New assay may help predict which pancreatic lesions may become cancerous

A report describes a new simple molecular test to detect chromosomal abnormalities — biomarkers known as telomere fusions–in pancreatic tumour specimens and pancreatic cyst fluids. This assay may help predict the presence of high-grade or invasive pancreatic cancers requiring surgical intervention.
More sophisticated imaging of the pancreas has led to increased detection of presymptomatic lesions. The detection of telomere fusions has the potential to help physicians determine whether these lesions have a high likelihood of developing into pancreatic cancer requiring surgical resection or are more likely to be benign and can be followed by “watchful waiting.”
“Clinicians rely on international consensus guidelines to help manage patients with pancreatic cancer precursor lesions such as intraductal papillary mucinous neoplasms (IPMNs). These guidelines are useful but pancreatic imaging does not provide sufficient information about the neoplastic nature of a pancreatic cyst. Better characterization of pancreatic cysts could allow more patients with worrisome cysts to continue with surveillance, avoiding the morbidity and risks related to pancreatic surgery,” explained Michael Goggins, MD, Sol Goldman Professor of Pancreatic Cancer Research, Departments of Pathology, Surgery, and Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine (Baltimore).
Telomeres are regions of repetitive nucleotide sequences found at the ends of chromosomes that, under normal circumstances, keep the chromosome intact. When telomeres lose most or all of their telomere repeat sequences, the ends can fuse, leading to cell death or chromosomal instability. “This is a major mechanism that contributes to the progression of many precancerous neoplasms to invasive cancers,” said Dr. Goggins. “Telomere fusions can serve as a marker for predicting the presence of high-grade dysplasia and/or invasive cancer.”
In this report, investigators describe a PCR-based assay to detect telomere fusions in samples of pancreatic tumour or cyst fluid. The assay incorporates two rounds of PCR with the second round using a telomere repeat probe to detect the fusions.
The researchers analysed tissues from IPMN tumour samples taken from patients undergoing resection, surgical cyst fluid samples, and normal pancreas. IPMNs are the most common type of pancreatic neoplastic cysts. They are characterized by the papillary proliferation of mucin-producing epithelial cells and cystic dilatation of the main or branch pancreatic duct.
This telomere fusion assay was able to identify telomere fusions in more than half of the pancreatic cell lines. Telomere fusions were often detected in tumours with high-grade dysplasia (containing more abnormal cells). Telomere fusions were not found in normal pancreas or samples with low-grade dysplasia.
Similar findings were seen in analyses of cyst fluid, in which the presence of telomere fusions raised the likelihood of high-grade dysplasia or invasive cancer six fold. The telomere fusion events were found to be associated with high telomerase activity (an enzyme that lengthens telomeres) and shortened telomere length.
“We have developed a simple molecular test to detect telomere fusions. This telomere fusion detection assay is a cheaper method for evaluating pancreatic cyst fluid than many next-generation sequencing approaches that are being evaluated for this purpose,” noted Dr. Goggins.
“The authors succeed in showing the presence of shortened telomeres, sporadic telomeric fusions, and increased telomerase activity in a modest proportion of pancreatic lesions,” commented Loren Joseph, MD, of the Department of Pathology at Beth Israel Deaconess Medical Center, Harvard Medical School (Boston), in an accompanying editorial. He added that the techniques used to detect fusions from cyst DNA and to measure telomere length and telomerase activity are within the scope of many molecular diagnostic laboratories.
Science Articleshttps://tinyurl.com/y9mse347

‘Clubfoot’ gene identified

A gene which could play a role in causing the most severe cases of club foot has been identified by scientists at the University of Aberdeen.
Clubfoot is a lower leg abnormality, where babies are born with the foot in a twisted position, facing inwards and upwards rather than flat to the floor.  It is quite common, affecting about 1 baby in every 1,000 born in the UK.  Of those, 1,000 about half have the condition in both feet.
The causes of clubfoot are very poorly understood, though it sometimes runs in families and it is known that genes are involved.
Experts believe the condition is a neuro-muscular problem – a result of muscle weakness in the legs during development. However it is difficult to pinpoint the causes because there are so many different things that can cause muscle weakness.
The condition requires lengthy treatment involving manipulation, putting the feet in a cast (called the Ponseti method) an operation and then a requirement to wear specialised boots joined together by a metal bar at night until the age of four or five years old.
In severe cases, which are often associated with failure of the nerves to calf muscles, even after this treatment the foot can bend back, meaning a more invasive surgery is required.
The Aberdeen team believe they may have identified a gene in a mouse model which is linked to the more serious cases of clubfoot in humans.
The gene (Limk1) is required for normal nerve growth and has shown to be part of a pathway of genes, one of which is already known to be linked to clubfoot in mice.
Professor Martin Collinson, a geneticist from the University of Aberdeen, and leader of the study says: “This is, hopefully, another piece in the puzzle of what causes clubfoot in humans. Our hypothesis is that probably for most human clubfoot patients, it’s not just one gene that goes wrong, there are probably predisposed mutations in several genes in these pathways and they add up to eventually cause muscle weakness.
“The next stage is to look at DNA samples taken from human clubfoot patients and screen them to see if there are mutations in these pathways.
“Club foot is commonly treated successfully using the Ponseti method but it may be that the feet of children with these gene deformations will just revert back once treatment is finished. In theory if we could screen children for these genes before treatment starts, then they could avoid years of unnecessary interventions.”
University of Aberdeenwww.abdn.ac.uk/news/11665/

Researcher creates ‘Instagram’ of immune system, blending science, technology

Being on the cutting edge of science and technology excites Hollings Cancer Center (HCC) researcher Carsten Krieg, Ph.D. Each day, he walks into his lab that houses a mass cytometry machine aptly labelled Helios. Krieg explains how it can heat plasma up to 6,000 degrees Celsius, levels comparable to temperatures found on the sun.
This allows the German native, who recently joined the faculty of the Medical University of South Carolina’s departments of immunology and dermatology, to accomplish an interesting feat. He creates a sort of ‘Instagram’ of a person’s immune system. For cancer patients on experimental immunotherapy treatments, the practical application is obvious and exciting, he said.
“What I use here is a very new and nerdy technology, which is called mass cytometry, that allows you with a very high sensitivity to make pictures of your immune system. And this is possible because there’s artificial intelligence, machine learning combined with algorithms that can make a very complex system easy to visualize.”
Basically, how it works is that researchers stain cells using rare metal-conjugated antibodies that target surface and intracellular proteins. “Normally in biological tissues, there are no rare metals, so this technique offers greater sensitivity in detecting targets.”
Inside the Helios, the cells are ionized using an inductively-coupled plasma. The ions derived from each stained cell are maintained in discrete clouds that can be detected in a mass spectrometer. The technique can potentially detect up to 100 markers per cell, although, due to practical restrictions, about 40 are more realistic, he said. Then researchers use artificial intelligence and bioinformatics to create a two-dimensional mapping that can read the results, creating an Instagram of millions of blood cells.
This is critical as Krieg and other cancer researchers hope to advance the field of immunotherapy. Though immunotherapy has shown great promise, the vast majority of patients either don’t respond, have adverse side effects or relapse. Krieg, who comes to HCC from the University Research Priority Program (URPP) in Zurich, Switzerland, wanted to know if the technology could be used to predict which patients might respond to certain treatments.
While in Zurich, he and his colleagues decided to use the technique to study melanoma. The research identified biomarkers in the blood that can predict whether metastatic melanoma cancer patients will respond positively to immunotherapy. The goal was to see if a blood test for these biomarkers could identity those who are likelier to benefit, while allowing “non-responders” to begin other treatments without losing time, he said. “It’s a decision instrument for physicians and for the health care system.”
It’s also a powerful research tool as it gets to the mechanisms behind what makes immunotherapy work. The recent study found an immune cell type known as classical monocytes in the peripheral blood may be a potential biomarker for patients who will respond to anti-PD-1 immune checkpoint therapy in metastatic melanoma. “Surprisingly, what we clearly found is that it’s the frequency of monocytes that is enhanced in responders over non-responders before immunotherapy.”
Hollings Cancer Centeracademicdepartments.musc.edu/newscenter/2018/hcc-krieg-instagram/index.html

Can’t sleep? Could be down to genetics

Researchers have identified specific genes that may trigger the development of sleep problems, and have also demonstrated a genetic link between insomnia and psychiatric disorders such as depression, or physical conditions such as type 2 diabetes. The study was led by Murray Stein of the University of California San Diego and the VA San Diego Healthcare System.
Up to 20 percent of Americans and up to 50 percent of US military veterans are said to have trouble sleeping. The effects insomnia has on a person’s health can be debilitating and place a strain on the healthcare system. Chronic insomnia goes hand in hand with various long-term health issues such as heart disease and type 2 diabetes, as well as mental illness such as post-traumatic stress disorder (PTSD) and suicide.
Twin studies have in the past shown that various sleep-related traits, including insomnia, are heritable. Based on these findings, researchers have started to look into the specific gene variants involved. Stein says such studies are important, given the vast range of reasons why people suffer from insomnia, and the different symptoms and varieties of sleeplessness that can be experienced.
"A better understanding of the molecular bases for insomnia will be critical for the development of new treatments," he adds.
In this study, Stein’s research team conducted genome-wide association studies (GWAS). DNA samples obtained from more than 33,000 soldiers participating in the Army Study To Assess Risk and Resilience in Service members (STARRS) were analysed. Data from soldiers of European, African and Latino descent were grouped separately as part of efforts to identify the influence of specific ancestral lineages. Stein and his colleagues also compared their results with those of two recent studies that used data from the UK Biobank.
Overall, the study confirms that insomnia has a partially heritable basis. The researchers also found a strong genetic link between insomnia and type 2 diabetes. Among participants of European descent, there was additionally a genetic tie between sleeplessness and major depression.
"The genetic correlation between insomnia disorder and other psychiatric disorders, such as major depression, and physical disorders such as type 2 diabetes suggests a shared genetic diathesis for these commonly co-occurring phenotypes," says Stein, who adds that the findings strengthen similar conclusions from prior twin and genome-wide association studies.
Insomnia was linked to the occurrence of specific variants on chromosome 7. In people of European descent, there were also differences on chromosome 9. The variant on chromosome 7, for instance, is close to AUTS2, a gene that has been linked to alcohol consumption, as well as others that relate to brain development and sleep-related electric signalling.
"Several of these variants rest comfortably among locations and pathways already known to be related to sleep and circadian rhythms," Stein elaborates. "Such insomnia associated loci may contribute to the genetic risk underlying a range of health conditions including psychiatric disorders and metabolic disease."
EurekAlertwww.eurekalert.org/pub_releases/2018-03/s-csc030818.php

Medical researchers find protein that marks difference between cancer and non-cancer cells

A discovery sheds light on how cancerous cells differ from healthy ones, and could lead to the development of new strategies for therapeutic intervention for difficult-to-treat cancers in the future.
An international team of investigators found a “stop sign”—a modified protein researchers named a PIP-stop—inside cells that are overused by cancerous cells that effectively prevents healthy ones from sorting material in the way they were designed to.
“We have discovered that breast cancer, leukaemia, lymphoma and neuroblastoma cells have too many PIP-stops. This would upset protein function, and opens up a new avenue for developing drugs that block PIP-stop formation by kinase enzymes,” said Michael Overduin, a University of Alberta cancer researcher and professor of biochemistry, who led the research project.
The team named the modification a PIP-stop because it stops proteins from interacting with lipid molecules called PIP.
Before making their discovery, the researchers first solved the 3-D structure of a sorting nexin protein, which is key to sorting proteins to their proper locations within the cell. Powerful magnets in the U.K. and in the National High Field Nuclear Magnetic Resonance Centre (NANUC), Canada’s national magnet lab based in Edmonton, were then used to detect signals from within individual atoms within the protein structure.
By focusing on the protein structure, the team was able to discover the PIP-stop and see how it blocked the protein’s function. The PIP-stop is a phosphate which is added to the protein surface that binds the PIP lipid, and normally controls how proteins attach to membranes.
Samples from cancer patients have too many PIP-stops, which could lead to the unregulated growth seen in tumour cells. Similar PIP-stops were found to be overused in a large number of other proteins involved in other cancer types, where they could also influence tumour growth.
“Our goal now is to design inhibitors for the overactive kinases that create PIP-stops, and to use this information to design drug molecules that block the progression of cancers, particularly those which lack effective treatments,” said Overduin.
University of Alberta Faculty of Medicine & Dentistrywww.folio.ca/medical-researchers-find-protein-that-marks-difference-between-cancer-and-non-cancer-cells/

Exosomal microRNA predicts and protects against severe lung disease in extremely premature infants

Extremely low birth-weight babies are at risk for a chronic lung disease called bronchopulmonary dysplasia, or BPD. This condition can lead to death or long-term disease, but clinical measurements are unable to predict which of the tiny infants—who get care in hospital intensive-care units and often weigh just one and a half pounds—will develop BPD.
University of Alabama at Birmingham researchers now report discovery of a strong predictive biomarker for BPD, and they show a role for the biomarker in the pathogenesis of this neonatal lung disease. These results open the path to possible future therapies to prevent or lessen BPD, which is marked by inflammation and impaired lung development.
This biomarker could also help neonatologists plan optimal management and risk stratification of their tiny patients, and it could guide targeted enrolment of high-risk infants into randomized trials of potentially novel treatment strategies.
The UAB work is an example of "bedside to bench" research. It began with prospective studies of extremely premature infants to identify potential biomarkers, and then proceeded to lab experiments using animal models and cells grown in culture to learn how the biomarker functions in disease progression.
The study was led by Charitharth Vivek Lal, M.D., assistant professor in the UAB Pediatrics Division of Neonatology, and it builds upon Lal’s 2016 report that early microbial imbalance in the airways of extremely premature infants is predictive for development of BPD.
The biomarker in the study is microRNA 876-3p.
The hunt for the biomarker began with a prospective cohort study at the UAB Regional Neonatal Intensive Care Unit, looking at exosomes obtained from tracheal aspirates of infants with severe BPD, compared with full-term controls. Exosomes are small, membrane-bound blebs or vesicles that are actively secreted by a variety of cells. They are known to contain microRNAs and proteins, and the exosomes act in cell-to-cell signalling. MicroRNAs can regulate gene expression in cells.
Lal and colleagues found that airway cells in infants with severe BPD had greater numbers of exosomes, but those exosomes were smaller sized. They also experimentally found that high oxygen exposure for newborn mice or human bronchial epithelial cells grown in culture also caused the release of more exosomes, and the exosomes were smaller in size that those secreted at normal oxygen level. Premature infants often receive extra oxygen to aid their underdeveloped lungs.
The UAB researchers then did a prospective discovery cohort study at UAB—they collected tracheal aspirate samples from extremely premature infants within six hours of birth, purified exosomes from the samples and looked for microRNAs in the exosomes. Out of 810 microRNAs that were found, 40 showed differences between infants who later developed BPD and those who were BPD-resistant.
Next, in cooperation with researchers at Thomas Jefferson University and Drexel University, a validation cohort was studied in Philadelphia. Thirty-two of the 40 microRNAs were confirmed; six had a higher statistical significance; and one biomarker, a low concentration of microRNA 876-3p, was found to have the highest sensitivity to predict severe BPD in extremely low birth-weight infants.
Medical Xpressmedicalxpress.com/news/2018-03-exosomal-microrna-severe-lung-disease.html

Genetic variant discovery to help asthma sufferers

Research from the University of Liverpool identifies a genetic variant that could improve the safety and effectiveness of corticosteroids, drugs that are used to treat a range of common and rare conditions including asthma, and chronic obstructive pulmonary disease (COPD).
Corticosteroids are very effective in the treatment of asthma and COPD, with more than 20 million prescriptions issued in the UK annually. Unfortunately, corticosteroids can also cause side effects, one of which is adrenal suppression, seen in up to 1/3 of people tested. People with this condition do not make enough cortisol. Cortisol helps the body respond to stress, recover from infections and regulate blood pressure and metabolism.
Adrenal suppression can be very difficult to diagnose, as it can present with a spectrum of symptoms from non-specific symptoms such as tiredness, to serious illness and death. The majority of patients do not develop adrenal suppression, and the reasons why some do, and while other don’t, despite using similar doses of corticosteroids were not previously understood.
In researchers from the University’s Institute of Translational Medicine, led by Professor Sir Munir Pirmohamed, conducted a genome-wide association study (GWAS) to pinpoint the genes responsible for increasing the risk of a person developing adrenal suppression. This method searches for single nucleotide polymorphisms (SNPs). Each person carries about three million SNPs, but if a particular SNP occurs more frequently in people with a particular condition than in people without the condition, it can pinpoint the underlying reason for the difference.
The researchers identified two groups of children with asthma, and one group of adults with chronic obstructive pulmonary disease (COPD), all of whom used inhaled corticosteroid medications. Each patient’s adrenal function was tested. This is the largest published cohort of children ever tested for adrenal suppression (580 children in total).
Individuals who had a particular variation in a specific gene (platelet derived growth factor D; PDGFD) had a markedly increased risk of adrenal suppression, both in the children with asthma and adults with COPD. This risk increased if the patient had two copies of the variation (one from their mother, one from their father). Children with two copies of the high risk variation in PDGFD were nearly six times more likely to develop adrenal suppression than children with no copies.
University of Liverpoolnews.liverpool.ac.uk/2018/03/16/genetic-variant-discovery-to-help-asthma-sufferers/

Potential RNA markers of abnormal heart rhythms identified

Atrial fibrillation (AF) is a heart condition that causes an irregular, and often rapid, heart rate. It increases the risk of developing strokes, heart failure, and even dementia. Although it can be associated with aging, high blood pressure, diabetes, heart valve problems, etc, about one-third of patients with AF have no symptoms until they suffer a stroke. Therefore, a means of identifying or predicting AF with the aim of starting preventative therapy is highly desirable.
AF is associated with several factors that maintain its progression, including inflammation, electrical disturbances, and structural changes in the heart’s upper chambers (the atria). Moreover, several different short sequences of RNA known as microRNAs (miRNAs) have been linked with AF pathology. miRNAs control gene expression after the transcription stage, and have been suggested as possible markers for some cardiovascular diseases because of their stability in the bloodstream. However, it remains unknown whether the miRNAs shown to be related to AF are suitable as predictive biomarkers of disease.
A team of researchers from Tokyo Medical and Dental University (TMDU) addressed this issue by comparing miRNA expression in AF patients and healthy controls, and between control mice and those with a similar abnormal heart rhythm to AF. They showed that four miRNAs not previously associated with AF were significantly upregulated in the serum of AF patients and diseased mice, indicating their potential use as AF biomarkers. The study results were recently published in Circulation Journal.
Initially, human serum and mouse atrial tissue were screened for 733 and 672 miRNAs, respectively. These were eventually narrowed down to four by excluding non-detectable and non-specific miRNAs, and focusing on the quantification of their expression.
“One of the miRNAs, miR-214-3p, is implicated in inflammation, so we wondered whether this might be the underlying mechanism of miRNA-induced AF pathology,” first author Yu Natsume says. “We compared miRNA expression with levels of a serum inflammatory factor but found no correlation suggestive of an association.”
Statistical analysis of diagnostic ability showed that miR-214-3p and miR-342-5p had the highest accuracy as individual biomarkers at predicting AF, but that a combined analysis of all four miRNAs slightly improved this accuracy.
“The same two miRNAs showed increased expression in a subset of patients with intermittent AF and another subset with chronic AF,” corresponding author Tetsuo Sasano says. “The increases were in comparison both with healthy controls of the same age and young healthy controls, suggesting these miRNAs may predict AF regardless of the age of the individual.”
Tokyo Medical and Dental University (TMDU)www.tmd.ac.jp/english/press-release/20180313/index.html

Improved capture of cancer cells in blood could help track disease

Tumour cells circulating throughout the body in blood vessels have long been feared as harbingers of metastasizing cancer — even though most free-floating cancer cells will not go on to establish a new tumour.
But if these cast-offs could be accurately counted, they could provide an additional way to track treatment or screen for the disease.
New research by University of Wisconsin–Madison School of Pharmacy Professor Seungpyo Hong and his collaborators builds on several years of work in isolating these circulating tumour cells, or CTCs, by demonstrating improved methods for their capture on clinical samples for the first time. By forcing cancer cells to slow down and developing stronger molecular traps specific to CTCs, researchers were able to identify large numbers of the cells in cancer patients undergoing radiation therapy.
The number of CTCs dropped during therapy and subsequently rebounded in those patients that ended up requiring additional treatment — suggesting that this technology could supplement other techniques for tracking the progress of treatment.
Scientists have recognized CTCs as potentially useful metrics for tracking a patient’s disease for some time. But the cells are the proverbial needle-in-a-haystack, drowned out by billions of ordinary red blood cells and other cells found in the blood. Developing ways to specifically concentrate and trap CTCs has been technically challenging, with existing technologies only identifying a handful of cells from certain patients.
Hong’s team was inspired by the behaviour of CTCs in the blood, which attach themselves to blood vessel walls and begin tumbling along looking for suitable places to invade. This behaviour separates them from the oxygen-carrying cells floating by and is mimicked in the CapioCyte technology using an array of sticky proteins that force the CTCs to begin rolling, which slows them down.
The cells are then trapped using a series of three cancer-specific antibodies, proteins that tightly bind and hold onto the CTCs. To make the connection even stronger, the researchers developed a nanoscale structure shaped a little like a tree, with each branch tipped with an antibody. As a cancer cell passes nearby, many individual branches can latch on, increasing the strength of the attachment.
The cell rolling and multi-tipped branches helped the researchers capture an average of 200 CTCs from each millilitre of a patient’s blood, many times the number of cells captured with previous technology. They identified cancer cells in each of 24 patients undergoing treatment for head-and-neck, prostate, rectal or cervical cancer that enrolled in the study.
“The absolute numbers of CTCs don’t represent too much because there’s too much variation individually, but the more important thing we found was the trend — how the CTC numbers change over time upon treatment. So, for example, we’ve shown that the CTCs go down when the patients are responding really well to the radiotherapy,” says Hong.
Although the number of cells did not correlate with the stage, and thus severity, of the cancer, the reduction in cells was correlated with successful radiation therapy. In two of the three patients that had recurring or persistent disease, CTC numbers came back up.
“Our data suggest that we have a good chance of making CTCs a predictive biomarker or biomarker for surveillance for at least a few cancers, and that’s always exciting,” says Wang.
University of Wisconsin – Madisonnews.wisc.edu/improved-capture-of-cancer-cells-in-blood-could-help-track-disease/

Placenta defects critical factor in prenatal deaths

The role of the placenta in healthy foetal development is being seriously under-appreciated according to a new paper The study was part of the Wellcome-funded “Deciphering the Mechanisms of Developmental Disorders (DMDD)” consortium. Dr Myriam Hemberger at the Babraham Institute, Cambridge led the research, working with colleagues at the Wellcome Sanger Institute, Cambridge, the Francis Crick Institute, London, the University of Oxford and the Medical University of Vienna, Austria. The team studied 103 genetic mutations in mice that cause embryos to die before birth. The results showed that the majority, almost 70 per cent, cause defects in the placenta.
Each of the 103 gene mutations causes the loss of a particular factor. Many of these had not been previously linked to placenta development, and hence the study highlights the unexpected number of genes that affect development of the placenta. By studying a select group of three genes in further detail, the team went on to show that the death of the embryo could be directly linked to defects in the placenta in one out of these three cases. This may mean that a significant number of genetic defects that lead to prenatal death may be due to abnormalities of the placenta, not just the embryo.
Although this research uses mice, the findings are likely to be highly relevant to complications during human pregnancy and the study highlights the need for more work to be done on investigating development of the placenta during human pregnancies.
The placenta is vital for normal pregnancy progression and embryo development in most animals that give birth to live young, including humans. It provides a unique and highly specialised interface between the embryo and the mother, ensuring an adequate provision of nutrients and oxygen to the embryo. The placenta is also involved in waste disposal from the embryo and produces important hormones that help sustain pregnancy and promote foetal growth. Although previous research has highlighted the pivotal role of the placenta for a healthy pregnancy, its potential contribution to pregnancy complications and birth defects continues to be overlooked.
Scientists call mutations that cause death in the womb embryonic lethal. Mouse lethal genes are enriched for human disease genes and the affected embryos often show morphological abnormalities, i.e. changes to their shape and structure. Around one-third of all gene mutants studied in mouse are lethal or subviable (i.e. mutant offspring are less likely to survive than non-mutant pups).
“Analysis of embryonic lethal mutants has largely focused on the embryo and not the placenta, despite its critical role in development. Of the mutations we’ve studied, far more than expected showed defects in the placenta and this is particularly true for mutations that cause death during the early stages of pregnancy. Intriguingly, our analysis also indicates that issues in the placenta often occur alongside specific defects in the embryo itself.”
“Our data highlight the hugely under-appreciated importance of placental defects in contributing to abnormal embryo development and suggest key molecular nodes governing placentation. The importance of a healthy placenta has often been overlooked in these studies and it is important that we start doing more to understand its contribution to developmental abnormalities.”
Wellcome Sanger Institutewww.sanger.ac.uk/news/view/placenta-defects-critical-factor-prenatal-deaths