Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
November 2025
The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics
Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Accept settingsHide notification onlyCookie settingsWe may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.
Privacy policy
Researchers find new genetic links underlying progressively blinding eye disease
, /in E-News /by 3wmediaCorneal diseases are among the most common causes of visual impairment and blindness, with Fuchs endothelial corneal dystrophy (FECD), a gradual swelling and clouding of the cornea, being the most common reason for eventual corneal transplants.
The cornea is the transparent front part of the eye covering the iris, pupil and anterior chamber. In Fuchs endothelial corneal dystrophy, the innermost cell layer of the cornea begins to progressively deteriorate, eventually resulting in severe vision impairment and blindness.
Researchers at University of California San Diego School of Medicine, with colleagues at Case Western University, Duke University, the National Institutes of Health and elsewhere, have identified three novel genomic loci — distinct stretches of genetic material on chromosomes — linked to FECD, which often clusters in families and is roughly 39 percent heritable.
“Previously, there was one known FECD locus. We’ve expanded that number to four,” said the study’s first author Natalie A. Afshari, MD, professor of ophthalmology, Stuart Brown MD Chair in Ophthalmology in Memory of Donald Shiley and chief of cornea and refractive surgery at Shiley Eye Institute at UC San Diego Health. “These findings provide a deeper understanding of the pathology of FECD, which in turn will help us develop better therapies for treating or preventing this disabling disease.”
FECD affects the innermost layer of cells in the cornea (the transparent front cover of the eye), called the endothelium. The endothelium is responsible for maintaining the proper amount of fluid in the cornea, keeping it clear. FECD is a progressive disorder in which the endothelium slowly degrades, with lost clarity, pain and severely impaired vision. It affects 4 percent of the U.S. population above age 40 and worsens with age. Women are two to four times more affected than men. While there is symptomatic treatment in early stages, surgery — often a corneal transplant — is the only remedy after significant vision loss occurs.
The research team conducted a genome-wide association study, an analytical approach in which scientists look for genetic variants in individuals associated with a particular disease. This study involved 1,404 patients with FECD and 2,564 controls of European ancestry.
The results confirmed the known role of the TCF4 gene, but also revealed associations with three other loci: KANK4, LAMC1 and LINC009970/ATPB1. Researchers also found some genomic markers that were more associated by gender, with LAMC1 increasing FECD risk in women while TCF4 increased risk in men.
“While more work must be done to precisely elucidate what these proteins do,” said Afshari, “the results suggest they have essential roles in sustaining and maintaining the health of the corneal endothelium. This knowledge improves our understanding of the genetic risk factors for FECD and gives us new therapeutic targets.”
UCSD Center for Health
health.ucsd.edu/news/releases/Pages/2017-03-30-new-genetic-links-underlying-progressive-eye-disease.aspx
Method identifies epileptic patients who can benefit from surgery
, /in E-News /by 3wmediaResearchers affiliated with the University of Campinas (UNICAMP) in São Paulo State, Brazil, have shown that genetic information can be used to improve early prediction of the response to drugs in patients with mesial temporal lobe epilepsy (MTLE), one of the most severe forms of epilepsy. Patients who do not respond well to treatment with antiepileptic drugs are candidates for surgery.
The research was conducted at the Brazilian Research Institute for Neuroscience and Neurotechnology (BRAINN) – one of the Research, Innovation and Dissemination Centers (RIDCs) funded by FAPESP – and led by Professor Iscia Lopes-Cendes.
"According to estimates, at the world’s best centres, it takes between 15 and 20 years for patients with MTLE refractory to drug treatment to be referred for surgery," Lopes-Cendes said. "Meanwhile, they continue to suffer from uncontrolled seizures. If we can shorten this process, we can improve the lives of many patients, potentially making the difference between going or not going to university, having or not having a job and a normal life."
MTLE, she explained, is caused by alterations in the functioning of neurons located in the deepest structures of the brain, such as the hippocampus and amygdala, which control important functions such as memory, attention, and anxiety, among others. Seizures due to abnormal electric discharges in a large group of neurons may or may not result in convulsions but do impair memory and other brain functions, often putting the patient at risk of accident and death.
Although MTLE is not the most frequent form of epilepsy, accounting for only 30-40% of cases, it is considered the hardest to treat in adults. Up to 40% of patients with MTLE do not respond to any of the available drugs. In these cases, surgical removal of the brain area that originates the seizures is often recommended.
The aim of the study, according to Lopes-Cendes, was to develop a methodology for distinguishing between the two groups by analysing their genetic material. To do this, the researchers selected a set of 11 genes that have been shown to be involved in antiepileptic drug absorption, metabolism, and transport in the scientific literature.
For these 11 genes, they genotyped 119 different single nucleotide polymorphism (SNP) molecular markers to see which alleles were present.
"We deployed a series of statistical procedures to develop the model with the best capacity to predict whether the patient would be responsive to drug treatment," Lopes-Cendes said. "In this model, we included and excluded variables to see which ones contributed most to the power of the predictors. Besides genetic polymorphisms, we also included clinical data such as the presence or absence of hippocampal atrophy, the age at and frequency of seizures at epilepsy onset, patient gender, and so on."
When only the clinical variables were taken into account, the model’s predictions were about 45% accurate, which, according to Lopes-Cendes, is less than would be achieved by tossing a coin.
However, the model’s accuracy increased to 80% when only SNP markers were used and to 82% when both clinical and genetic variables were used.
As Lopes-Cendes explained, in order to be sure that the two groups of patients belonged to the same population from a genetic standpoint and hence were genuinely comparable, the researchers also genotyped 90 other SNPs in different genes located on the same chromosomes as in the previous analysis.
"We call this testing technique ‘genome control’," she said. "Without it, we risk selecting patient and control groups from different populations, which would invalidate the results of the analysis."
In light of the model’s high level of accuracy, Lopes-Cendes revealed that she and her team at BRAINN now plan to begin a multicentre study involving patients from several countries.
"The idea is to genotype these SNPs at the start of treatment and to follow the patients for two years to see what happens. If the results corroborate our findings in this first study, we’ll have sufficient evidence to include the methodology in clinical practice," she said.
EurekAlert
www.eurekalert.org/pub_releases/2017-04/fda-mie040417.php
NKPD1 variant increases depression risk
, /in E-News /by 3wmediaA study of people from an isolated village in the Netherlands reveals a link between rare variants in the gene NKPD1 and depressive symptoms. The study, led by co-first authors Najaf Amin, PhD, of Erasmus University Medical Center in the Netherlands and Nadezhda Belonogova of the Russian Academy of Sciences in Novosibirsk, Russia, helps researchers understand the molecular pathology of the disease, which could eventually improve how depression is diagnosed and treated.
Genetics play a strong role in risk for depression, but the identification of specific genes contributing to the disorder has eluded researchers. "By sequencing all of the DNA that codes for mRNA and ultimately, proteins, Dr. Amin and colleagues found a single gene that may account for as much as 4% of the heritable risk for depression," said Doctor John Krystal, Editor of Biological Psychiatry.
To identify the gene, the researchers assessed data from the Erasmus Rucphen Family study, which was composed of a collection of families and their descendants living in social isolation until the past few decades. In a population like this, genetic isolation leads to an amplification of rarely occurring variants with little other genetic variation, providing a more powerful cohort for the discovery of rare variants. Nearly 2,000 people who had been assessed for depressive symptoms were included in the analysis.
Using whole-exome sequencing to examine portions of DNA containing genetic code to produce proteins, Amin and colleagues found that several variants of NKPD1 were associated with higher depressive symptom scores. The association between depressive symptoms and NKPD1 were also replicated in an independent sample of people from the general population, although the replication sample highlighted different variants within NKPD1.
"The involvement of NKPD1 in the synthesis of sphingolipids and eventually of ceramides is interesting," said Dr. Amin, referring to the predicted role of NKPD1 in the body. Altered sphingolipid levels in blood have been associated with depression and have been proposed as a therapeutic target for major depressive disorder.
"We are the first to show a possible genetic connection in this respect," said Dr. Amin, adding that this implies that such a therapy might be beneficial for patients carrying risk variants in the NKPD1 gene.
As with other psychiatric disorders, depression lacks genetic or biochemical markers to aid diagnosis and treatment of the disorder. According to Dr. Amin, moving depression treatment into the era of precision and personalized medicine will require a transition to objective and unbiased measurements where patients are stratified based on the molecular pathology of the disease. "NKPD1 may be one such molecular mechanism," she said.
ScienceDaily
www.sciencedaily.com/releases/2017/04/170404090027.htm
Study reverses thinking on genetic links to stress, depression
, /in E-News /by 3wmediaFor years, scientists have been trying to determine what effect a gene linked to the brain chemical serotonin may have on depression in people exposed to stress. But now, analysing information from more than 40,000 people who have been studied over more than a decade, researchers led by a team at Washington University School of Medicine in St. Louis have found no evidence that the gene alters the impact stress has on depression.
New research findings often garner great attention. But when other scientists follow up and fail to replicate the findings? Not so much.
In fact, a recent study published in PLOS One indicates that only about half of scientific discoveries will be replicated and stand the test of time. So perhaps it shouldn’t come as a surprise that new research led by Washington University School of Medicine in St. Louis shows that an influential 2003 study about the interaction of genes, environment and depression may have missed the mark.
Since its publication in Science, that original paper has been cited by other researchers more than 4,000 times, and some 100 other studies have been published about links between a serotonin-related gene, stressful life events and depression risk. It indicated that people with a particular variant of the serotonin transporter gene were not as well-equipped to deal with stressful life events and, when encountering significant stress, were more likely to develop depression.
Such conclusions were widely accepted, mainly because antidepressant drugs called selective serotonin reuptake inhibitors (SSRIs) help relieve depression for a significant percentage of clinically depressed individuals, so many researchers thought it logical that differences in a gene affecting serotonin might be linked to depression risk.
But in this new study, the Washington University researchers looked again at data from the many studies that delved into the issue since the original publication in 2003, analysing information from more than 40,000 people, and found that the previously reported connection between the serotonin gene, depression and stress wasn’t evident.
“Our goal was to get everyone who had gathered data about this relationship to come together and take another look, with each research team using the same tools to analyze data the same way,” said the study’s first author, Robert C. Culverhouse, PhD, an assistant professor of medicine and of biostatistics. “We all ran exactly the same statistical analyses, and after combining all the results, we found no evidence that this gene alters the impact stress has on depression.”
Over the years, dozens of research groups had studied DNA and life experiences involving stress and depression in the more than 40,000 people revisited in this study. Some previous research indicated that those with the gene variant were more likely to develop depression when stressed, while others didn’t see a connection. So for almost two decades, scientists have debated the issue, and thousands of hours of research have been conducted. By getting all these groups to work together to reanalyze the data, this study should put the questions to rest, according to the researchers.
“The idea that differences in the serotonin gene could make people more prone to depression when stressed was a very reasonable hypothesis,” said senior investigator Laura Jean Bierut, MD, the Alumni Endowed Professor of Psychiatry at Washington University. “But when all of the groups came together and looked at the data the same way, we came to a consensus. We still know that stress is related to depression, and we know that genetics is related to depression, but we now know that this particular gene is not.”
Culverhouse noted that finally, when it comes to this gene and its connection to stress and depression, the scientific method has done its job.
Washington University School of Medicine
medicine.wustl.edu/news/study-reverses-thinking-genetic-links-stress-depression/
Vitamin D deficiency may indicate cardiovascular disease in overweight and obese children
, /in E-News /by 3wmediaIn overweight and obese children and adolescents, vitamin D deficiency is associated with early markers of cardiovascular disease, a new study reports.
"Paediatric obesity affects 17 percent of infants, children, and adolescents ages 2 to 19 in the United States, and obesity is a risk factor for vitamin D deficiency. These findings suggest that vitamin D deficiency may have negative effects on specific lipid markers with an increase in cardiovascular risk among children and adolescents," said lead author Marisa Censani, M.D., pediatric endocrinologist and director of the Pediatric Obesity Program in the Division of Pediatric Endocrinology at New York Presbyterian Hospital/Weill Cornell Medicine in New York, N.Y.
"This research is newsworthy because this is one of the first studies to assess the relationship of vitamin D deficiency to both lipoprotein ratios and non-high density lipoprotein (non-HDL) cholesterol, specific lipid markers impacting cardiovascular risk during childhood, in children and adolescents with obesity/overweight," Censani noted.
Censani and her colleagues reviewed the medical records, including vitamin D levels, of children and adolescents between 6 and 17 years of age who were evaluated at the paediatric endocrinology outpatient clinics at Weill Cornell Medicine over a two-year period.
Overall, 178 of 332 patients met criteria for overweight and obesity: Body Mass Index (BMI) above the 85th percentile; and 60 patients with BMI above the 85th percentile had fasting lipid test results available.
Total cholesterol, triglycerides, HDL, low-density lipoprotein (LDL), and non-HDL cholesterol were collected; and total cholesterol/HDL and triglyceride/HDL ratios were calculated. Vitamin D deficiency was considered to be 25 hydroxyvitamin D (25OHD) below 20 ng/ml.
Vitamin D deficiency was found to be significantly associated with an increase in atherogenic lipids and markers of early cardiovascular disease. Total cholesterol, triglycerides, LDL, non-HDL cholesterol, as well as total cholesterol/HDL and triglyceride/HDL ratios, were all higher in vitamin D-deficient patients compared to patients without vitamin D deficiency.
"These results support screening children and adolescents with overweight and obesity for vitamin D deficiency and the potential benefits of improving vitamin D status to reduce cardiometabolic risk," Censani said.
The Endocrine Society
www.endocrine.org/news-room/current-press-releases/vitamin-d-deficiency-may-indicate-cardiovascular-disease-in-overweight-and-obese-children
Scientists discover biological evidence of “atypical” Chronic Fatigue Syndrome
, /in E-News /by 3wmediaScientists at the Center for Infection and Immunity (CII) at Columbia University’s Mailman School of Public Health are the first to report immune signatures differentiating two subgroups of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): “classical” and “atypical.” This complex, debilitating disease is characterized by symptoms ranging from extreme fatigue after exertion to difficulty concentrating, headaches, and muscle pain.
Typically, symptoms of ME/CFS begin suddenly following a flu-like infection, but a subset of cases classified by the investigators as “atypical” follows a different disease course, either from triggers preceding symptoms by months or years, or accompanied by the later development of additional serious illnesses.
To uncover evidence of these disease types, first author Mady Hornig, MD, director of translational research at CII and associate professor of Epidemiology at Mailman, and colleagues used immunoassays to measure levels of 51 immune biomarkers in cerebrospinal fluid samples taken from 32 cases of classical and 27 cases of atypical ME/CFS. All study participants were diagnosed using the same standard criteria, but atypical cases either had prior histories of viral encephalitis, illness after foreign travel or blood transfusion, or later developed a concurrent malady—seizure disorders, multiple sclerosis-like demyelinating disorders, Gulf War Illness, or a range of cancers—at rates much higher than seen in the general population.
Their analysis revealed lower levels of immune molecules in individuals with atypical ME/CFS than those with a classical presentation and course of illness, including dramatically lower levels of interleukin 7 (IL7), a protein linked to viral infections, and interleukin 17A (IL 17A) and chemokine (C-X-C motif) ligand 9 (CXCL9), inflammatory molecules implicated in a variety of neurological disorders.
“We now have biological evidence that the triggers for ME/CFS may involve distinct pathways to disease, or, in some cases, predispose individuals to the later development of serious comorbidities,” says Hornig. “Importantly, our results suggest that these early biomarker profiles may be detectable soon after diagnosis of ME/CFS, laying a foundation for better understanding of and treatments for this complex and poorly understood illness.”
“Early identification of patients who meet the usual clinical criteria when first diagnosed but then go on to develop atypical features would help clinicians like myself identify and treat these complex cases and even prevent fatal outcomes,” says co-author Daniel L. Peterson, MD, principal clinician at Sierra Internal Medicine in Incline Village, NV.
The new study builds on earlier research by Hornig and collaborators that found robust evidence of distinct stages in ME/CFS. A pair of 2015 publications based on analyses of blood and cerebrospinal fluid showed differences in the immune signatures of ME/CFS patients who had the disease for three years or less as compared with those who had been ill for more than three years. The researchers reported that patients were flush with cytokines and chemokines until around the three-year mark—suggesting an over-activated immune response in that phase of the illness; thereafter the immune system showed evidence of “exhaustion,” and levels of immune molecules dropped.
In the new study, both subsets of ME/CFS patients showed signs of an unbalanced or dysregulated immune system within the central nervous system, with immune markers different than those seen in healthy individuals. However, the dampened immune profiles previously observed after the three-year mark were only observed in individuals with the classical form of the disease, not in those with atypical ME/CFS. Among subjects in the atypical group, levels of cytokines and chemokines were more likely to remain steady or increase.
According to Hornig, instead of the immune exhaustion seen in later phases of classical ME/CFS, atypical patients may be experiencing a “smouldering inflammatory process” in which the immune system is still working to recover, although she acknowledges that much work remains to be done to confirm this hypothesis. Alternatively, these findings could suggest a pathway to disease in atypical individuals that involves biomarkers not captured in the 51-molecule assay, potentially even involving non-immune-related processes. Atypical individuals may also have genetic susceptibilities that lead their immune systems to respond differently than in classical cases.
Columbia University Mailman School of Public Health]
www.mailman.columbia.edu/public-health-now/news/scientists-discover-biological-evidence-atypical-chronic-fatigue-syndrome
New technique tests therapies for breast cancer metastasis
, /in E-News /by 3wmediaA new laboratory technique developed by researchers at Baylor College of Medicine and other institutions can rapidly test the effectiveness of treatments for life-threatening breast cancer metastases in bone.
“For a number of breast cancer patients, the problem is metastasis – the dissemination of breast tumour cells to other organs – after the primary tumour has been eliminated,” said corresponding author Dr. Xiang Zhang, associate professor of molecular and cellular biology and the Lester and Sue Smith Breast Center at Baylor. “Metastases, however, tend to respond differently than the primary tumour to the treatment in part due to residing in a different organ with a different microenvironment.”
Until now, there has not been an effective experimental platform to study metastatic tumours in their new microenvironment.
“We have created an experimental system in which we can mimic the interactions between cancer cells and bone cells, as bone is the place where breast cancer, and many other cancers too, disseminates most frequently,” said Zhang, who also is a McNair Scholar at Baylor. “We have developed a system that allows us to test many different drug responses simultaneously to discover the therapy that can selectively act on metastatic cancer cells and minimize the effect on the bone.”
To mimic the interactions between metastatic breast cancer cells and bone cells in a living system in the lab, Zhang and his colleagues developed a bone metastasis model, called bone-in culture array, by fragmenting mouse bones that already contain breast cancer cells.
The scientists determined that the bone-in culture maintains the micro-environmental characteristics of bone metastasis in living animal models, and the cancer cells maintain the gene expression profile, the growth pattern and their response to therapies.
Using the bone-in model, the researchers determined that the drug danusertib preferentially inhibits bone metastasis. They also found that other drugs stimulate the growth of slow-growing cancer cells in the bone.
In addition to determining the effect of drugs in the growth of metastasis in bone, the bone-in culture can be used to investigate mechanisms involved in bone colonization by cancer cells.
Implications for cancer treatment
“We think that this new system has the potential to be applied not only to breast cancer but to other cancers that also metastasize to the bone,” Zhang said. “This technique can be scaled up to larger sample sizes, which would help accelerate the process of discovering metastatic cancer treatments. We have already found a few interesting drugs. We will keep looking for more and focus on those that are most promising.”
Baylor College
www.bcm.edu/news/cancer-breast/new-breast-cancer-metastasis-technique
Scientists name ‘Connshing syndrome’ as a new cause of high blood pressure
, /in E-News /by 3wmediaResearch led by scientists at the University of Birmingham has revealed a new cause of high blood pressure which could lead to major changes in managing the disease.
High blood pressure, also known as hypertension, often goes unnoticed but if left untreated can increase the risk of heart attack and stroke.
Studies estimate that one in four adults suffer from hypertension, but most patients have no identifiable cause for the condition.
However, it is known that in up to 10 per cent of hypertensive patients the overproduction of the adrenal hormone aldosterone – a condition known as primary aldosteronism or Conn syndrome – is the cause of disease.
Now the University of Birmingham-led study has, for the first time, made the important discovery that a large number of patients with Conn syndrome do not only overproduce aldosterone but also the stress hormone cortisol.
Professor Wiebke Arlt, Director of the Institute of Metabolism and Systems Research (IMSR) at the University of Birmingham, said: “Our findings show that the adrenal glands of many patients with Conn syndrome also produce too much cortisol, which finally explains puzzling results of previous studies in Conn patients.
“These previous studies had found increased rates of type 2 diabetes, osteoporosis and depression in Conn patients – problems typically caused by overproduction of cortisol, also termed Cushing syndrome, and not by too much aldosterone.”
The authors of the University of Birmingham-led study, conducted in collaboration with a group of scientists from Germany, decided to name this new cause of hypertension – the combined overproduction of aldosterone and cortisol – as Connshing syndrome.
At present, many Conn syndrome patients are treated with drugs that are directed against the adverse effects of aldosterone. However, this leaves the cortisol excess untreated.
Second author of the study, published in JCI Insight, Dr Katharina Lang – an academic clinical lecturer at IMSR – said: “These findings are very likely to change clinical practice.
“Patients will now need to undergo more detailed assessment to clarify whether they suffer from Conn or Connshing syndrome.
University of Birmingham
www.birmingham.ac.uk/news/latest/2017/04/connshing-syndrome.aspx
20 Times Faster Biosensor
, /in E-News /by 3wmediaDGIST research team led by Professor CheolGi Kim has developed a biosensor platform which has 20 times faster detection capability than the existing biosensors using magnetic patterns resembling a spider web.
The sensing capability of a biosensor is determined by the resolution of the sensor and the movement and reaction rate of molecules. Many research groups in Korea and other countries have been improving the resolution through the development of nanomaterials but there has been a limitation to improve the sensors’ sensitivity due to the low diffusion transport of biomolecules toward the sensing region.
Professor Kim and his research team used a magnetic field in order to overcome the drawback that the movement of biomolecules such as proteins and DNA is slow when the transport only depends on diffusion. The biomolecules labelled with superparamagnetic particles and the use of an external magnetic field enabled the movement of the biomolecules to be easily controlled and detected with an ultra-sensitive magnetic sensor.
The research team developed a new biosensor platform using a spider web-shaped micro-magnetic pattern. It improved the sensing ability of the biosensor as it increased the ability to collect low-density biomolecules by attracting biomolecules labelled with the superparamagnetic particles to the sensing area.
The first author Byeonghwa Lim at DGIST’s Ph.D program of Emerging Materials Science elaborated on the biosensor platform, "We placed a spider web-shaped micro-magnetic pattern which was designed to move the superparamagnetic particles toward the center of the biosensor and a high sensitivity biosensor on the platform. When a rotating magnetic field is applied to a spider web-shaped magnetic pattern, it can attract biomolecules labelled with superparamagnetic particles faster to the sensor. The speed of the movement is very fast and it can detect the subject 20 times faster than the diffusion method."
The research team also succeeded in monitoring the biomolecules conjugated to the superparamagnetic particles at a distance from the sensing area by utilizing the biosensor platform. In addition, the team has identified that the superparamagnetic particles not only play the role of biomolecular cargo for transportation, but also act as labels for the sensor to indicate the location of biomolecules.
Professor Kim stated "The existing biosensors require long time to detect low density biomolecules and result in poor sensing efficiency as they only depend on diffusion. The magnetic field based biosensor platform improves the collection capability of biomolecules and increases the speed and sensitivity of the biomolecules movement. Therefore, we are planning to use this platform for early diagnosis as well as recurrence diagnosis of diseases such as cancer. "
DGIST
en.dgist.ac.kr/site/dgist_eng/menu/508.do?siteId=dgist_eng&snapshotId=3&pageId=429&cmd=read&contentNo=34358
RNA sequencing applied as a tool to solve patients’ diagnostic mysteries
, /in E-News /by 3wmediaRecent advances in large-scale clinical DNA sequencing have led to genetic diagnoses for many rare disease patients, but the diagnosis rate based on these approaches is still far from perfect. On average, clinicians are unable to provide a genetic diagnosis for over half of patients in the clinic. The lack of a clear genetic diagnosis can lead to profound uncertainty about patients’ long-term prognoses, treatment options, and family planning decisions.
In a new Science Translational Medicine study, a team led by researchers from the Broad Institute of MIT and Harvard and the National Institute of Neurological Disorders and Stroke adds RNA sequencing to the diagnostic toolkit to identify disease-causing mutations buried inside the genome.
The researchers sequenced the RNA from muscle samples of 50 patients with undiagnosed genetic muscle disorders — who had undergone extensive genetic testing — and, in conjunction with DNA sequence information and a reference database, successfully located pathogenic mutations that had previously gone undetected in one-third of the patients. The study firmly positions RNA sequencing as a tool that adds additional power to the existing set of technologies deployed to solve genetic disease mysteries.
“For some patients, we know that there is variation in the human genome, with an effect on the transcript, that we just haven’t been capturing with our traditional genetic sequencing methods,” says senior author Daniel MacArthur, co-director of the Medical and Population Genetics Program at the Broad Institute and group leader at Massachusetts General Hospital. “With RNA sequencing, we were able to take a set of patients who had gone through diagnostic odysseys — often lasting many years, where many methods had been used to try to detect the cause of their disease without success — and find the biological answers that previous technologies had missed.”
Having a molecular diagnosis in-hand is a medical milestone for some patients and their families, and opens the door to potential therapies while offering some peace of mind. “For example, one patient’s family had opted to delay having other children until they knew the genetic basis of her condition,” MacArthur adds. “Our clinical collaborators were able to report that they had found the genetic cause, and now the parents have the option of prenatal testing for that mutation.”
The study demonstrates that RNA sequencing, or RNA-seq, applied to relevant tissue samples and coupled with genetic analysis, can detect pathogenic mutations hidden in the noncoding sections of a gene, highlight relevant mutations missed in the noise of whole-genome analysis, and rule out other genetic variants suspected to cause disease. Previously, the technology was rarely applied in a clinical setting, and then only for single patients when specific mutations were already suspected — but the research team saw the potential for RNA-seq to augment other clinical tools earlier in diagnostics.
Broad Institute of MIT and Harvard
www.broadinstitute.org/news/rna-sequencing-applied-tool-solve-patients%E2%80%99-diagnostic-mysteries