sperm activation
, /in E-News /by 3wmediaResearchers funded by the National Institutes of Health have discovered the cellular switch that boosts the activity of sperm cells so that they can travel to the egg. The finding may lead to new options for male contraception as well as treatments for infertility resulting from problems with sperm mobility.
Inside the male reproductive tract, mature sperm are capable of limited movement. This limited movement, however, is not enough to propel them toward the egg when they enter the female reproductive tract. To begin their journey, they must first be activated by the hormone progesterone, which is released by the egg.
The researchers report that the molecule to which progesterone must bind is the enzyme alpha/beta hydrolase domain containing protein 2 (ABHD2), found in the sperm cell’s outer membrane. The study was conducted by Melissa R. Miller and colleagues at the University of California, Berkley, the University of California, San Francisco, and Yale University School of Medicine in New Haven, Connecticut.
“This is an important advance in explaining how sperm become hypermotile in the female reproductive tract,” said Stuart Moss, Ph.D, director of the male reproductive health program at NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development, which funded the study.
“Developing new compounds that block ABHD2 ultimately may yield new contraceptive methods to prevent sperm from reaching the egg.”
Similarly, strategies to bypass or enhance the enzyme might provide therapies for treating infertility resulting from sperm that lack movement capability.
Before a sperm can transition to the hyper-active phase, calcium must pass through the cell’s outer membrane and enter the flagella, the tail-like appendage the cell uses to propel itself. The sperm protein known as CatSper joins with similar proteins in the flagella to allow the entry of calcium.
When the researchers undertook the current study, it was not known whether progesterone interacted directly with CatSper to trigger the calcium influx, or acted on some other molecule (which, in turn, acted on CatSper). Before treating sperm with progesterone, the researchers exposed them to a chemical that inhibits a particular class of enzymes that they believed could include the candidate molecule that acted on CatSper. The hunch proved correct: the treated cells remained inactive after progesterone exposure, indicating that CatSper was not directly involved.
Working with modified progesterone, the researchers eventually isolated ABHD2 from the sperm tails. When the researchers inactivated ABHD2, exposure to progesterone failed to activate the sperm cells, confirming that ABHD2 is the molecular target for progesterone. Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
Lupus study shows precision medicine’s potential to define the genetics of autoimmune disease
, /in E-News /by 3wmediaDemonstrating the potential of precision medicine, an international study based at UT Southwestern Medical Center used next-generation DNA sequencing technology to identify more than 1,000 gene variants that affect susceptibility to systemic lupus erythematosus (SLE).
Precision medicine is an emerging field that aims to deliver highly personalized health care by understanding how individual differences in genetics, environment, and lifestyle impact health and disease.
SLE, commonly called lupus, is a serious, potentially fatal autoimmune disease that the National Institutes of Health reports affects nine times more women than men, and is more likely to strike young African-American, Hispanic, Asian, and Native American women. The disease often begins between the ages of 15 and 44.
“SLE starts when the immune system attacks multiple organ systems in the body, which can result in a complex array of symptoms that are difficult to manage clinically and can lead to organ damage,” said Dr. Edward Wakeland, Chair of Immunology at UT Southwestern and co-senior author of the study posted online recently in the journal eLife. “Our findings support the potential of precision medicine to provide clinically relevant information about genetic susceptibility that may ultimately improve diagnosis and treatment.”
The study also may have implications for other systemic autoimmune diseases, a category of diseases that affect multiple body systems and includes Type 1 diabetes, rheumatoid arthritis, and multiple sclerosis, he said.
Dr. Wakeland and colleagues sequenced millions of DNA base pairs from more than 1,700 people, which allowed precise identification of the genetic variations contributing to SLE, he said. Specifically, the researchers identified 1,206 DNA variations located in 16 different regions of the human genome associated with increased susceptibility to SLE. They then showed that almost all of them (1,199) modify the level of expression of specific molecules that regulate immune responses, he said.
In addition, the two-year study identified many of the specific regulatory variations that were changed in SLE patients and demonstrated that accurately identifying such so-called causal variants increased the accuracy of the genetic association of individual SLE risk genes with susceptibility to SLE.
“Prior to our study, such a comprehensive sequence analysis had not been done and little was known about the exact genetic variations that modify the functions of the genes that cause SLE,” added Dr. Wakeland, who holds the Edwin L. Cox Distinguished Chair in Immunology and Genetics.
The scientists began their comprehensive sequence analysis using the DNA samples of 1,349 American Europeans (773 with SLE disease and 576 without) from sample collections at UT Southwestern, the University of Southern California, UCLA, Oklahoma Medical Research Foundation, and the Université Catholique de Louvain in Belgium.
They then determined the precise DNA sequences at SLE-associated genetic regions scattered throughout the genome. They found that SLE risk is associated with specific clusters of DNA variations, commonly called haplotypes, and that some haplotypes increased the risk for SLE while others provided protection from SLE.
After identifying the sets of DNA variants that increased SLE susceptibility in Caucasians, they used multiple public databases, including the international 1000 Genomes Project (2,504 genomic samples from the global human population) to determine whether these haplotypes also were found in South American, South Asian, African, and East Asian populations.
They discovered that the variants and haplotypes were distributed across subpopulations worldwide. Their findings indicate that many common haplotypes in the immune system are shared at different frequencies throughout the global population, suggesting that these variations in the immune system have ancient origins and persist in populations for long periods, Dr. Wakeland said.
“We thank the many SLE patients and control participants whose sample contributions were essential for these studies,” the researchers wrote. UT Southwestern Medical Center
Autism genes are in all of us, new research reveals
, /in E-News /by 3wmediaNew light has been shed on the genetic relationship between autistic spectrum disorders (ASD) and ASD-related traits in the wider population, by a team of international researchers including academics from the University of Bristol, the Broad Institute of Harvard and MIT, and Massachusetts General Hospital (MGH).
The researchers studied whether there is a genetic relationship between ASD and the expression of ASD-related traits in populations not considered to have ASD. Their findings suggest that genetic risk underlying ASD, including both inherited variants and de novo influences (not seen in an individual’s parents), affects a range of behavioural and developmental traits across the population, with those diagnosed with ASD representing a severe presentation of those traits.
Autism spectrum disorders (ASD) are a class of neurodevelopmental conditions affecting about 1 in 100 children. They are characterised by social interaction difficulties, communication and language impairments, as well as stereotyped and repetitive behaviour. These core symptoms are central to the definition of an ASD diagnosis but also occur, to varying degrees, in unaffected individuals and form an underlying behavioural continuum.
With recent advances in genome sequencing and analysis, a picture of ASD’s genetic landscape has started to take shape. Research has shown that most ASD risk is polygenic (stemming from the combined small effects of thousands of genetic differences, distributed across the genome). Some cases are also associated with rare genetic variants of large effect, which are usually de novo.
“There has been a lot of strong but indirect evidence that has suggested these findings,” said Dr Mark Daly, co-director of the Broad Institute’s Medical and Population Genetics (MPG) Program and senior author of the study.
“Once we had measurable genetic signals in hand – both polygenic risk and specific de novo mutations known to contribute to ASD – we were able to make an incontrovertible case that the genetic risk contributing to autism is genetic risk that exists in all of us, and influences our behaviour and social communication.”
Study co-first author Dr Elise Robinson, from MGH, said: “We can use behavioural and cognitive data in the general population to untangle the mechanisms through which different types of genetic risk are operating. We now have a better path forward in terms of expecting what types of disorders and traits are going to be associated with certain types of genetic risk.”
“Our study shows that collecting and using phenotypic and genetic data in typically developing children can be useful in terms of the design and interpretation of studies targeting complex neurodevelopmental and psychiatric disorders,’ said study co-first author Dr Beate St Pourcain, from the Medical Research Council Integrative Epidemiology Unit at the University of Bristol and the Max Planck Institute for Psycholinguistics.
“Based on the genetic link between population-based social-communication difficulties and clinical ASD, we may now gain further phenotypic insight into a defined set of genetically-influenced ASD symptoms. This may help us to identify and investigate biological processes in typically-developing children, which are disturbed in children with ASD.” University of Bristol
Global study reveals genes as major cause of inflammatory diseases
, /in E-News /by 3wmediaA global study involving 50 different research centres has found hundreds of genes which cause five common, hard-to-treat and debilitating inflammatory diseases, paving the way to new treatments for these conditions.
Led by Brisbane’s QUT and Christian-Albrechts-University, Kiel, Germany, the results of the world-first study have been published.
Co-senior author Professor Matthew Brown, from QUT’s Institute of Health and Biomedical Innovation, said they investigated ankylosing spondylitis, Crohn’s Disease and ulcerative colitis (collectively known as inflammatory bowel disease), psoriasis, and primary sclerosing cholangitis.
“These diseases affect about three per cent of the world’s population, and commonly occur together in families and in individuals. The big question has been whether this is due to shared environmental risk factors, or due to shared genes and now we believe we have the answer,” Professor Brown said.
“The research has conclusively demonstrated these conditions occur together mostly because they share similar genetic backgrounds.
“Studying nearly 86,000 subjects from 26 countries, our researchers identified 244 genetic variants which control whether or not people develop these conditions, a large proportion of which were completely new findings.
“They found that for nearly all of these diseases the reason they frequently occur together in individuals is due to the different diseases sharing genetic risk factors, rather than one disease causing the other.
“For some diseases such as the common form of spinal arthritis, ankylosing spondylitis, the study roughly trebled the number of genes known to be involved.”
Professor Brown said the new gene discoveries pointed to some potential new therapies, including agents already in use for other diseases which can now be trialled in these conditions very promptly.
“The discoveries have shed new light onto the causes of these diseases, such as identifying genetic risk variants which most likely work by affecting the bacteria present in the gut, in turn causing inflammation in joints, the liver or the gut itself,” Professor Brown said. Queensland University of Technology
DNA markers link season of birth and allergy risk
, /in E-News /by 3wmediaResearchers at the University of Southampton have discovered specific markers on DNA that link the season of birth to risk of allergy in later life.
The season a person is born in influences a wide range of things: from risk of allergic disease, to height and lifespan. Yet little is known about how a one-time exposure like the season of birth has such lasting effects.
The Southampton study conducted epigenetic scanning on DNA samples from a group of people born on the Isle of Wight. They found that particular epigenetic marks (specifically, DNA methylation) were associated with season of birth and still present 18 years later. The research team was also able to link these birth season epigenetic marks to allergic disease, for example people born in autumn had an increased risk of eczema compared to those born in spring. The results were validated in a cohort of Dutch children.
John Holloway, Professor of Allergy and Respiratory Genetics at the University and one of the study’s authors, comments: “These are really interesting results. We know that season of birth has an effect on people throughout their lives. For example generally, people born in autumn and winter are at increased risk for allergic diseases such as asthma. However, until now, we did not know how the effects can be so long lasting.
“Epigenetic marks are attached onto DNA, and can influence gene expression (the process by which specific genes are activated to produce a required protein) for years, maybe even into the next generation. Our study has linked specific epigenetic marks with season of birth and risk of allergy. However, while these results have clinical implications in mediating against allergy risk, we are not advising altering pregnancy timing.”
Dr Gabrielle Lockett, of the University of Southampton and first author of the study, adds: “It might sound like a horoscope by the seasons, but now we have scientific evidence for how that horoscope could work. Because season of birth influences so many things, the epigenetic marks discovered in this study could also potentially be the mechanism for other seasonally influenced diseases and traits too, not just allergy.”
The team say that further research is needed to understand what it is about the different seasons of the year that leads to altered disease risk, and whether specific differences in the seasons including temperature, sunlight levels and diets play a part. More study is also needed on the relationship between DNA methylation and allergic disease, and whether other environmental exposures also alter the epigenome, with potential disease implications. University of Southampton
Strongest single gene conclusively implicated in schizophrenia
, /in E-News /by 3wmediaAn international consortium of researchers, led by a team at the Wellcome Trust Sanger Institute, has discovered conclusive evidence for the involvement of a gene called SETD1A in schizophrenia. Damaging changes to this gene, which occur rarely, increase the risk of schizophrenia 35-fold and also increase risk for a wide range of neurodevelopmental disorders.
The research establishes for the first time that single-letter changes to the DNA code of one gene can have such substantial effect on the risk of schizophrenia, leading to a step forward in understanding the biology and potential treatments of schizophrenia.
Schizophrenia is a devastating mental illness affecting nearly 300,000 people in the UK, but knowledge of what causes it is very limited. Previous studies of families have shown that genetics plays an important role in the disorder.
Researchers found that mutations that remove the function of the SETD1A gene are almost never found in the general population, and affect less than 1 in 1000 people with schizophrenia. While this gene explains only a very small fraction of all schizophrenia patients, it provides an important clue to the wider biology of the disorder.
“The results were surprising, not only that we found such a high level of certainty that the SETD1A gene was involved, but also that the effects of the gene were so large. Psychiatric disorders are complex diseases involving many genes, and it is extremely difficult to find conclusive proof of the importance of a single gene. This is a really exciting finding for research into schizophrenia.”
Dr Jeff Barrett, lead author and Group Leader at the Wellcome Trust Sanger Institute
In the largest study of its kind to date, the genome sequences of more than 16,000 people from the UK, Finland and Sweden were analysed, including those from 5,341 people who had been diagnosed with schizophrenia.
Damage to the SETD1A gene was found in 10 of the patients with schizophrenia, and surprisingly was also found in 6 other people with other developmental and neuropsychiatric disorders such as intellectual disability. This finding that the same gene is involved in both schizophrenia and developmental disorders shows that they may share common biological pathways. Sanger Institute
A path to personalized treatment for an immune disorder
, /in E-News /by 3wmediaAt age 56, Roma Jean Ockler was continually afflicted with sinus infections and pneumonia, and despite treatments, only seemed to be getting worse. For decades, immunologist Harry R. Hill, M.D., had seen patients like her. At the time he couldn’t have known that her family’s genetic information, combined with that of five other families from across the world, would classify a new disorder. Their subtype of common variable immunodeficiency disorder (CVID) results from mutations in IKAROS, a protein well known for its central role in immune cell development. The new findings make possible a definitive genetic diagnosis for this class of CVID, opening a door to precision medicine tailored to patients with the disorder.
The research was a collaboration between Hill and his colleagues Attila Kumánovics, M.D., Karl Voelkerding, M.D., Sarah South, Ph.D., Nancy Augustine, and Thomas Martins, M.S., from the University of Utah School of Medicine and the ARUP Institute for Clinical and Experimental Pathology at ARUP Laboratories in Salt Lake City, and 26 other scientists from institutions across the U.S. and Europe.
One of the most frustrating aspects of CVID is that it’s difficult to diagnose early before serious complications develop, says Hill. Occurring in about 1 in 20,000 people, the rare condition is actually a collection of disorders that cause a susceptibility to infection, as seen in Ockler’s case. Her illnesses worsened considerably over time but because doctors did not diagnose her, she was not given appropriate treatment. By the time she saw Hill for the first time, she had been through 17 years of sinus surgeries, pneumonias, and a life-threatening intestinal infection. Based on experience he prescribed an immunoglobulin regimen that has since quieted her symptoms.
The genetic causes of only about 15 percent of CVID cases have been identified, and Ockler did not have any of them. When Hill learned she had relatives with similar symptoms, he saw an opportunity to define her condition.
“We knew that if we could find the cause of her and her extended family’s disorder that we would have the chance to keep others from going through what she had,” says Hill, professor of pathology, paediatrics and medicine.
In collaboration with molecular pathologists Kumánovics and Voelkerding, they found that many of her relatives were missing one of two copies of a gene that codes for IKAROS. Meanwhile, Mary Ellen Conley, M.D., from The Rockefeller University, independently came to the same conclusion with her own patients. She connected with the Utah team and coordinated what would become an international effort revealing a total of six unrelated families who share similar sets of symptoms, and changes in the same gene, implicating IKAROS as the culprit behind their shared disorder. “Often research tries to answer a question that is brought up by the patients,” says Conley.
Harry HillWhile some families had a change in just one DNA letter within the gene, others were missing a large piece, or all of it. Each of the mutations cripple a region required for IKAROS to function, a result confirmed by biochemical analysis, suggesting it cannot carry out its critical role in regulating immune B cell development. Indeed, as the experiments predicted, all six families have low B cell counts. In other words, their immune system is misconstructed, likely explaining why they also have low levels of infection-fighting antibodies (immunoglobulins).
Yet one of the most surprising findings, says Kumánovics, assistant professor of pathology, is that while some who carry the IKAROS mutations are prone to sickness, others appear to be healthy. He adds that understanding the biology that leads to this unexpected resilience could provide clues to overcoming the condition. “These rare patients don’t know how valuable they are. They are providing insights into how the immune system works,” he says. University of Utah
Blood test for tuberculosis
, /in E-News /by 3wmediaTogether with AIDS, tuberculosis ranks among those infectious diseases with the highest global mortality rate, claiming the lives of between 1.5 and two million people every year. However, not everyone infected with the bacterium develops tuberculosis. In fact, fewer than ten percent of those infected go on to manifest the disease. An international team of scientists, including researchers from the Max Planck Institute for Infection Biology in Berlin, have now developed a tuberculosis test that can reliably predict whether an individual will develop active tuberculosis. Doctors may be able to use this test in future to predict the progression of the disease and initiate medical care early.
In future, molecules from blood samples can tell physicians if somebody will develop tuberculosis.
Around 4000 people die of tuberculosis every day and around a third of the world’s population are infected by the causative pathogen, the Mycobacterium tuberculosis bacterium; however, around 90 percent of those infected remain free of symptoms throughout life. In such cases of latent tuberculosis, the bacteria remain dormant in the body without triggering active disease. People with a weak or weakened immune system, for example the very young and very old as well as individuals with other diseases such as HIV or diabetes, are more likely to develop active tuberculosis. A poor diet and poor social conditions are further risk factors.
The blood counts of individuals with latent or active tuberculosis differ from each other. Nevertheless, until now it has not been possible to predict whether an individual with Mycobacterium tuberculosis infection will develop active tuberculosis.
In a recently published study, scientists developed a blood test based on biomarkers that can predict whether active tuberculosis will develop with a reliability of around 75 percent. A biomarker can be a cell, gene or molecule, such as enzymes or hormones, by means of which doctors can detect changes in the body. In order to detect differences between latent and active tuberculosis, scientists of the South African Tuberculosis Vaccine Initiative (SATVI) and the Center for Infectious Disease Research (CIDR) analysed the gene activity in blood samples obtained from more than 10,000 people in South Africa and Gambia, and then observed the subjects for two years.
The results show that specific genes in immune cells are active in the blood of individuals who later develop active tuberculosis. In future, a blood test for gene activity will be able to identify the activity pattern typical of potential tuberculosis patients. “Such a test could predict the occurrence of the disease more than a year before the disease develops,” says the head of the study, Willem Hanekom of the University of Cape Town. “This long lead period will give doctors enough time to initiate treatment.” The blood test will now be tested in clinical trials to determine whether progression of the predicted disease can be halted with targeted treatment. Max Planck Society