Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
November 2025
The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics
Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Accept settingsHide notification onlyCookie settingsWe may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.
Privacy policy
Test is first to identify patients with completely benign pancreatic abnormalities
, /in E-News /by 3wmediaWhen performed in tandem, two molecular biology laboratory tests distinguish, with near certainty, pancreatic lesions that mimic early signs of cancer but are completely benign. The lesions almost never progress to cancer, so patients may be spared unnecessary pancreatic cancer screenings or operations. The two-test combination is the only one to date that can accurately and specifically identify these benign pancreatic lesions. Its utility was described in one of the largest studies of patients with this form of pancreatic lesion by researchers from Indiana University, Indianapolis.
Between 2 to 3 percent of all patients have some type of pancreatic lesions or cysts revealed on routine abdominal diagnostic radiology scans. Nearly all of these patients will later develop pancreatic cancer. The most common and deadliest form of pancreatic cancer—pancreatic adenocarcinoma—has a five-year survival rate of 12 to 14 percent for early-stage disease and 1 to 3 percent for advanced disease, according to the American Cancer Society.
A small percentage of patients have serous cystic neoplasms (SCN) that do not harbour malignant potential or progress to cancer. Nevertheless, these patients undergo imaging or other surveillance every six months to spot changes indicative of cancer, or they undergo an operation to remove part of the gland as a precaution because SCN are difficult to find using standard diagnostic methods. More than 60 percent of SCN are not predicted preoperatively3 and 50 to 70 percent are missed or incorrectly diagnosed on radiology scans.4
However, the researchers determined that two proteins can play a significant role in ruling out pre-cancer and cancer. Vascular endothelial growth factor A (VEGF-A) is a protein associated with promotion of new blood vessel formation. VEGF-A is upregulated in many tumours, and its expression can be correlated with a tumour’s stage. Its utility in the diagnosis of pancreatic cysts was discovered by researchers at Indiana University. Carcinoembryonic antigen (CEA) is a protein associated with cell adhesion. It is present in low levels in healthy individuals, but it is increased with certain types of cancers.
Tests for each of these proteins in pancreatic cyst fluid have accurately distinguished SCN from other types of pancreatic lesions. In the present study, VEGF-A, alone, singled out SCN with a sensitivity of 100 percent and specificity of 83.7 percent, and CEA had a 95.5 percent sensitivity and 81.5 percent specificity.
Together, however, the tests approached the gold standard of pathologic testing: The combination had a sensitivity of 95.5 percent and specificity of 100 percent for SCN. Authors of the study concluded that results of the VEGF-A/CEA test could have prevented 26 patients from having unnecessary surgery.
American College of Surgeons
www.facs.org/media/press-releases/2017/pancreatic062217
Tourette Syndrome risk increases in people with genetic copy variations
, /in E-News /by 3wmediaAn international team that just conducted the largest study of Tourette Syndrome has identified genetic abnormalities that are the first definitive risk genes for the disorder.
Although Tourette has long been thought to have a genetic basis — because the syndrome tends to appear in families — before now no definitive risk genes had been found. The breakthrough came when researchers focused on a relatively new area of genomics research that takes a broader look at the entire genome, rather than searching for a particular gene, says Peristera Paschou, Purdue University associate biology professor.
"Most times we focus on a mutation of a single base pair, which are the building blocks of DNA, and look for a mutation. But in recent years we’ve realized that there is another type of variation of the human genome," Paschou says.
Scientists have been exploring how often short sections of genes are repeated through the entire genome, how these repetitions might vary among individuals, and whether these repetitions, which are called copy number variants, have an effect on health.
"These variations may involve a large part of the DNA sequence and may even include whole genes. We have only very recently begun to understand how copy number variation may relate to disease," she says. "In the case of this research on Tourette Syndrome, we scanned the entire genome, and through physical analysis, we were able to identify where this variation lies.
"We rarely find variants that are associated at such a high level. This is why this is such a big breakthrough."
Dr. Jeremiah Scharf, of the Psychiatric & Neurodevelopmental Genetics Unit in the Massachusetts General Hospital Departments of Psychiatry and Neurology and the Massachusetts General Hospital Center for Genomic Medicine, co-senior author of the report, says this is a significant finding.
"The challenge of recognizing that Tourette Syndrome is not a single gene disorder, and that a stringent statistical certainty is required in order to declare a gene to be significantly associated with it, has been our long-term aim," he says. "We believe that what sets our study apart from prior studies is that the two genes we have identified both surpassed the stringent threshold of ‘genome-wide significance,’ and so, represent the first two definitive Tourette Syndrome susceptibility genes."
Purdue University
www.purdue.edu/newsroom/releases/2017/Q2/tourette-syndrome-risk-increases-in-people-with-genetic-copy-variations.html
New biomarker assay detects neuroblastoma with greater sensitivity
, /in E-News /by 3wmediaInvestigators at The Saban Research Institute of Children’s Hospital Los Angeles have developed and tested a new biomarker assay for quantifying disease and detecting the presence of neuroblastoma even when standard evaluations yield negative results for the disease. In a study, led by Araz Marachelian, MD, of the Children’s Center for Cancer and Blood Diseases, researchers provide the first systematic comparison of standard imaging evaluations versus the new assay that screens for five different neuroblastoma-associated genes and determine that the new assay improves disease assessment and provides prediction of disease progression.
Neuroblastoma is a cancer of the nervous system that exists outside the brain and typically is diagnosed in children 5 years or age or younger. Forty-five percent of patients have high-risk, metastatic tumours (stage 4) when diagnosed.
While children with neuroblastoma often respond to therapy and many are declared to be in a “remission” based on standard tests, many will still relapse. “Clearly, there is some remaining tumour in the body that we cannot detect with standard tests and physicians have a hard time predicting if a patient is likely to relapse,” said Marachelian, who is medical director of the New Approaches to Neuroblastoma (NANT) consortium, headquartered at CHLA.
The new assay, which was developed in the laboratories of Robert Seeger, MD, and Shahab Asgharzadeh, MD, at CHLA, tests for five different genes that are specific to neuroblastoma. The test evolved to address the need for a better way to quantify the disease and fully understand its impact on the patient. Previously, assays used for detecting disease screened for only one NB-associated gene at a time, which was less effective. Instead of running five different tests, the research team figured out a way to test for multiple neuroblastoma-associated genes, simultaneously, using a different technology platform. This test can quantify infinitesimal amounts of tumour, akin to finding “a needle in a haystack”.
According to Marachelian, in a population of patients with relapsed or refractory neuroblastoma, it is important to understand if the therapeutics given to patients are working. But standard clinical evaluations such as scans (CT, MRI and MIBG) and bone marrow evaluation can be limited in their ability to do this because of variability and an inability to indicate severity of disease or how aggressive the treatment should be.
“With imaging scans, disease that is starting to grow versus disease that is getting better can look very similar when you first look,” explained Marachelian, who is also an assistant professor of Clinical Pediatrics at the Keck School of Medicine of the University of Southern California. “This assay could have the potential to be like an advance warning system – we can see if things are getting worse and be poised to take action. Alternately, if we see things are getting better or the disease is no longer detectable even with this very sensitive test, we can decrease the treatment to protect the patient from unnecessary exposure to toxicity and side effects.”
Children’s Hospital Los Angeles
www.chla.org/press-release/finding-needle-haystack-new-biomarker-assay-detects-neuroblastoma-greater-sensitivity
Tiny nanoparticles offer significant potential in detecting and treating disease
, /in E-News /by 3wmediaExosomes – tiny biological nanoparticles which transfer information between cells – offer significant potential in detecting and treating disease, the most comprehensive overview so far of research in the field has concluded.
Areas which could benefit include cancer treatment and regenerative medicine, say Dr Steven Conlan from Swansea University, Dr Mauro Ferrari of Houston Methodist Research Institute in Texas, and Dr Inês Mendes Pinto from the International Iberian Nanotechnology Laboratory in Portugal.
Exosomes are particles produced by all cells in the body and are from 30-130 nanometres in size – a nanometre is one-billionth of a metre. They act as biological signalling systems, communicating between cells, carrying proteins, lipids, DNA and RNA. They drive biological processes, from modulating gene expression to transmitting information through breast milk.
Though discovered in 1983, the full potential of exosomes is only gradually being revealed. The researchers show that the nanoparticles’ possible medical benefits fall into three broad categories:
One of the most useful properties of exosomes is that they are able to cross barriers such as the plasma membrane of cells, or the blood/brain barrier. This makes them well-suited to delivering therapeutic molecules in a very targeted way.
The potential benefits of exosomes can be seen in the wide range of research projects – cited in the paper – already either completed or under way, in areas such as:
The team caution that there is more to do before research into exosomes translates into new techniques and treatments. Side-effects need to be considered, and a standardised approach to isolating, characterising and storing exosomes will need to be developed.
Researchers will also need to ensure that the properties of exosomes do not end up causing harm: for example they can transfer drug resistance and pacify the immune system.
Nevertheless, the potential is very clear, with the team describing exosomes as “increasingly promising”.
Professor Steve Conlan of Swansea University Medical School, one of the authors of the paper, said:
“Our survey of research into exosomes shows clearly that they offer enormous potential as a basis for detecting and treating disease.
Swansea University
www.swansea.ac.uk/media-centre/latest-research/tinynanoparticlesoffersignificantpotentialindetectingandtreatingdisease-newreview.php
Screening for both genetic diseases and chromosomal defects with a single biopsy improves pregnancy rates
, /in E-News /by 3wmediaCouples who are undergoing pre-implantation genetic diagnosis (PGD) in order to avoid transmission of inherited diseases, such as Duchenne muscular dystrophy or cystic fibrosis, should also have their embryos screened for abnormal numbers of chromosomes at the same time, say Italian researchers.
By doing this, only embryos that are free not only of the genetic disease, but also of chromosomal abnormalities (aneuploidy), would be transferred to a woman’s womb, giving her the best chance of achieving a successful pregnancy, and avoiding the risk of implantation failure, miscarriage, or even live births that could be affected by conditions such as Down syndrome (in which there is an extra chromosome) or Turner syndrome (in which a girl has only one x chromosome rather than the normal two).
In a study reporting on the world’s largest series of double genetic tests the researchers carried out simultaneous PGD and pre-implantation genetic screening (PGS) on cells taken in a single biopsy.
They took between five and ten cells from the outer layer of 1122 blastocysts (the early collection of cells that begin to form about five days after an egg has been inseminated with sperm and which go on to develop into an embryo) and, after PGD and PGS, 218 blastocysts were transferred to the women’s wombs, resulting in 99 pregnancies and the birth of 70 healthy babies by January 2017, when the paper was written. This is a pregnancy rate of 49%, which is higher than the average clinical pregnancy rate of between 22-32% reported in the general population of couples undergoing in vitro fertilisation (IVF). At the time of writing the paper, 13 further pregnancies were ongoing and now 12 have resulted in the birth of healthy babies, while one miscarried. This gives a delivery rate of 38.6%. A total of 91 healthy blastocysts remain frozen awaiting transfer.
Dr Maria Giulia Minasi, laboratory director at the Centre for Reproductive Medicine, European Hospital, Rome, Italy, and first author of the study, said: “Importantly, we found that while 55.7% of the biopsied blastocysts did not carry a genetic disease or changes in the structures of chromosomes, only 27.5% of them also had the right number of chromosomes. Without performing pre-implantation genetic screening for aneuploidy, 316 blastocysts, which appeared to be healthy but had abnormal numbers of chromosomes, could have been transferred, leading to implantation failures, miscarriages or sometimes live births of babies affected by aneuploidy. For the couples involved, and particularly the women, these outcomes can be emotionally devastating.”
As a result of their findings, Dr Minasi and her colleagues believe that when couples undergo PGD, they should also have PGS.
The European Society of Human Reproduction and Embryology
www.eshre.eu/Press-Room/Press-releases-2017/Simultaneous-PGD-and-PGS-screening-on-cells-in-a-single-biopsy.aspx
Rare gene variant discovered to contribute to lower pre-eclampsia risk
, /in E-News /by 3wmediaResearchers at the University of Helsinki, in cooperation with two research groups in the United States, have discovered that some Finnish mothers carry rare gene variants that protect them from pre-eclampsia, also known as toxaemia of pregnancy. This is the first time that mothers’ genotypes have been proven to contain factors that protect against pre-eclampsia.
Around 5 per cent of pregnant women get pre-eclampsia, which is one of the most common causes of maternal deaths and premature births. The underlying cause of pre-eclampsia is not yet known in detail, but the disease is known to increase the risk of cardiovascular diseases among mothers and their children later in life. Susceptibility to pre-eclampsia is hereditary: family history of this disease on the mother’s or father’s side increases its risk.
Researchers at the University of Helsinki have studied the effects of mothers’ genetic variations on developing pre-eclampsia. The study was based on the Finnish FINNPEC (Finnish Genetics of Pre-eclampsia Consortium) and FINRISK cohorts and compared samples from more than 600 pre-eclampsia patients and 2,000 non-pre-eclamptic controls.
“We chose candidate genes that were interesting in terms of pre-eclampsia, and studied the variation found in them among patients and controls,” says Inkeri Lokki, who is completing her doctoral dissertation on the subject. “The sFlt-1 protein is known to be linked to pre-eclampsia, and we found two single nucleotide polymorphisms in the gene that codes this protein. Pre-eclampsia is less common among mothers who carry these mutations than it is among other mothers.”
Too high an amount of sFlt-1 protein in the body causes vascular disorders. It is known that the amount of the sFlt-1 protein in the blood of the women who developed pre-eclampsia had increased before they fell ill.
The study also examined Finnish mothers’ health over the longer term, based on the FINRISK material.
“It seems that the women who carry gene variants that protect them from pre-eclampsia were also less likely to develop cardiac failure later in life than other women,” says Lokki.
University of Helsinki
www.helsinki.fi/en/news/rare-gene-variant-discovered-to-contribute-to-lower-risk-of-pre-eclampsia-in-finnish-mothers
Genomic analysis of key acute leukaemia will likely yield new therapies
, /in E-News /by 3wmediaA consortium including St. Jude Children’s Research Hospital and the Children’s Oncology Group has performed an unprecedented genomic sequencing analysis of hundreds of patients with T-lineage acute lymphoblastic leukaemia (T-ALL). The results provide a detailed genomic landscape that will inform treatment strategies and aid efforts to develop drugs to target newly discovered mutations.
The data will also enable researchers to engineer better mouse models to probe the leukaemia’s aberrant biological machinery.
The project’s 39 researchers were led by Charles Mullighan, M.D., MBBS, a member of the St. Jude Department of Pathology, with co-corresponding authors Jinghui Zhang, Ph.D., chair of the St. Jude Department of Computational Biology, and Stephen Hunger, M.D., of the Children’s Hospital of Philadelphia.
"This first comprehensive and systematic analysis in a large group of patients revealed many new mutations that are biologically significant as well as new drug targets that could be clinically important," Mullighan said. "Leukaemias typically arise from multiple genetic changes that work together. Most previous studies have not had the breadth of genomic data in enough patients to identify the constellations of mutations and recognize their associations."
T-ALL is a form of leukaemia in which the immune system’s T cells acquire multiple mutations that freeze the cells in an immature stage, causing them to accumulate in the body. ALL is the most common type of childhood cancer, affecting about 3,000 children nationwide each year. T-ALL constitutes about 15 percent of those cases. While about 90 percent of children with ALL can be cured, many still relapse and require additional treatment.
The multi-institutional effort involved sequencing the genomes of 264 children and young adults with T-ALL—the largest such group ever analysed. The study involved sophisticated analysis of multiple types of genomic data, led by Yu Liu, Ph.D., a postdoctoral fellow in Zhang’s Computational Biology laboratory and first author of the study. Their analyses identified 106 driver genes—those whose mutations trigger the malfunctions that block normal T cell development and give rise to cancer. Half of those mutated genes had not been previously identified in childhood T-ALL.
The study enabled the researchers to compare the frequencies of mutations among patients whose cancerous cells were sequenced at the same detailed level, Mullighan said. Also important, he said, was that all the patients had uniform treatment, which enabled the researchers to draw meaningful associations between the genetics of their cancer and the response to different treatments. Such associations will enable better diagnosis and treatment of T-ALL with existing drugs.
Researchers analysed the cancerous T cells as well as those that treatments had rendered non-cancerous. Comparing the two populations of cells could reveal valuable clues about why specific treatments were successful in thwarting particular cancer-causing mutations.
The findings revealed significant unexpected findings. "We went into this study knowing that we didn’t know the full genomic landscape of T-ALL," Hunger said. "But we were surprised that over half of the new targets and mutations were previously unrecognized. It was particularly unexpected and very striking that some mutations were exclusively found in some subtypes of T-ALL, but not others."
Cancers are driven by mutations in genes that are the blueprint for protein enzymes in signaling pathways in cells—the biological equivalent of circuits in a computer. While a cancer may arise from an initial founding mutation, that mutation triggers a cascade of other mutations that help drive the cancer.
The new genomic analysis confirmed that T-ALL was driven by mutations in known signalling pathways, including JAK–STAT, Ras and PTEN–PI3K.
However, the new analysis identified many more genetic mutations in those known pathways. The findings offered more targets for drugs to shut down the aberrant cells. "So the frequency of the patients that are potentially amenable to these targeted approaches is higher than we appreciated before," Mullighan said.
The researchers also found cases in which the same T-ALL subtype had mutations in different pathways triggered by the same cancer-causing founding mutation. "We believe this finding suggests we can target such subtypes with an inhibitor drug for one of the pathways, and it’s likely to be effective," Mullighan said.
The multitude of new mutations uncovered in the new study will also enable researchers to use genetic engineering to create mouse models that more accurately reflect human cancer, he said. Such models are invaluable for understanding the biological machinery of T-ALL, as well as testing new drug strategies. "We now have a launching pad, if you will, to design mouse models that include multiple genetic mutations to more faithfully reflect the leukemias we see in humans," Mullighan said.
St. Jude Children’s Research Hospital
www.stjude.org/media-resources/news-releases/2017-medicine-science-news/genomic-analysis-of-key-acute-leukemia-will-likely-yield-new-therapies.html
Quick test finds signs of sepsis in a single drop of blood
, /in E-News /by 3wmediaA new portable device can quickly find markers of deadly, unpredictable sepsis infection from a single drop of blood.
A team of researchers from the University of Illinois and Carle Foundation Hospital in Urbana, Illinois, completed a clinical study of the device, which is the first to provide rapid, point-of-care measurement of the immune system’s response, without any need to process the blood.
This can help doctors identify sepsis at its onset, monitor infected patients and could even point to a prognosis, said research team leader Rashid Bashir, a professor of bioengineering at the U. of I. and the interim vice dean of the Carle Illinois College of Medicine.
Sepsis is triggered by an infection in the body. The body’s immune system releases chemicals that fight the infection, but also cause widespread inflammation that can rapidly lead to organ failure and death.
Sepsis strikes roughly 20 percent of patients admitted to hospital intensive care units, yet it is difficult to predict the inflammatory response in time to prevent organ failure, said Dr. Karen White, an intensive care physician at Carle Foundation Hospital. White led the clinical side of the study.
“Sepsis is one of the most serious, life-threatening problems in the ICU. It can become deadly quickly, so a bedside test that can monitor patient’s inflammatory status in real time would help us treat it sooner with better accuracy,” White said.
Sepsis is routinely detected by monitoring patients’ vital signs – blood pressure, oxygen levels, temperature and others. If a patient shows signs of being septic, the doctors try to identify the source of the infection with blood cultures and other tests that can take days – time the patient may not have.
The new device takes a different approach.
“We are looking at the immune response, rather than focusing on identifying the source of the infection,” Bashir said. “One person’s immune system might respond differently from somebody else’s to the same infection. In some cases, the immune system will respond before the infection is detectable. This test can complement bacterial detection and identification. We think we need both approaches: detect the pathogen, but also monitor the immune response.”
The small, lab-on-a-chip device counts white blood cells in total as well as specific white blood cells called neutrophils, and measures a protein marker called CD64 on the surface of neutrophils. The levels of CD64 surge as the patient’s immune response increases.
The researchers tested the device with blood samples from Carle patients in the ICU and emergency room. When a physician suspected infection and ordered a blood test, a small drop of the blood drawn was given to the researchers, stripped of identifying information to preserve patient confidentiality. The team was able to monitor CD64 levels over time, correlating them with the patient’s vital signs. Researchers found that the results from the rapid test correlated well with the results from the traditional tests and with the patients’ vital signs.
“By measuring the CD64 and the white cell counts, we were able to correlate the diagnosis and progress of the patient – whether they were improving or not,” said Umer Hassan, a postdoctoral researcher at Illinois and the first author of the study. “We hope that this technology will be able to not only diagnose the patient but also provide a prognosis. We have more work to do on that.”
Bashir’s team is working to incorporate measurements for other inflammation markers into the rapid-testing device to give a more complete picture of the body’s response, and to enable earlier detection.
University of Illinois
news.illinois.edu/blog/view/6367/526347
Potential genetic cause of Cushing syndrome found
, /in E-News /by 3wmediaA small study by researchers at the National Institutes of Health suggests that mutations in the gene CABLES1 may lead to Cushing syndrome, a rare disorder in which the body overproduces the stress hormone cortisol.
The excess cortisol found in Cushing syndrome can result from certain steroid medications or from tumours of the pituitary or adrenal glands. Symptoms of the disease include obesity, muscle weakness, fatigue, high blood pressure, high blood sugar, depression and anxiety.
Researchers at NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), in collaboration with researchers at other institutions in the United States, France and Canada, scanned tumour and cell tissue from 146 children with pituitary tumours evaluated for Cushing syndrome at the NIH Clinical Center. Researchers also scanned the genes of tumours from some of the children. Investigators in France scanned the genes of an additional 35 adult patients with Cushing syndrome and pituitary tumours.
The research team found that four of the patients have mutant forms of CABLES1 that do not respond to cortisol. This is significant because, when functioning normally, the CABLES1 protein, expressed by the CABLES1 gene, slows the division and growth of pituitary cells that produce the hormone adrenocorticotropin (ACTH). In turn, ACTH stimulates the adrenal gland to produce cortisol, which then acts on the pituitary gland to halt the growth of ACTH-producing cells, effectively suppressing any tumour development. Because cortisol does not affect the four mutant forms of CABLES1 discovered by the researchers, these genes leave production of ACTH-releasing cells unchecked.
“The mutations we identified impair the tumour suppressor function in the pituitary gland,” said the study’s senior author Constantine A. Stratakis, M.D., director of the NICHD Division of Intramural Research. “This discovery could lead to the development of treatment strategies that simulate the function of the CABLES1 protein and prevent recurrence of pituitary tumors in people with Cushing syndrome.”
Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
www.nichd.nih.gov/news/releases/Pages/060117-pituitary-tumor.aspx
Largest genome-wide study of lung cancer susceptibility conducted
, /in E-News /by 3wmediaA new study conducted by an international team of lung cancer researchers, including Professor John Field from the University of Liverpool, have identified new genetic variants for lung cancer risk.
Lung cancer continues to be the leading cause of cancer mortality worldwide. Although tobacco smoking is the main risk factor, variations in a persons genetic makeup has been estimated to be responsible for approximately 12% of cases. However, the exact details of these variations have been previously unknown.
By gathering genotype data from different studies around the world, through the use of a special research platform called OncoArray, researchers were able to increase the sample size for this study making it the largest one of its type in the world. The Liverpool Lung Project, funded by the Roy Castle Foundation, has made a major contribution to this international project.
Researchers examined the data to identify the genetic variants associated with lung cancer risk.
During the study more than 29,200 lung cancer cases and more than 56,000 samples taken from people without lung cancer (controls) were examined. Researchers identified 18 genetic variations that could make people more susceptible to lung cancer and also 10 new gene variations.
Professor John Field, Clinical Professor of Molecular Oncology and the Chief Investigator of the UK Lung Cancer Screening Trial, said: "This study has identified several new variants for lung cancer risk that will translate into improved understanding of the mechanisms involved in lung cancer risk.
"Samples taken from the major Liverpool Lung Project, funded by the Roy Castle Foundation, was conducted by experts at the University of Liverpool, were used in this study.
"These results will help us to further improve the way we can screen for lung cancer in high risk individuals in the UK. Further studies will help in the targeting of specific genes to influencing lung cancer risk, smoking behaviour and smoking effects on brain biology."
"This study definitely leads to new ideas about mechanisms influencing lung cancer risk."
EurekAlert
www.eurekalert.org/pub_releases/2017-07/uol-lgs071017.php