Cause for male infertility discovered

Researchers at Ben-Gurion University of the Negev and Soroka University Medical Center in Beer-Sheva, Israel have discovered a new genetic mutation that prevents sperm production.
Five percent of men suffer from infertility and approximately one percent suffer from azoospermia, a condition in which sperm cells are completely absent.
For the first time, the researchers identified a mutation in the gene TDRD9 using whole genome genotyping and sequencing.
The findings were possible only because five men from a single Bedouin family suffered from lack of sperm and spermatogenic arrest in their testis with no obvious cause. The men were being treated by Dr. Eitan Lunenfeld and his team at Soroka’s In Vitro Fertilization Unit.
Profs. Ruti Parvari and Mahmoud Huleihel of the Shraga Segal Department of Microbiology, Immunology and Genetics discovered the mutation in the gene, which normally protects the full DNA sequence in sperm. This mutation inactivates the function of the gene and arrests sperm production.
“With the link between this damaged gene and male infertility now identified, specific scans will be available to test for the mutation that will be important for treatment of a couple’s infertility,” the researchers say.

American Associates, Ben-Gurion University of the Negev (AABGU)
aabgu.org/cause-male-infertility-discovered/

New type of blood cells work as indicators of autoimmunity

Researchers have found a specific type of immune regulatory cells that could soon be used as potential clinical biomarkers to diagnose certain autoimmune diseases.
The team from Instituto de Medicina Molecular (iMM) Lisboa, led by Luis Graça, analysed blood samples from Sjögren syndrome patients, an autoimmune disease that affects the mucous membranes and moisture-secreting glands of the eyes and mouth, and found that these patients have a significant increase in a specific type of immune cells called T follicular regulatory cells (Tfr). 
These cells are usually found in lymphoid tissues where they regulate antibody production. It was a surprise to find an increase of these type of cells in patients with excessive antibody production. In fact, the results were the opposite of what the team was expecting.
To understand the reason behind such unexpected results the researchers studied different biological samples. For instance, comparing Tfr cells in the blood and in the tissues where antibodies are produced (tonsils obtained from children subjected to tonsillectomies), provided evidence that blood Tfr cells are immature, not able to fully suppress antibody production. Such immaturity was confirmed by studying blood samples from other patients with genetic defects. Furthermore, exposure of healthy volunteers to flu vaccine led to an increase in blood Tfr cells, in line with their generation during immune responses with antibody production.
Blood circulating Tfr cells are distinguished from other circulating lymphocytes by two molecular markers, CXCR5 and FOXP3, the first of which endows these cells with the ability to migrate into specific zones of lymph nodes where they may complete maturation and regulate antibody production.
The team is now trying to understand what happens to these cells in other autoimmune diseases to evaluate their potential not only for diagnostic but also to identify which patients may benefit with medicines that interfere with the production of harmful antibodies.

Instituto de Medicina Molecular (iMM) Lisboa
imm.medicina.ulisboa.pt/en/imm-lisboa/news/archive/novo-tipo-de-celulas-do-sangue-funcionam-como-indicadores-de-doencas-autoimunes/

In the testicles, macrophages are guardians of fertility

Two types of testicular macrophages have recently been characterized by CNRS researchers at the Marseille-Luminy Immunology Center (CNRS / Inserm / Aix-Marseille University). A novel method of cellular tracing has enabled them to establish the origin, the development and the characteristics of these immune cells. This fundamental discovery is promising to understand some cases of infertility in men and to consider new treatments.
From the beginning of the individual’s life, the immune system learns to differentiate the cells belonging to the organism – the self – from other potentially pathogenic cells. However, since spermatozoa appear only at puberty, they are likely to be identified as foreign to the organism by some actors of the immune system. Special cells of the immunity, the testicular macrophages, are then mobilized to defend the spermatozoa. By emitting specific molecules, these fertility guardians prevent other actors of the immune system from entering the testicles.
If they are able to infiltrate infectious sites to phagocytate and destroy pathogens, Macrophages can also modulate the activity of the immune system to protect the functioning and regeneration of organs. These cells of immunity may be of embryonic origin or develop in the bone marrow in adults. Michael Sieweke’s team at the Marseille-Luminy Immunology Center (CNRS / Inserm / Aix Marseille University) was able to determine the profile of the two types of testicular macrophages.
The testicle is divided into two compartments. The first type of testicular macrophage described by the researchers is in the interstitial compartment, which also includes testosterone producing cells. The origin of these macrophages is embryonic: they are therefore present from the beginning of the life of the individual. The peritubular macrophages are located in the tubular compartment, around the seminiferous tubes which house the precursors of the spermatozoa. These two populations of macrophages have different cell markers.
Using a novel method of cell tracing, the researchers were able to follow the peritubular macrophages from the bone marrow into the testicles. The results showed that this type of macrophages only appeared two weeks after the birth of the mice, the equivalent of puberty in humans. Surprisingly, once established in the testes, the two populations of macrophages remain there all their lives.

CNRS
www2.cnrs.fr/presse/communique/5151.htm

Improved analysis of kidney cancer

Every year, just over 1000 people are diagnosed with kidney cancer in Sweden. The three most common variants are clear cell, papillary and chromophobe renal cancer. Researchers compare the gene expression in tumour cells from a kidney cancer patient with cells from healthy tissue to figure out in which part of the kidney the cancer began and what went wrong in these cells. Now, a research team at Lund University in Sweden has discovered that in the Cancer Genome Atlas database, the gene expression in reference samples from normal tissue varies, depending on where in the kidney the samples happen to have been taken. The analyses can be improved by clarifying which samples correspond to the correct tissue.
The part of the kidney which purifies the blood and generates urine is called the nephron and functions as a kind of tubing system. Each kidney contains around a million nephrons which collectively filter 180 litres of primary urine (waste products, water and salts) every day. This results in 1.5 litres of concentrated liquid, which is excreted through urination.
“Everything is very specifically regulated and the cells have different gene expression and hence properties depending on their location in the tubing.”, explains Håkan Axelson, research team leader and professor of molecular tumour biology.
When a tumour biopsy is taken from a patient and compared with healthy kidney tissue, it serves to map how the various genes are expressed so as to clarify what has gone wrong in the tumour cells.  The Cancer Genome Atlas – an international database containing almost 1000 samples from kidney tumours and healthy tissue – is a tool in this process.
“But when our research team studied the samples from the database, we noticed a great range of gene expressions between normal tissue samples. It emerged that the samples in the Cancer Genome Atlas were taken at different depths in the kidney and therefore contain different types of cells, which means that their gene expressions also vary”, says Håkan Axelson.
The normal reference samples thus contain various types of cells depending on where in the kidney they happen to have been taken. Since the Atlas does not state the location in the kidney the reference sample was collected, the comparison risks being unreliable and sometimes completely incorrect.
“Since the gene expression in the cells varies depending on their location, it is important that the normal samples contained in the database should also be taken from the location corresponding to that of the patient’s tumour”, says David Lindgren, who is the lead author of the study.
As an example, it was previously suspected that clear cell tumours occur in the first part of the nephron, but if these tumour cells are compared with a normal sample taken deeper inside the nephron, the cells will not correspond to the tumour sample. The gene expression is thereby different. Although each patient is unique, the various types of tumours have different specific genetic changes which occur as a consequence of properties in the cell in which the tumour originated.
“It is extremely important to know what characterises the cells in which the tumour occurs. Through better understanding of this interaction, we can increase our understanding of the course of the disease, which could be significant for diagnostics and, in the longer term, also for the choice of treatment”, concludes Håkan Axelson.

Lund University
www.lunduniversity.lu.se/article/improved-analysis-of-kidney-cancer

Scientists make critical insights into T-cell development

Mutations in the gene encoding the enzyme protein tyrosine phosphatase N2 (PTPN2) have been associated with the development of autoimmune disease including Type 1 diabetes, Crohn’s Disease and rheumatoid arthritis.
In important fundamental research, Monash University researchers have identified a crucial part of the enzyme’s role in early T-cell development, and have shown that decreased levels of this enzyme can lead to the type of T-cells that can contribute to the development of autoimmune disease.
Autoimmune diseases represent a broad spectrum of diseases, which arise when immune responses are directed against, and damage, the body’s own tissues. Collectively their incidence exceeds that of cancer and heart disease and they are a leading cause of death and disability, in particular in the Western world.
The Monash Biomedicine Discovery Institute researchers had already shown in studies over the years that decreased levels of PTPN2 result in T-cells attacking the body’s own cells and tissues. 
In a paper they drilled deeper, exploring roles for the enzyme in early T-cell development and the development of particular T-cell subsets (αβ and γδ) implicated in the development of different autoimmune and inflammatory diseases.
By removing the gene coding for PTPN2 in laboratory trials, the scientists found that the developmental process for T-cells was skewed towards the generation of γδ T cells with pro-inflammatory properties that are known to contribute to the development of different diseases including Irritable Bowel Disease, Crohn’s Disease and rheumatoid arthritis.
“This is an important advance in our understanding of critical checkpoints in T-cell development,” lead researcher Professor Tony Tiganis said.
“It helps decide whether the progenitors go on to become T-cells or something else; if they become one type of T-cell or another type,” he said.
As part of the study, the researchers looked at the pathways that PTPN2 regulates.
“There are drugs that target some of these pathways – potentially we might be able to use existing drugs to target these pathways in the context of autoimmune and inflammatory diseases to help a subset of patients with a deficiency in this gene, although that is a long way off,” Professor Tiganis said. 
First author Dr Florian Wiede said, “Understanding the mechanisms that govern early T-cell development and how these are altered in human disease may ultimately afford opportunities for novel treatments. This is very exciting.”

Monash Biomedicine Discovery Institute
www.monash.edu/news/articles/monash-university-scientists-make-critical-insights-into-t-cell-development

Test uses nanotechnology to quickly diagnose Zika virus

Currently, testing for Zika requires that a blood sample be refrigerated and shipped to a medical centre or laboratory, delaying diagnosis and possible treatment. Although the new proof-of-concept technology has yet to be produced for use in medical situations, the test’s results can be determined in minutes. Further, the materials required for the test do not require refrigeration and may be applicable in testing for other emerging infectious diseases.
The researchers tested blood samples taken from four people who had been infected with Zika virus and compared it to blood from five people known not to have the virus. Blood from Zika-infected patients tested positive, but blood from Zika-negative controls did not. The assay produced no false-positive results.
Among the reasons such a test is needed, according to the researchers, is that many people infected with Zika don’t know they’re infected. Although symptoms include fever, joint pain, muscle pain and rash, many people don’t feel ill after being bitten by an infected mosquito. Testing is particularly important for pregnant women because Zika infection can cause congenital Zika syndrome, which contributes to several neurologic problems in the foetus or newborn infant.
“Zika infection is often either asymptomatic or mildly symptomatic,” said Evan D. Kharasch, MD, PhD, one of the study’s three senior investigators. “The most effective way to diagnose the disease is not to wait for people to develop symptoms but to do population screening.”
That strategy requires inexpensive, easy-to-use and easy-to-transport tests. Kharasch, the Russell D. and Mary B. Shelden Professor of Anesthesiology, collaborated with Srikanth Singamaneni, PhD, an associate professor of mechanical engineering & materials science, and Jeremiah J. Morrissey, PhD, a research professor of anesthesiology, to create the test, which uses gold nanorods mounted on paper to detect Zika infection within a few minutes.
“If an assay requires electricity and refrigeration, it defeats the purpose of developing something to use in a resource-limited setting, especially in tropical areas of the world,” said Singamaneni. “We wanted to make the test immune from variations in temperature and humidity.”
The test relies on a protein made by Zika virus that causes an immune response in infected individuals. The protein is attached to tiny gold nanorods mounted on a piece of paper. The paper then is completely covered with tiny, protective nanocrystals. The nanocrystals allow the diagnostic nanorods to be shipped and stored without refrigeration prior to use.
To use the test, a technician rinses the paper with slightly acidic water, removing the protective crystals and exposing the protein mounted on the nanorods. Then, a drop of the patient’s blood is applied. If the patient has come into contact with the virus, the blood will contain immunoglobulins that react with the protein.
“We’re taking advantage of the fact that patients mount an immune attack against this viral protein,” said Morrissey. “The immunoglobulins persist in the blood for a few months, and when they come into contact with the gold nanorods, the nanorods undergo a slight color change that can be detected with a hand-held spectrophotometer.
“With this test, results will be clear before the patient leaves the clinic, allowing immediate counselling and access to treatment.”
The colour change cannot be seen with the naked eye, but the scientists are working to change that. They’re also working on developing ways to use saliva rather than blood.
Although the test uses gold, the nanorods are very small. The researchers estimate that the cost of the gold used in one of the assays would be 10 to 15 cents.
As other infectious diseases emerge around the world, similar strategies potentially could be used to develop tests to detect the presence of viruses that may become problematic, according to the researchers.

Washington University School of Medicine
medicine.wustl.edu/news/test-uses-nanotechnology-quickly-diagnose-zika-virus/

New bioimaging technique is fast and economical

A new approach to optical imaging makes it possible to quickly and economically monitor multiple molecular interactions in a large area of living tissue – such as an organ or a small animal; technology that could have applications in medical diagnosis, guided surgery, or pre-clinical drug testing. The method is capable of simultaneously tracking 16 colours of spatially linked information over an area spanning several centimetres, and can capture interactions that occur in mere billionths of a second.
“We have developed a smart way to acquire a massive amount of information in a short period of time,” said Xavier Intes, a professor of biomedical engineering at Rensselaer Polytechnic Institute. “Our approach is faster and less expensive than existing technology without any compromise in the precision of the data we acquire.”
As its name implies, optical imaging uses light to investigate a target. In biomedical applications, optical imaging has many advantages over techniques such as MRI and PET, which use magnetism and positron emissions to acquire images inside of living tissue.
The method the Intes lab developed makes use of advanced optical imaging techniques – fluorescence lifetime imaging paired with foster resonance energy transfer – to reveal the molecular state of tissues. In fluorescence lifetime imaging (FLIM), molecules of interest are tagged with fluorescent “reporter” molecules which, when excited by a beam of light, emit a light signal with a certain colour over time that is indicative of their immediate environment. Reporter molecules can be tuned to offer information on environmental factors such as viscosity, pH, or the presence of oxygen. FLIM is ideal for the thick tissues of a body because it relies on time information, rather than light intensity, which degrades significantly as it travels through tissue. Researchers also used Forster resonance energy transfer (FRET), which determines close proximity between two similarly tagged molecules – such as a drug and its target – based on an energy transfer that occurs only when the tagged molecules are delivered into the diseased cells for maximal therapeutically efficacy.
However, while the FLIM-FRET method generates a signal rich in information, collecting that signal quickly and economically is problematic. Current methods rely on expensive cameras, which can image only one reporter at a time, and scanning the subject can take hours as the camera collects information from its full field of vision.
To overcome this obstacle, the researchers dispensed with cameras and instead used a single-pixel detection method combined with a mathematical sampling technique (based on a Hadamard transform) that allowed them to collect sufficient relevant information in 10 minutes to construct a precise image. The detection method can collect information on 16 spectral channels simultaneously, and three detection devices positioned around the sample provided spatial information used to construct a three-dimensional image.
“This is a new platform, a new option in macroscopy, and we think it will have traction in multiple applications in the biomedical arena,” said Intes.

Rensselaer Polytechnic Institute
news.rpi.edu/content/2017/08/18/new-method-quickly-economically-and-accurately-tracks-multiple-vivo-interactions

Precision medicine opens the door to scientific wellness preventive approaches to suicide

Researchers have developed a more precise way of diagnosing suicide risk, by developing blood tests that work in everybody, as well as more personalized blood tests for different subtypes of suicidality that they have newly identified, and for different psychiatric high-risk groups.
The research team, led by scientists at Indiana University School of Medicine, also showed how two apps, one based on a suicide risk checklist and the other on a scale for measuring feelings of anxiety and depression, work along with the blood tests to enhance the precision of tests and to suggest lifestyle, psychotherapeutic and other interventions. Lastly, they identified a series of medications and natural substances that could be developed for preventing suicide.
"Our work provides a basis for precision medicine and scientific wellness preventive approaches," said Alexander B. Niculescu III, MD, PhD, professor of psychiatry and medical neuroscience at IU School of Medicine and attending psychiatrist and research and development investigator at the Richard L. Roudebush Veterans Affairs Medical Center.
The research builds on earlier studies from the Niculescu group.
"Suicide strikes people in all walks of life. We believe such tragedies can be averted. This landmark larger study breaks new ground, as well as reproduces in larger numbers of individuals some of our earlier findings,” said Dr. Niculescu.
There were multiple steps to the research, starting with serial blood tests taken from 66 people who had been diagnosed with psychiatric disorders, followed over time, and who had at least one instance in which they reported a significant change in their level of suicidal thinking from one testing visit to the next. The candidate gene expression biomarkers that best tracked suicidality in each individual and across individuals were then prioritized using the Niculescu group’s Convergent Functional Genomics approach, based on all the prior evidence in the field.
Next, working with the Marion County (Indianapolis, Ind.) Coroner’s Office, the researchers tested the validity of the biomarkers using blood samples drawn from 45 people who had committed suicide.
The biomarkers were then tested in another larger, completely independent group of individuals to determine how well they could predict which of them would report intense suicidal thoughts or would be hospitalized for suicide attempts.
The biomarkers identified by the research are RNA molecules whose levels in the blood changed in concert with changes in the levels of suicidal thoughts experienced by the patients. Among the findings reported in the current paper were:

  • An algorithm that combines biomarkers with the apps that was 90 percent accurate in predicting high levels of suicidal thinking and 77 percent accurate in predicting future suicide-related hospitalizations in everybody, irrespective of gender and diagnosis.
  • A refined set of biomarkers that apply universally in predicting risk of suicide among both male and female patients with a variety of psychiatric illnesses, including new biomarkers never before linked to suicidal thoughts and behavior.
  • Four new subtypes of suicidality were identified (depressed, anxious, combined, and non-affective/psychotic), with different biomarkers being more effective in each subtype.
  • Biomarkers that were associated with specific diagnoses and genders, such as one, known as LHFP, that appears to be a very strong predictor for depressed men.
  • Two of the biomarkers, APOE and IL6, have broad evidence for involvement in suicidality and potential clinical utility as targets for drug therapies, as well as suggest a neurodegenerative and inflammatory component to the predisposition to suicide. APOE is responsible for proteins involved with managing cholesterol and fats, and some forms of the gene have been strongly implicated as risks for Alzheimer’s disease. IL6 expresses proteins involved in the body’s inflammation response.

Indiana University School of Medicine
news.medicine.iu.edu/releases/2017/08/precision-medicine-opens-door-scientific-wellness-preventive-approaches-suicide.shtml

GIST tumours linked to NF1 mutations

Researchers at UC San Diego Moores Cancer Center, with colleagues from Memorial Sloan Kettering Cancer Center and Fox Chase Cancer Center, have determined that a specific region of the small bowel, called the duodenal-jejunal flexure or DJF, shows a high frequency of gastrointestinal stromal tumours (GISTs) with mutations of the NF1 gene.
The small bowel, where approximately 30 percent of all GISTs occur, is divided into three anatomically, histologically and functionally distinct segments: the duodenum, jejunum and ileum. Most small bowel GISTs are associated with KIT mutations. However, a subset of GISTs have mutations in other genes, such as NF1.
“Where the duodenum transitions into the jejunum, we are finding an over-representation of NF1-mutated GIST,” said Jason Sicklick, MD, surgical oncologist at Moores Cancer Center.
NF1 can be mutated both somatically (within tumour DNA) or in the germline (part of the hereditary condition called Neurofibromatosis type 1 [NF-1]). Patients with NF-1 are 34 times more likely to develop GIST than unaffected individuals.
“Genomic testing for some of these patients revealed occult germline NF1 mutations with no other obvious clinical symptoms of NF-1,” said Sicklick. “Anyone with a GIST should undergo tumour genetic testing. Currently only 8 to 15 percent of patients get tested. For those patients with NF1 mutations, there are implications for family members of patients who test positive for hereditary NF-1, as they also may be at increased risk of developing cancers, including GIST.”
According to the National Institutes of Health, NF-1 is a condition characterized by changes in skin colouring and the growth of tumours along nerves in the skin, brain and other parts of the body, such as the GI tract. The signs and symptoms of this condition vary widely among affected persons. NF-1 occurs in one in 3,000 to 4,000 individuals worldwide.
GIST represents the most common type of sarcoma in the GI tract, with an annual incidence of 6.8 cases per million people in the United States. These tumours start in special cells in the wall of the GI tract, called the interstitial cells of Cajal (ICCs). ICCs are sometimes dubbed the “pacemakers” of the GI tract because they signal the muscles in the digestive system to contract through peristalsis, moving food and liquid through the system.
Sicklick and colleagues at Moores Cancer Center are searching for a personalized approach to GIST tumours that become progressively resistant to treatment. Ultimately, more than 95 percent of patients with drug-resistant GIST succumb to their cancer, highlighting the necessity for alternative therapeutic targets.
“Patients with GIST should have their tumours profiled with next-generation sequencing panels,” said first author Adam Burgoyne, MD, PhD, medical oncologist at Moores Cancer Center. “We are uncovering a subset of patients, including patients with mutations of KIT, who have downstream mutations that may render them insensitive to conventional targeted therapy.”
Sicklick added: “This insight helps physicians to know which drugs will or won’t work in order to properly treat these deadly tumors. Of critical importance in NF1 mutant GIST, standard-of-care drug regimens aren’t effective.”
Sicklick’s recent GIST research has also identified new gene fusions and mutations associated with subsets of GIST patients. He and his team also provided the first evidence that the Hedgehog signalling pathway is central to the formation of GIST, which are frequently driven by the KIT oncogene.

Moores Cancer Center
health.ucsd.edu/news/releases/Pages/2017-08-18-GIST-tumors-linked-NF1-mutations-genetic-testing-needed.aspx

Scientists identify gene that controls immune response to chronic viral infections

For nearly 20 years, Tatyana Golovkina, PhD, a microbiologist, geneticist and immunologist at the University of Chicago, has been working on a particularly thorny problem: Why are some people and animals able to fend off persistent viral infections while others can’t?
Mice from a strain called I/LnJ are especially good at this. They can control infection with retroviruses from very different families by producing specific antibodies that coat viruses and render them innocuous.
Golovkina, a Professor of Microbiology, was interested in what makes these mice special, so she began searching for the genes responsible for their remarkable immune response. In a new study she and her colleagues identify this gene. They also began to uncover more clues how it might work to control anti-virus immune responses.
Using a process called positional cloning, in which researchers progressively narrow down the location of a gene on the chromosome, they pinpointed it within the major histocompatibility complex (MHC) locus. The MHC locus is a well-known region of the genome involved with the immune system so it makes sense that the gene was located there, but this was a disconcerting discovery.
“It was a bummer at first because there are tons of genes within the MHC locus all controlling immune response, not only against viruses, but also many other microbial pathogens and non-microbial disorders,” she said. “Most of the time when people map a gene to the MHC they give up and stop there, with an assumption that the gene encodes for one of the two major MHC molecules, MHC class I or and MHC class II.”
But with the help of a biochemist, Lisa Denzin from Rutgers University, and a computational biologist, Aly Khan from the Toyota Technological Institute at Chicago, Golovkina and her team identified a gene called H2-Ob that enables this resistance. Together with another gene called H2-Oa, it makes a molecule called H2-O in mice and HLA-DO in humans.
H2-O has been known for years as a negative regulator of the MHC class II immune response, meaning that it shuts down the immune response. Most researchers thought it was there to prevent autoimmune responses, which attack the body’s own tissues. But in this case, none of the I/LnJ mice showed signs of autoimmunity, so H2-O must have another purpose.
Golovkina and her team discovered another interesting thing when they crossed I/LnJ mice that were resistant to infections with ones that were more susceptible. The resultant F1 mice were susceptible to infection. This indicated that the I/LnJ H2-Ob gene was recessive; both parents had to have a copy of the mutated gene to pass it on their offspring, and the product of the gene should be a non-functional protein.
 “That was really surprising,” Golovkina said. “Almost all pathogen-resistant mechanisms discovered so far are dominant, meaning that something needs to be gained to resist.”
The immune system response to a virus in susceptible mice lasts three to four weeks, then the H2-O molecule tells it to stop. But the I/LnJ mice, which respond vigorously to infections, have a mutation on H2-Ob that makes it inactive. So, after they launch an immune response, it never shuts off. This keeps persistent retroviruses in check.
Golovkina hypothesizes that while letting the immune response keep running may keep chronic infections in check, such as retroviruses or hepatitis B and C, other pathogens like tuberculosis can take advantage of a persistent immune response because they can get access to certain cells when they’re coated with antibodies (and I/LnJ mice happen to be susceptible to TB and produced anti-TB antibodies).
At some point during the evolution of these genes, it was more advantageous to be able to switch off the immune response to some infections (such as intracellular bacterial pathogens), but it came at the cost of not being able to fight other long-term infections.
Now that her team has identified the gene underlying anti-retrovirus and potentially anti-hepatitis B and C responses, Golovkina says that further research should be done to create genetic therapies to manipulate the function of this gene, or develop molecules that could interfere with the function of H2-O to allow the virus-specific response in chronically infected people.

University of Chicago Medicine
sciencelife.uchospitals.edu/2017/08/15/scientists-identify-gene-that-controls-immune-response-to-chronic-viral-infections/