Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
November 2025
The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics
Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Accept settingsHide notification onlyCookie settingsWe may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.
Privacy policy
Scientists discover new pathways leading to cancer progression
, /in E-News /by 3wmediaScientists from A*STAR’s Genome Institute of Singapore (GIS) and the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore came together to understand how EZH2, a cancer-promoting gene which is known to be involved in many types of cancers, is activated in breast cancer and lymphomas. The new findings pave the way to develop more effective treatment strategy for aggressive cancers associated with EZH2.
Identifying new pathway of tumour-promoting EZH2 may lead to targeted therapies for aggressive breast cancer
It is known that Polycomb repressive complex 2 (PRC2) and its catalytic component EZH2 are often overexpressed in multiple human malignancies, which promotes cancer. Interestingly, EZH2 or PRC2 also has a protective role against tumour formation in certain cancer types, including solid tumours and blood cancers. However, it is unclear how this paradoxical role of EZH2/PRC2 – as a tumour-promoting and tumour-suppressing gene – is regulated in cancer.
Researchers at the GIS, led by Prof Qiang Yu, found that the paradoxical role of EZH2/PRC2 in breast cancer can be switched when tumour cells are in hypoxic condition, a situation when fast growing solid tumour cells have been deprived of oxygen. The researchers found that when the tumour cells are supplied with sufficient oxygen, EZH2/PRC2 acts as a tumour suppressor to inhibit some of the genes involved in cancer invasion. However, this protective function against cancer progression is attenuated by hypoxia-inducible factor 1-α (HIF1-α), which is activated during hypoxia. Instead, EZH2 engages another well-known tumour-promoting gene, FoxM1, to promote breast cancer invasion and this function no longer needs the catalytic function of EZH2.
“Interestingly, this phenomenon seems to be more common in triple negative breast cancer (TNBC), as compared to other types of breast cancer,” said Prof Yu, the study’s co-corresponding author and Senior Group Leader, Cancer Therapeutics & Stratified Oncology at the GIS. “We were among the first in the world to show a non-catalytic function of EZH2 in cancer a few years ago. Now that we identified a new pathway of EZH2 in promoting TNBC invasion, this finding may lead to a new treatment strategy to target TNBC, a disease in which effective treatments are currently lacking.”
Prof Wee Joo Chng, co-corresponding author of the study, and Deputy Director and Senior Principal Investigator at CSI Singapore, added, “The study fundamentally changes our understanding on the role of EZH2 in breast cancer. Apart from providing molecular insights into how EZH2/PRC2 is regulated in the tumour microenvironment, it also provides therapeutic implications: without a proper patient stratification, the catalytic inhibitor of EZH2 treatment may exacerbate the disease progression.”
National University of Singapore news.nus.edu.sg/press-releases/10639-ezh2-breast-cancer-lymphomas
Red hair gene variant drives up skin cancer mutations
, /in E-News /by 3wmediaDistribution of single nucleotide variant (SNV) counts detected through exome sequencing of melanoma samples, grouped by the presence of R alleles of the MC1R locus shown as a boxplot with median, quartiles, whiskers and outliers.
For the first time, researchers at the Wellcome Trust Sanger Institute and University of Leeds have proved that gene variants associated with red hair, pale skin and freckles are linked to a higher number of genetic mutations in skin cancers. The burden of mutations associated with these variants is comparable to an extra 21 years of sun exposure in people without this variant.
The research showed that even a single copy of a red hair-associated MC1R gene variant increased the number of mutations in melanoma skin cancer; the most serious form of skin cancer. Many non-red haired people carry these common variants and the study shows that everyone needs to be careful about sun exposure.
Red-headed people make up between one and two percent of the world’s population but about 6 per cent of the UK population. They have two copies of a variant of the MC1R gene which affects the type of melanin pigment they produce, leading to red hair, freckles, pale skin and a strong tendency to burn in the sun.
“It has been known for a while that a person with red hair has an increased likelihood of developing skin cancer, but this is the first time that the gene has been proven to be associated with skin cancers with more mutations.’
‘Unexpectedly, we also showed that people with only a single copy of the gene variant still have a much higher number of tumour mutations than the rest of the population. This is one of the first examples of a common genetic profile having a large impact on a cancer genome and could help better identify people at higher risk of developing skin cancer.”
Dr David Adams, joint lead researcher at the Wellcome Trust Sanger Institute
The researchers analysed publically available data-sets of tumour DNA sequences collected from more than 400 people. They found an average of 42 per cent more sun-associated mutations in tumours from people carrying the gene variant.
“This is the first study to look at how the inherited MC1R gene affects the number of spontaneous mutations in skin cancers and has significant implications for understanding how skin cancers form. It has only been possible due to the large-scale data available. The tumours were sequenced in the USA, from patients all over the world and the data was made freely accessible to all researchers. This study illustrates how important international collaboration and free public access to data-sets is to research.”
Exposure to ultraviolet light from either sunlight or sunbeds causes damage to DNA and it has been thought that the type of skin pigment associated with red-heads could allow more UV to reach the DNA. While this may be one mechanism of damage, the study also revealed that the MC1R gene variation not only increased the number of spontaneous mutations caused by ultraviolet light, but also raised the level of other mutations in the tumours. This suggests that biological processes exist in cancer development in people with MC1R variation that are not solely related to ultraviolet light.
“This important research explains why red-haired people have to be so careful about covering up in strong sun. It also underlines that it isn’t just people with red hair who need to protect themselves from too much sun. People who tend to burn rather than tan, or who have fair skin, hair or eyes, or who have freckles or moles are also at higher risk.’
Sanger Institute www.sanger.ac.uk/news/view/red-hair-gene-variant-drives-skin-cancer-mutations
New rapid gene test for mitochondrial disease
, /in E-News /by 3wmediaNewcastle researchers have developed a genetic test providing a rapid diagnosis of mitochondrial disorders to identify the first patients with inherited mutations in a new disease gene.
The team of medics and scientists at the Wellcome Trust Centre for Mitochondrial Research at Newcastle University, together with international collaborators, have identified mutations in a gene, known as TMEM126B, involved in energy production in patient’s muscles.
Using next generation sequencing they have now developed a rapid test which provides a result within 2-3 days – previous techniques took months.
Mitochondrial diseases affect the batteries of the cell and can lead to muscular weakness, blindness, fatal heart failure, learning disability, liver failure, diabetes and can lead to death in early infancy.
Charlotte describes the technique which has already identified six patients from four families affected by this form of mitochondrial disease.
She said: “Identifying a fault in Complex I, one of the building blocks of mitochondria which is responsible for causing disease combined with our custom gene capture and the latest sequencing technology means we can screen many more genes to diagnose this debilitating disease.
“It means families can get a rapid diagnosis within days rather than the weeks and months that testing can currently take. For families who are waiting on a genetic diagnosis before trying for another baby, or they may already be expecting their next child, time really is of the essence.”
The research has confirmed the identity of a mutation causing mitochondrial disease affecting Complex I, one of five complexes involved in energy production. The gene, TMEM126B, makes a protein necessary for assembly of the complex, with defects causing problems with energy generation in patient’s muscles.
Finding a genetic cause is important to families as it means that they can find out what is wrong with their child enabling doctors and scientists to help them understand the risks to their future children and help prevent them losing another child.
Newcastle Universities www.ncl.ac.uk/press/news/2016/07/newrapidgenetestformitochondrialdisease/
New gene variants present in 3 percent of all ALS patients
, /in E-News /by 3wmediaVariations in a gene with multiple functions in neurons are present in approximately 3 percent of all cases of ALS in North American and European populations, both sporadic and familial, making it one of the most common genetic causes of the disease, according to a paper. Led by John Landers, PhD, professor of neurology at UMass Medical School and Jan Veldink, PhD, at University Medical Center Utrecht in the Netherlands, the research was supported by The ALS Association through Project MinE, an international collaboration for gene discovery in ALS, and funded through ALS Ice Bucket donations.
ALS (amyotrophic lateral sclerosis) is a progressive neurodegenerative disease that affects neurons in the brain and the spinal cord. Eventually, people with ALS lose the ability to initiate and control muscle movement, which often leads to total paralysis and death within two to five years of diagnosis. While 10 percent of ALS is familial, meaning it’s genetic, the other 90 percent of ALS cases are considered sporadic, or without a family history. However, it’s very likely that genetics contribute, directly or indirectly, to a much larger percentage of ALS cases.
“The discovery of NEK1 highlights the value of big data in ALS research,” said Lucie Bruijn, PhD, MBA, of The ALS Association. “The sophisticated gene analysis that led to this finding was only possible because of the large number of ALS samples available. The ALS Ice Bucket Challenge enabled The ALS Association to invest in Project MinE’s work to create large biorepositories of ALS biosamples that are designed to allow exactly this kind of research and to produce exactly this kind of result.”
The new gene, called NEK1, was discovered through a genome-wide search for ALS risk genes in more than 1,000 ALS families, and was independently found through different means in an isolated population in the Netherlands. Further analysis in more than 13,000 sporadic ALS individuals compared to controls again revealed the overrepresentation of variants in the same gene. The variations discovered in the gene sequence are predicted to lead to a loss of function of the gene. NEK1 is known to have multiple roles in neurons, including maintenance of the cytoskeleton that gives the neuron its shape and promotes transport within the neuron. In addition, NEK1 has roles in regulating the membrane of the mitochondrion, which supplies energy to neurons, and in repairing DNA. Disruption of each of these functions through other means has been linked to increased risk of ALS.
Understanding the role of NEK1 in disease will provide an important new target for therapy development. The ALS Association is currently funding Landers and Catherine Lutz, PhD, senior research scientist at the Jackson Laboratories in Bar Harbour, Maine, to develop novel mouse models to better understand the consequences of the loss of the protein’s function for the ALS disease process. They will provide rapid access to these models for the broader ALS research community as soon as they are generated. These tools are important for ALS drug development.
UMass Medical School www.umassmed.edu/news/news-archives/2016/07/new-gene-variants-present-in-3-percent-of-all-als-patients/
DNA sequencing uncovers latent risk for developing cystic fibrosis
, /in E-News /by 3wmediaA study by researchers at Children’s Hospital Los Angeles (CHLA), Brigham and Women’s Hospital and the California Department of Public Health suggests that all babies with a known mutation for cystic fibrosis (CF) and second mutation called the 5T allele should receive additional screening in order to better predict the risk of developing CF later in life.
The results indicate that adding specific DNA sequencing to current newborn screenings would allow for early diagnosis in ethnically diverse populations and may increase the number of CF diagnoses in the U.S. over time. Such diagnoses could result in earlier treatment of CF, which could ultimately improve the outcome and prolong the life of a child with the disease.
Newborn screening programs, using a simple blood test taken within 24 to 48 hours of a child’s birth, allow for early detection and treatment of often devastating disorders. In the U.S., millions of newborns are screened each year, and early testing for CF – a progressive, genetic disease that causes persistent lung infections – has been implemented in all 50 states since 2010. CF is an autosomal recessive disorder, meaning that the child must inherit two copies of an abnormal gene in order for the disease to develop.
Each state uses a different screening algorithm to detect newborns with CF. California has implemented a unique algorithm which incorporates full sequencing of the gene responsible for CF, called the CF Transmembrane Conductance Regulator or CFTR. Most other states perform a two-tier screen on the blood that first measures the concentration of the pancreatic enzyme that is elevated in CF. In babies with the highest levels of this enzyme, called immunoreactive trypsinogen (IRT), a secondary screen looks at a selected list of 23 to 140 CFTR mutations known to cause the disease.
According to lead investigator Danieli Salinas, MD, Division of Pediatric Pulmonology at CHLA, these CFTR mutation panels were built based on the most prevalent mutations among severely affected individuals, most of whom were Caucasians.
“If only a commercial panel is applied, a large number of diagnoses are missed among African Americans and Hispanics,” Salinas said. “Missing these causal mutations during newborn screening has the devastating consequence of not detecting CF in these individuals until later in life, when lung damage is already irreversible.”
In California, after detection of one CFTR mutation, the blood sample is sent for CFTR-DNA sequencing to rule out presence of a second pathogenic mutation. California has screened over 4 million newborns for CF since 2007, discovering that – in babies with two mutations – only about one third had classic CF symptoms. Two-thirds of the babies with sequence variants were not found to have CF as indicated by an abnormal chloride sweat test, considered to be the gold standard of CF diagnosis.
“The question became whether the babies in the second group (labeled CFTR-related metabolic syndrome or CRMS) really went on to develop CF, or if benign variants in CFTR were being detected that might never cause a clinical problem,” said senior author Richard B. Parad, MD, MPH.
The researchers evaluated the effect of a specific, common mild CFTR gene variant that is carried by nearly one of 10 people, the 5T allele. They followed the cohort of babies detected through CF newborn screening with a variant detected in both of their CFTR gene copies: one severe CF-causing mutation and one 5T allele. This cohort was followed over eight years to describe clinical outcomes. The researchers were able to generate risk predictions based on the “TG repeat” – a DNA repeating pattern of varying length found directly adjacent to 5T alleles.
Newborns with the 11 TG, a measurement of the length of the repeat, showed no signs of CF during eight years of follow-up. However, 6 percent of babies with the 12 TG developed the disease and nearly 40 percent of children with the 13 TG were considered to have CF within eight years of birth.
“The study’s conclusions show that, depending on the 5T-TG repeat length information, the risk of presenting a natural history consistent with CF can be anticipated,” said Parad. “Right now, these babies are not detected by CF newborn screening in states other than California. Instead of being detected in an asymptomatic state and followed closely, these babies later present with CF symptoms and may have missed an important opportunity to initiate early appropriate therapies during a window of protection that might improve their long term outcome.”
“Having CFTR-DNA sequencing as part of a newborn screening model can unveil the full spectrum of this disorder, through early detection of mild to severe cases in an ethnically diverse population,” added Salinas, who is also an assistant professor of Pediatrics and preventive medicine at the Keck School of Medicine at the University of Southern California. “Studies like this are important to better guide providers and families, by determining which individuals with which mutation combinations should be clinically monitored.”
Children’s Hospital Los Angeles www.chla.org/press-release/dna-sequencing-uncovers-latent-risk-developing-cystic-fibrosis
Identification of EGFR mutations and prediction of lung cancer recurrence
, /in E-News /by 3wmediaThree manuscripts published recently explored the versatility of liquid biopsies by identifying EGFR mutations using circulatingu tumour DNA (ctDNA) in urine and plasma and examining circulating tumour cells (CTCs) in plasma to predict the risk of lung cancer recurrence after surgical resection. Collectively, these findings illustrate the potential and reach of liquid biopsies in both identifying patients suitable for targeted treatment as well as predicting cancer recurrence.
Lung cancer is the most common type of cancer with the highest cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) accounts for roughly 85% of lung cancer and most patients present with advanced disease at diagnosis. Surgical resection is the preferred treatment option for patients with medically operable tumours. However, disease recurrence occurs in approximately 50% of cases. Patients with advanced disease are often not candidates for surgical resection and commonly harbour driver mutations that can be targeted by drugs. A major challenge for assessing driver mutations, such as epidermal growth factor receptor (EGFR) mutations, in advanced disease is the scarcity of suitable biopsy tissue for molecular testing. A minimally invasive alternative to invasive tissue biopsy is the use of liquid biopsy, which analyses ctDNA or CTCs in a liquid biological sample (i.e. urine, blood, or serum).
The first manuscript entitled, Circulating Free Tumor-derived DNA (ctDNA) Determination of EGFR Mutation Status in Real-World European and Japanese Patients with Advanced NSCLC: the ASSESS Study, used samples from the large ASSESS study to evaluate EGFR mutation status by analysing ctDNA from blood plasma. The results of the study demonstrated that analysing ctDNA from plasma is feasible for the identification of EGFR mutations with mutation status concordance in 1,162 matched samples of 89% (sensitivity 46%; specificity 97%; positive predictive value [PPV] 78%; negative PV 90%). The authors comment that, “Accurate and accessible ctDNA mutation testing to address the unmet need in patients without an available/evaluable tumour sample will be important to enable more patients to receive therapies personalized to the mutation status of their tumor.”
The second manuscript entitled, A Highly Sensitive and Quantitative Test Platform for Detection of NSCLC EGFR Mutations in Urine and Plasma, analysed samples from patients enrolled in TIGER-X, a phase 1/2 clinical study of rociletinib in previously treated patients with EGFR mutant-positive advanced NSCLC, to interrogate EGFR activating mutations and the T790M resistance mutation by analysing ctDNA from urine or blood plasma. The results from the study show that ctDNA derived from NSCLC tumours can be detected with high sensitivity in urine and plasma, sensitivity 93% for T790M, 80% L858R, and 83% exon 19 deletions and sensitivity 93% for T790M, 100% L858R, and 87% exon 19 deletions, respectively. The authors comment that, “In conclusion, our data demonstrates that urine testing using mutation enrichment NGS method successfully identifies EGFR mutations in patients with metastatic NSCLC and has a high concordance with tumour and plasma, suggesting that EGFR mutation detection from urine or plasma should be considered as a viable approach for assessing EGFR mutation status.”
Finally, a third manuscript on liquid biopsies entitled, Circulating tumour cells detected in the tumour-draining pulmonary vein are associated with disease recurrence after surgical resection of non-small cell lung cancer, used blood and tumour-draining pulmonary vein samples from patients pre-surgical resection and intra-operatively to analyse CTCs and circulating tumour microemboli (CTM, clusters). The investigators reported that combining CTC/CTM enumeration in tumour-draining pulmonary veins and peripheral blood at the time of curative-intent surgical resection of NSCLC better identifies those patients at higher risk of lung cancer recurrence than peripheral CTC/CTM numbers alone. “In addition to the potential role of CTCs as a prognostic/predictive biomarker, isolation and genetic analysis of individual CTCs from liquid biopsies may shed light on tumour biology and the metastatic process,” said Phil AJ Crosbie, MD, PhD, first author of the article.
The International Association for the Study of Lung Cancer www.iaslc.org/news/liquid-biopsies-identification-egfr-mutations-and-prediction-lung-cancer-recurrence
Novel technique that can ‘taste’ DNA
, /in E-News /by 3wmediaScientists at The University of Nottingham have demonstrated for the first time that it is possible to selectively sequence fragments of DNA in real time, greatly reducing the time needed to analyse biological samples.
A paper describes a novel technique for highly selective DNA sequencing, called ‘Read Until’. The method, used with real-time nanopore sequencing, enables the user to analyse only DNA strands that contain pre-determined signatures of interest.
Dr Matt Loose, of the Cell and Developmental Biology Research Group in the University’s School of Life Sciences, has been working with the MinION, a new portable DNA sequencing technology produced by biotech company Oxford Nanopore Technologies. All sequencing was carried out at The University of Nottingham Next Generation Sequencing Facility, DeepSeq.
“This is the first time that direct selection of specific DNA molecules has been shown on any device,” said Dr Loose. “We hope that it will enable many future novel applications, especially for portable sequencing. This makes sequencing as efficient as possible and will provide a viable, informatics based alternative to traditional wet lab enrichment techniques. The application of this approach to a wide number of problems from pathogen detection to sequencing targeted regions of the human genome is now within reach.”
The pocket-sized MinION device – the same technology which NASA recently sent to the International Space Station in an effort to investigate whether DNA sequencing is possible in microgravity – employs tiny molecular pores in a membrane that ‘sense’ the sequence of DNA fragments passing through these nanopores, producing minute fluctuations in a current trace. These current traces, termed ‘squiggles’ then need to be converted to DNA bases using base caller software, often located in the cloud. The University of Nottingham team used signal processing techniques to map these squiggles to reference sequences, by passing this step.
In the paper, the Nottingham team go further, showing that this squiggle matching technique can be performed at a rate that enables decisions to be made about the fragment of DNA that is being sequenced before it has completely passed through the nanopore. Depending on the sequence, individual nanopores within the MinION can then be instructed to continue sequencing or to eject the current DNA fragment and start sequencing another. The Nottingham team show that this ‘real-time selective sequencing’, or as some have called it ‘DNA tasting’, can reduce the time needed to sequence key DNA fragments or enable the analysis of pathogen samples where there is host and other DNA present in the sample.
The Read Until method/technique was developed by applying dynamic time warping to match short query current traces to references, demonstrating selection of specific regions of small genomes, individual amplicons from a group of targets, or normalisation of amplicons in a set.
Nottingham University www.nottingham.ac.uk/news/pressreleases/2016/july/nottingham-researchers-show-novel-technique-that-can-‘taste’-dna.aspx
Similarities unite three distinct gene mutations of Treacher Collins Syndrome
, /in E-News /by 3wmediaScientists at the Stowers Institute for Medical Research have reported a detailed description of how function-impairing mutations in polr1c and polr1d genes cause Treacher Collins syndrome (TCS), a rare congenital craniofacial development disorder that affects an estimated 1 in 50,000 live births.
Collectively the results of the study reveal that a unifying cellular and biochemical mechanism underlies the etiology and pathogenesis of TCS and its possible prevention, irrespective of the causative gene mutation.
Loss-of-function mutations in three human genes, TCOF1, POLR1C and POLR1D, have been implicated in TCS and are thought to be responsible for about 90 percent of the diagnoses of this congenital craniofacial condition.
The clinical manifestations of TCS include facial anomalies such as small jaws and cleft palate, hearing loss, and respiratory problems. Patients with TCS typically undergo multiple surgeries, but rarely are they fully corrective. By uncovering a mechanism of action common to all three genes, Stowers scientists have advanced scientific understanding of TCS etiology and pathogenesis and identified possible new avenues for preventing or treating the birth defect. This latest study from the laboratory of Stowers Investigator Paul Trainor, Ph.D., focused on Polr1c and Polr1d, whose roles as a genetic cause of TCS were revealed in a 2011 study of a small group of patients who had been diagnosed with TCS but who did not have the TCOF1 mutation. Unlike POLR1C and POLR1D, TCOF1 has been long recognized as a causative gene in TCS and as a result has been more extensively investigated.
“Before we began the study, nothing was known about the role of Polr1c and Polr1d in craniofacial development,” said Kristin Watt, Ph.D., lead author of the PLoS Genetics paper and postdoctoral scientist in the Trainor Lab. “Using zebrafish as our animal model, we set out to explore the functional roles of polr1c and polr1d during embryogenesis and more specifically in craniofacial development.”
Trainor, Watt and their collaborators compared the results of their findings on polr1c and polr1d with their and other labs’ previous research results on Tcof1. In all three loss-of-function models, the researchers found that the chain of cellular events that led to the TCS phenotype of abnormal craniofacial development originated in ribosomes, the cellular components that translate messenger RNA into proteins. Like the Tcof1 gene, polr1c and polr1d mutations were found to perturb ribosome biogenesis, or production of ribosomes, which affects the generation and survival of progenitor neural crest cells, the precursors of craniofacial bone, cartilage and connective tissue.
In animal models of all three causative genes, the scientists determined that deficient ribosome biogenesis triggered a p53-dependent cell death mechanism in progenitor neural crest cells. As a result of the activation of the p53 gene, developing embryos no longer made the quantity of neural crest cells needed to properly form the craniofacial skeleton.
However, in the polr1c and polr1d models as in the Tcof1 models, Stowers scientists found that by experimentally blocking p53 activation, they could restore the neural crest cell population and thereby rescue the animal models’ cranioskeletal cartilage.
Despite the rescue effect, Trainor said that he does not view the “guardian of the genome,” as the p53 gene is often called due to its ability to suppress cancer, as the basis of a potential therapy to prevent or reduce TCS during embryonic development. The p53 gene’s association with cancer makes inhibiting its function too risky, he said.
A less risky and perhaps more effective target for the prevention or treatment of TCS could be enhancing ribosomes, Trainor said, because the loss-of-function mutations in all three causative genes involve ribosome RNA (rRNA) transcription. Polr1c and Polr1d, for example, are subunits of RNA polymerases I and III that are essential for ribosome biogenesis.
“Rather than blocking p53, a better approach may be to try to prevent TCS by treating the problem in ribosome biogenesis that triggers the activation of p53 and the loss of neural crest cells,” said Trainor.
In their research with zebrafish embryos, Trainor and collaborators also determined that polr1c and polr1d are spatiotemporally and dynamically expressed, particularly during craniofacial development. Furthermore, zebrafish embryos with the polr1c and polr1d loss-of-function mutations develop abnormalities in craniofacial cartilage development that mimic the clinical manifestations of TCS in patients. Trainor said that he and his fellow researchers were surprised that mutations in polr1c and polr1d as well as Tcof1 specifically affected craniofacial development, because ribosome biogenesis occurs in every cell of the body. The mutation of a gene that is part of the ribosome complex would be expected to be detrimental to each of these cells, he said. However, in the zebrafish models, the mutation appears to primarily affect progenitor neural crest cells. Trainor said that he and his team theorize that progenitor neural crest cells may be particularly sensitive to deficiencies in ribosome biogenesis during embryogenesis.
Thus, the study revealed new animal models for TCS: zebrafish with polr1c and polr1d loss-of-function mutations. Moreover, the existence of a common mechanism of action may simplify the research, particularly the search for a therapy to prevent or treat TCS. Because of the similarities among the three causative genes, “we may be able to develop creative ways of preventing TCS that will prove effective in at-risk individuals who have one of the gene mutations,” said Trainor, who has investigated the molecular origins and development of TCS and related craniofacial developmental disorders for 10 years.
Stowers Institute for Medical Research www.stowers.org/media/news/jul-22-2016
The Heart-Brain Connection: The link between LQTS and seizures
, /in E-News /by 3wmediaResearchers at the University of Rochester Medical Center recently discovered a genetic link between Long QT Syndrome (LQTS), a rare cardiac rhythm disease, and an increased risk for seizures. The study also found that people with LQTS who experience seizures are at greater risk of sudden cardiac death.
According to research, there is a clear association between the heart and the brain of LQTS patients. Patients carrying LQTS genetic mutations were three times more likely to have experienced seizures in their past, compared to their family members who did not carry those mutations. Interestingly, LQTS patients who had a history of seizures also tended to have worse cardiac symptoms.
David Auerbach, Ph.D., senior instructor of Medicine in the Aab Cardiovascular Research Institute of the University of Rochester Medical Center, and lead author of the study found seizure status to be the strongest predictor of cardiac arrhythmias – the abnormal heart rhythms characteristic of LQTS. In fact, about 20% of the LQTS patients in the study who had a history of seizures had survived at least one lethal cardiac arrhythmia.
You could begin applying these findings to patients today by telling physicians treating LQTS patients to look outside the heart.
Auerbach’s study set a new clinical precedence for the link between seizures and LQTS and provides a case for doctors to pay more attention to what is happening in LQTS patients’ brains or, more broadly, to “look outside the classic organ of interest” in any disease.
As a postdoctoral fellow, Auerbach studied the heart-brain connection in a severe genetic form of epilepsy, and found that cardiac arrhythmias were one cause of sudden unexplained death in people with epilepsy. Now, he investigates the converse – whether a genetic heart disorder is also associated with issues in the brain.
Auerbach tapped into the Rochester-based LQTS Patient Registry to answer this question. This unique resource was developed 40 years ago by the senior author of the study, Arthur Moss, M.D., the Bradford C. Berk, MD, PhD, Distinguished Professor of Medicine at URMC. The registry contains information about more than 18,000 people including LQTS patients and their affected and unaffected family members, who provide a nearly ideal group of controls. “In essence, they have the same genetic makeup, except theoretically, the LQTS-causing mutation,” says Auerbach.
To ensure that the seizures reported in the registry were not merely misdiagnosed cardiac arrhythmias, Auerbach investigated the effect of beta blockers, drugs often prescribed to LQTS patients to prevent cardiac arrhythmias. While the drugs effectively reduced patients’ arrhythmias, they had no effect on seizures, minimizing the chance that the seizures were simply misdiagnosed cardiac side effects.
Looking at the patients’ genetic information, Auerbach and his colleagues found that patients with the three different types of LQTS (LQTS1-3) showed similar heart rhythm symptoms, but vastly different prevalence of seizures. LQTS1 and LQTS2 patients had much higher prevalence of seizures than LQTS3 or no mutation – with LQTS2 at the greatest risk.
Further investigation of the LQTS-causing mutation showed that the specific location of the mutation greatly affected the risk of cardiac arrhythmias and seizures. In one location on the gene, the mutation protected against these symptoms, but in another location on the same gene, the mutation increased the risk of those symptoms. Understanding what each of these mutations does may shed new light on a basic mechanism of seizures and may provide viable therapeutic targets to treat LQTS.
The University of Rochester Medical Center www.urmc.rochester.edu/news/story/4612/the-heart-brain-connection-the-link-between-lqts-and-seizures.aspx
Method sheds light on how genetic mutations cause inherited Parkinson’s disease
, /in E-News /by 3wmediaResearchers led by the University of Dundee’s Professor Dario Alessi have developed a new method of measuring the activity of disease-causing mutations in the LRRK2 gene, a major cause of inherited Parkinson’s disease.
The team believes this research could help pave the way for future development of a clinical test that could facilitate evaluation of drugs to target this form of the condition.
Mutations in the LRRK2 gene are the most common cause of genetic Parkinson’s disease. The most common disease-causing mutation in this gene increases the activity of the LRRK2 protein three-fold, implying this may contribute towards the symptoms of the disease in patients. It also suggests that drugs that reduce the activity of the protein (LRRK2 inhibitors) may help treat patients with this form of inherited Parkinson’s disease.
“It is important to better understand how disruption in LRRK2 biology causes Parkinson’s disease and whether a drug that targeted the LRRK2 enzyme would offer therapeutic benefit,” said Professor Alessi, lead author on the study.
“Current drug treatments only deal with symptoms of the condition, such as tremors, but do not affect the progression of Parkinson’s disease. An important question is whether an LRRK2 therapy might have potential to slow progression of the condition, which no other current therapy is able to do.”
When the LRRK2 protein is active it stops another cellular protein called Rab10 from fulfilling its function in the body. There are many proteins in the Rab family, and a number of them have been shown to be low in number or deactivated in different forms of Parkinson’s disease.
The new method of measuring these was developed by a collaboration of researchers from Dundee, The Michael J. Fox Foundation for Parkinson’s Research, GSK and the University of Hong Kong. It analyses how much of the Rab10 protein has been deactivated – a process where phosphate groups are added to the Rab10 molecules by the LRRK2 protein – as a measure of heightened LRRK2 protein activity.
This new experimental assay is straightforward, requires only small amounts of sample material and is suitable for adapting to analyse large samples. This contrast with current mass spectrometry technology that is more complex and cumbersome and requires larger sample sizes.
While acknowledging that more work is needed, the researchers believe this breakthrough could help with future drug developments for patients with this form of Parkinson’s disease.
Professor Alessi continued, “The prediction is that elevation of LRRK2 activity leads to Parkinson’s disease, and this is now testable using our assay. The expectation is that if a sub-group of patients can be identified with elevated LRRK2 activity, these individuals might benefit most from LRRK2 inhibitors.
University of Dundee www.dundee.ac.uk/news/2016/lab-method-sheds-light-on-how-genetic-mutations-cause-inherited-parkinsons-disease.php