Intraductal tubulopapillary neoplasm is a recently recognized distinct and rare entity of the pancreas, which may be unfamiliar to many physicians and laboratory personnel. However, recognizing this disease is critical for its proper clinical management and further study. Here, we discuss the clinical and pathological features of this neoplasm.
by Dr Shula Schechter and Dr Jiaqi Shi
Presentation and definition of intraductal tubulopapillary neoplasm of the pancreas
Intraductal tubulopapillary neoplasm (ITPN) was recently recognized as a distinct neoplastic entity of the pancreas in the 2010 edition of the World Health Organization (WHO) classification [1]. It was defined as an intraductal, grossly visible, tubule-forming epithelial neoplasm with high-grade dysplasia and ductal differentiation without overt production of mucin, although focal tubulopapillary growth is also acceptable [1].
ITPN is a rare entity. Although it was first described in the mid-1990s by Japanese investigators and has been termed ITPN since 2009 [2], its diagnostic criteria need to be refined and recognition of this disease needs to be improved. The differential diagnosis of ITPN can be complex because its features overlap with other more common intraductal neoplasms, such as intraductal papillary mucinous neoplasm (IPMN). A recently published literature review and a large study of 33 cases of ITPN have shed some light on the clinicopathologic and immunohistochemical features of this disease and further advance our knowledge of its diagnosis [3, 4].
The majority of the patients with ITPN present with abdominal pain, nausea, vomiting, weight loss and steatorrhea. A few patients have diabetes mellitus, acute pancreatitis, jaundice and fever. Incidental discovery of ITPN occurs in about one-third of patients. The risk factors for ITPN are not well defined, but there are reports of an association of ITPN with radiation exposure and with a family history of pancreatic cancer [4–6]. The incidence of ITPN in men and in women is comparable. Most ITPNs occur in the sixth decade with a range in age of 25 to 79 years. Nearly half of reported ITPNs are located in the head of the pancreas. In the remainder of cases, the location of the ITPN is divided between the body and tail with about one-quarter of lesions showing more extensive involvement of the entire pancreas [4]. ITPNs are often slow growing tumours and large at the time of discovery.
Imaging studies with dynamic contrast-enhanced computed tomography and magnetic resonance imaging are commonly used to assist with preoperative diagnosis. A helpful imaging clue for the diagnosis of ITPN is the two-tone duct sign, which is a reflection of tumour in the main pancreatic duct with ductal dilation upstream [7]. With magnetic resonance cholangiopancreatography and endoscopic retrograde cholangiopancreatography, ITPN also has a characteristic finding, the so called ‘cork-of-wine-bottle’ sign, which results from intraductal growth of the tumour [7].
Information on the prognosis of ITPNs is limited by the small number of reported cases, although data have suggested an excellent prognosis for patients without invasion (overall 5-year survival rate of 100%) and a significantly more favourable prognosis for ITPNs with a component of invasive carcinoma (overall 5-year survival rate of 71%) relative to the traditional invasive pancreatic ductal adenocarcinoma (overall 5-year survival rate <10%) [2, 8, 9]. However, the extent of invasion does not necessarily correlate with clinical outcome. Patients with minimal invasion can die of disease, whereas patients with a large volume of invasion can achieve long-term survival [4]. Unfortunately, invasive carcinoma is present in most (54–71%) ITPNs and may be more likely in men [3, 4, 10]. In addition, tumours that are large in size, or have increased mitosis and a high Ki-67 proliferation index may have an increased association with invasive carcinoma [2]. Despite the favourable prognosis, the possibility of invasive carcinoma, recurrence and metastasis has led to the general recommendation of surgery as treatment in most ITPN patients.
Diagnostic features of ITPN based on histology and immunohistochemistry
Macroscopically, the mean size of the tumour is 3.8 cm (range 0.5–15 cm). Most ITPNs are circumscribed solid or polypoid masses obstructing pancreatic ducts. They generally arise in the main pancreatic duct, but approximately 5% arise within the branch ducts [4, 10]. ITPNs may be cystic, this occurs in less than half of cases. However, ITPNs do not have grossly identifiable mucin.
Microscopically, ITPNs are characterized by back-to-back tubules forming complex cribriform structures (Fig. 1a, c) with focal areas of papillary architecture seen in 36% of ITPN cases [4]. Solid growth with necrotic foci can occur, occasionally with areas of comedo-like necrosis (Fig. 1b). Occasionally, there are apical apocrine snouts and intraluminal secretion; however, cytoplasmic and intraluminal mucin is scant to absent. The tubules are lined by cuboidal to low columnar epithelial cells with minimal to moderate amounts of eosinophilic or amphiphilic cytoplasm and round to oval nuclei with moderate to marked atypia (Fig. 1d). ITPNs classically have uniform high-grade dysplasia and increased mitotic figures. Uncommon clear cell morphology or stromal osseous and cartilaginous metaplasia has also been reported in an ITPN.
By immunohistochemistry, all ITPNs to date have stained positively with anti-cytokeratin (CK) 7 (Table 1) and CAM5.2 antibodies. CK19 is positive in 92% of the cases. Tumour markers CA19.9 and CEA (carcinoembryonic antigen) are expressed in 93% and 50% of the cases respectively. In contrast, CK20 and CDX2 (homeobox protein CDX-2) only stain rare cells in a minority of ITPNs. The mucin (MUC) family has a particular staining pattern in ITPNs (Table 1), which is sometimes helpful in its differential diagnosis. MUC1 and MUC6 are positive in the majority of cases (88% and 77% respectively) whereas MUC2 and MUC5AC are usually negative (only 2% and 6% ITPNs are positive respectively). Nuclear p53 and p16-INK4 (cyclin-dependent kinase inhibitor 2A) are expressed in 27% and 33% of the cases. Rare focal or scattered cells can be positive for HepPar-1 antigen, chromogranin or nuclear β-catenin. However, ITPNs do not express pancreatic enzymes, trypsin and chymotrypsin, or loss of E-cadherin or Smad4.
Recent molecular findings
Recent genetic studies have found evidence that ITPN is molecularly distinct from IPMN. The most commonly mutated genes in ITPN include PIK3CA, TP53 and CDKN2A, among others [8–18]. Other rare mutations in histone H3 methyltransferase genes, MLL2 and MLL3 (also known as KMT2A and KMT2C), and MCL1 amplification have also been identified in ITPN [19]. However, ITPNs have been shown to have no or rare mutations in KRAS, BRAF, or GNAS. In contrast, IPMNs have high mutation rates in multiple genes [20]. KRAS mutation is thought to be one of the driver genes during IPMN development and mutations in GNAS and RNF43 are also common.
Differential diagnosis
Despite its distinct molecular features, the histology of ITPN can resemble that of IPMN, especially the pancreatobiliary and oncocytic type, making it difficult to distinguish ITPNs from IPMNs by morphology alone. The key morphologic features that characterize ITPNs as compared to IPMNs are shown in Table 2 and Figure 2. Overall, cystic components are infrequent with ITPNs in contrast to IPMNs, which are predominantly cystic lesions. Mucin is another distinguishing feature, which is sparse or absent with ITPNs but abundant with IPMNs. IPMNs also have significantly more morphologic variation according to epithelial subtype, and their degree of cytologic and architectural atypia varies from low- to high-grade dysplasia, whereas ITPNs typically demonstrate uniform high-grade dysplasia. On the other hand, comedo-like necrosis is frequent with ITPNs but rare with IPMNs.
The cytologic and architectural distinctions between ITPNs and IPMNs are confounded by the wide spectrum of morphologies and degree of dysplasia that are seen with IPMNs. Among the four recognized epithelial subtypes of IPMN, the pancreatobiliary and oncocytic type IPMN are the types that are most easily confused with ITPN. Similar to ITPN, both pancreatobiliary and oncocytic type IPMNs have high-grade dysplasia and often complex architecture. Nevertheless, the architecture of these IPMN subtypes remains predominantly papillary in nature as compared to the tubular or tubulopapillary architecture of ITPNs. In addition, the oncocytic IPMN has intraepithelial lumens as well as cells with abundant granular eosinophilic cytoplasm. Subtypes of IPMN also differ from ITPN in their immunohistochemical profiles. Most ITPNs are MUC6 positive and MUC5AC negative, whereas the opposite is true for most IPMNs (MUC6 negative and MUC5AC positive). The immunohistochemical findings with the oncocytic subtype of IPMN are most similar to findings with ITPNs, although some studies found MUC5AC can be positive with oncocytic IPMNs. Use of a mitochondrial stain (e.g. phosphotungstic acid–hematoxylin, Novelli stain, anti-apoptin 111.3 antibody) may allow an oncocytic IPMN to be distinguished from an ITPN on the basis of abundant mitochondria in cytoplasm [12].
Intraductal acinar cell carcinoma can also be confused with ITPN due to its occasional intraductal growth pattern. However, intraductal acinar cell carcinoma will typically stain positively for pancreatic enzymes such as trypsin, chymotrypsin or Bcl-10 (B-cell lymphoma/leukemia 10), and negatively for CK7 and CK19 by immunohistochemistry [4, 21].
Conclusion
ITPN is a relatively new diagnostic entity that occurs infrequently, predominantly in older patients. One-third of patients can be asymptomatic. Although invasive carcinoma is present in most ITPNs, the prognosis of these tumours appears to be significantly more favourable than pancreatic ductal adenocarcinoma. ITPNs generally arise in and obstruct the main pancreatic duct with circumscribed, solid nodules that are grossly visible. Histologically, these tumours are characterized by back-to-back tubules forming complex cribriform structures and uniform high-grade dysplasia. Necrosis is frequent but cytoplasmic and intraluminal mucin is scant to absent, which is in contrast with IPMNs. Molecular studies support that ITPN is a distinct entity from other intraductal neoplasms of pancreas, such as IPMN. With increased recognition of ITPNs, we expect to learn more information about its pathological features and prognostic implications.
References
1. Adsay NV, Fukushima N, Furukawa T, Hruban RH, Klimstra DS, Klöppel G, et al. Intraductal neoplasms of the pancreas. In: Bosman FT, Carneiro F, Hruban RH, Theise ND, eds. World Health Organization Classification of Tumours of the Digestive System, pp. 304–313, 4th edn. International Agency for Research on Cancer 2010.
2. Yamaguchi H, Shimizu M, Ban S, Koyama I, Hatori T, Fujita I, Yamamoto M, Kawamura S, Kobayashi M et al. Intraductal tubulopapillary neoplasms of the pancreas distinct from pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 2009; 33(8): 1164–1172.
3. Rooney SL, Shi J. Intraductal tubulopapillary neoplasm of the pancreas: an update from a pathologist’s perspective. Arch Pathol Lab Med 2016; 140(10): 1068–1073.
4. Basturk O, Adsay V, Askan G, Dhall D, Zamboni G, Shimizu M, Cymes K, Carneiro F, Balci S et al. Intraductal tubulopapillary neoplasm of the pancreas: A clinicopathologic and immunohistochemical analysis of 33 cases. Am J Surg Pathol 2017; 41(3): 313–325.
5. Bhuva N, Wasan H, Spalding D, Stamp G, Harrison M. Intraductal tubulopapillary neoplasm of the pancreas as a radiation induced malignancy. BMJ Case Rep 2011; 2011.
6. Del Chiaro M, Mucelli RP, Blomberg J, Segersvard R, Verbeke C. Is intraductal tubulopapillary neoplasia a new entity in the spectrum of familial pancreatic cancer syndrome? Fam Cancer 2014; 13(2): 227–229.
7. Motosugi U, Yamaguchi H, Furukawa T, Ichikawa T, Hatori T, Fujita I, Yamamoto M, Motoi F, Kanno A et al. Imaging studies of intraductal tubulopapillary neoplasms of the pancreas: 2-tone duct sign and cork-of-wine-bottle sign as indicators of intraductal tumor growth. J Comput Assist Tomogr 2012; 36(6): 710–717.
8. Cooper CL, O’Toole SA, Kench JG. Classification, morphology and molecular pathology of premalignant lesions of the pancreas. Pathology 2013; 45(3): 286–304.
9. Kasugai H, Tajiri T, Takehara Y, Mukai S, Tanaka JI, Kudo SE. Intraductal tubulopapillary neoplasms of the pancreas: case report and review of the literature. J Nippon Medl Sch 2013; 80(3): 224–229.
10. Kolby D, Thilen J, Andersson R, Sasor A, Ansari D. Multifocal intraductal tubulopapillary neoplasm of the pancreas with total pancreatectomy: report of a case and review of literature. Int J Clin Exp Pathol 2015; 8(8): 9672–9680.
11. Amato E, Molin MD, Mafficini A, Yu J, Malleo G, Rusev B, et al. Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. J Pathol 2014; 233(3): 217–227.
12. Bledsoe JR, Shinagare SA, Deshpande V. Difficult diagnostic problems in pancreatobiliary neoplasia. Arch Pathol Lab Med 2015; 139(7): 848–857.
13. Kloppel G, Basturk O, Schlitter AM, Konukiewitz B, Esposito I. Intraductal neoplasms of the pancreas. Semin Diagn Pathol 2014; 31(6): 452–466.
14. Reid MD, Saka B, Balci S, Goldblum AS, Adsay NV. Molecular genetics of pancreatic neoplasms and their morphologic correlates: an update on recent advances and potential diagnostic applications. Am J Clin Pathol 2014; 141(2): 168–180.
15. Schlitter AM, Jang KT, Kloppel G, Saka B, Hong SM, Choi H, Offerhaus GJ, Hruban RH, Zen Y et al. Intraductal tubulopapillary neoplasms of the bile ducts: clinicopathologic, immunohistochemical, and molecular analysis of 20 cases. Mod Pathol. 2015; 28(9): 1249–1264.
16. Urata T, Naito Y, Nagamine M, Izumi Y, Tonaki G, Iwasaki H, Sasaki A, Yamasaki A, Minami N et al. Intraductal tubulopapillary neoplasm of the pancreas with somatic BRAF mutation. Clin J Gastroenterol 2012; 5(6): 413–420.
17. Yamaguchi H, Kuboki Y, Hatori T, Yamamoto M, Shimizu K, Shiratori K, Shibata N, Shimizu M, Furukawa T. The discrete nature and distinguishing molecular features of pancreatic intraductal tubulopapillary neoplasms and intraductal papillary mucinous neoplasms of the gastric type, pyloric gland variant. J Pathol 2013; 231(3): 335–341.
18. Yamaguchi H, Kuboki Y, Hatori T, Yamamoto M, Shiratori K, Kawamura S, Kobayashi M, Shimizu M, Ban S et al. Somatic mutations in PIK3CA and activation of AKT in intraductal tubulopapillary neoplasms of the pancreas. Am J Surg Pathol 2011; 35(12): 1812–1817.
19. Bhanot U, Basturk O, Berger M, Shah R, Scott S, Adsay V, Offerhaus GJ, Hruban RH, Zen Y et al. Molecular characteristics of the pancreatic intraductal tubulopapillary neoplasm. Mod Pathol 2015; 28(2S): 440A.
20. Springer S, Wang Y, Dal Molin M, Masica DL, Jiao Y, Kinde I, Blackford A4, Raman SP5, Wolfgang CL et al. A combination of molecular markers and clinical features improve the classification of pancreatic cysts. Gastroenterology 2015; 149(6): 1501–1510.
21. Hosoda W, Sasaki E, Murakami Y, Yamao K, Shimizu Y, Yatabe Y. BCL10 as a useful marker for pancreatic acinar cell carcinoma, especially using endoscopic ultrasound cytology specimens. Pathol Int 2013; 63(3): 176–182.
The authors
Shula Schechter MD; Jiaqi Shi* MD, PhD
Department of Pathology, University of Michigan,
Ann Arbor, MI 48109 USA
*Corresponding author
E-mail: jiaqis@med.umich.edu
Join the evolution – Panther Fusion
, /in Featured Articles /by 3wmediaOpinion versus facts: the need for evidence-based medicine
, /in Featured Articles /by 3wmediaCharlie Gard, who recently died just before his first birthday, was admitted to Great Ormond Street Hospital (GOSH) when he was two months old. Founded 265 years ago, and classed as one of the top four pediatric hospitals globally, GOSH has a dedicated international workforce, including some of the world’s leading doctors, surgeons and pediatric nurses. As well as offering tireless and expert care for its young patients, GOSH is involved in over 800 research projects.
Charlie was provisionally diagnosed with mitochondrial DNA depletion syndrome (MDDS) soon after admission, and genetic tests confirmed the diagnosis. The baby had two mutations affecting his RRM2B gene, preventing the synthesis of ribonucleotide reductase, an enzyme that plays a key role in maintaining the mitochondrial deoxinucleotide triphosphate pool needed for mitochondrial DNA synthesis. Only 15 other patients have been described with RRM2B mutations in the medical literature: in all cases rapid encephalopathy and muscle breakdown caused death within a few months of onset. A team of GOSH experts did consider experimental nucleoside bypass therapy (NBT) when the baby was five months old (ethical approval was first necessary), but they concluded that his rapidly deteriorating condition did not warrant such an intervention.
One can sympathize with the child’s parents as they desperately searched for a possible cure for their terminally ill infant, waging a protracted litigation to have him treated with experimental NBT in the US by Columbia University’s Dr Michio Hirano. One cannot, however, condone the belligerent demands of around 200, 000 members of the medically ignorant public that Charlie be released from experts at GOSH, or the interventions of ill-informed public figures such as Donald Trump and even the Pope.
Dr Hirano claimed that NBT – he ‘retains a financial interest’ in the compounds he prescribes – could benefit the patient. His relevant work concerns the TK2 mutation, a more frequent cause of MDDS with a more varied prognosis. His team has recently published a paper showing that NBT is beneficial in TK2 deficient mice, and 18 patients, mostly in Italy and Spain, are undergoing experimental treatment. No peer-reviewed papers on patient prognosis have yet been published, and there are no ongoing clinical trials with NBT. Furthermore without seeing Charlie, the GOSH team or medical notes until the child was already 11 months old, Dr Hirano (and the popular press) blamed the legal procedure, declaring that it was now too late for treatment!
An evidence-based cure for MDDS is surely needed: hopefully that will be Charlie’s legacy.
Intraductal tubulopapillary neoplasm of the pancreas
, /in Featured Articles /by 3wmediaIntraductal tubulopapillary neoplasm is a recently recognized distinct and rare entity of the pancreas, which may be unfamiliar to many physicians and laboratory personnel. However, recognizing this disease is critical for its proper clinical management and further study. Here, we discuss the clinical and pathological features of this neoplasm.
by Dr Shula Schechter and Dr Jiaqi Shi
Presentation and definition of intraductal tubulopapillary neoplasm of the pancreas
Intraductal tubulopapillary neoplasm (ITPN) was recently recognized as a distinct neoplastic entity of the pancreas in the 2010 edition of the World Health Organization (WHO) classification [1]. It was defined as an intraductal, grossly visible, tubule-forming epithelial neoplasm with high-grade dysplasia and ductal differentiation without overt production of mucin, although focal tubulopapillary growth is also acceptable [1].
ITPN is a rare entity. Although it was first described in the mid-1990s by Japanese investigators and has been termed ITPN since 2009 [2], its diagnostic criteria need to be refined and recognition of this disease needs to be improved. The differential diagnosis of ITPN can be complex because its features overlap with other more common intraductal neoplasms, such as intraductal papillary mucinous neoplasm (IPMN). A recently published literature review and a large study of 33 cases of ITPN have shed some light on the clinicopathologic and immunohistochemical features of this disease and further advance our knowledge of its diagnosis [3, 4].
The majority of the patients with ITPN present with abdominal pain, nausea, vomiting, weight loss and steatorrhea. A few patients have diabetes mellitus, acute pancreatitis, jaundice and fever. Incidental discovery of ITPN occurs in about one-third of patients. The risk factors for ITPN are not well defined, but there are reports of an association of ITPN with radiation exposure and with a family history of pancreatic cancer [4–6]. The incidence of ITPN in men and in women is comparable. Most ITPNs occur in the sixth decade with a range in age of 25 to 79 years. Nearly half of reported ITPNs are located in the head of the pancreas. In the remainder of cases, the location of the ITPN is divided between the body and tail with about one-quarter of lesions showing more extensive involvement of the entire pancreas [4]. ITPNs are often slow growing tumours and large at the time of discovery.
Imaging studies with dynamic contrast-enhanced computed tomography and magnetic resonance imaging are commonly used to assist with preoperative diagnosis. A helpful imaging clue for the diagnosis of ITPN is the two-tone duct sign, which is a reflection of tumour in the main pancreatic duct with ductal dilation upstream [7]. With magnetic resonance cholangiopancreatography and endoscopic retrograde cholangiopancreatography, ITPN also has a characteristic finding, the so called ‘cork-of-wine-bottle’ sign, which results from intraductal growth of the tumour [7].
Information on the prognosis of ITPNs is limited by the small number of reported cases, although data have suggested an excellent prognosis for patients without invasion (overall 5-year survival rate of 100%) and a significantly more favourable prognosis for ITPNs with a component of invasive carcinoma (overall 5-year survival rate of 71%) relative to the traditional invasive pancreatic ductal adenocarcinoma (overall 5-year survival rate <10%) [2, 8, 9]. However, the extent of invasion does not necessarily correlate with clinical outcome. Patients with minimal invasion can die of disease, whereas patients with a large volume of invasion can achieve long-term survival [4]. Unfortunately, invasive carcinoma is present in most (54–71%) ITPNs and may be more likely in men [3, 4, 10]. In addition, tumours that are large in size, or have increased mitosis and a high Ki-67 proliferation index may have an increased association with invasive carcinoma [2]. Despite the favourable prognosis, the possibility of invasive carcinoma, recurrence and metastasis has led to the general recommendation of surgery as treatment in most ITPN patients.
Diagnostic features of ITPN based on histology and immunohistochemistry
Macroscopically, the mean size of the tumour is 3.8 cm (range 0.5–15 cm). Most ITPNs are circumscribed solid or polypoid masses obstructing pancreatic ducts. They generally arise in the main pancreatic duct, but approximately 5% arise within the branch ducts [4, 10]. ITPNs may be cystic, this occurs in less than half of cases. However, ITPNs do not have grossly identifiable mucin.
Microscopically, ITPNs are characterized by back-to-back tubules forming complex cribriform structures (Fig. 1a, c) with focal areas of papillary architecture seen in 36% of ITPN cases [4]. Solid growth with necrotic foci can occur, occasionally with areas of comedo-like necrosis (Fig. 1b). Occasionally, there are apical apocrine snouts and intraluminal secretion; however, cytoplasmic and intraluminal mucin is scant to absent. The tubules are lined by cuboidal to low columnar epithelial cells with minimal to moderate amounts of eosinophilic or amphiphilic cytoplasm and round to oval nuclei with moderate to marked atypia (Fig. 1d). ITPNs classically have uniform high-grade dysplasia and increased mitotic figures. Uncommon clear cell morphology or stromal osseous and cartilaginous metaplasia has also been reported in an ITPN.
By immunohistochemistry, all ITPNs to date have stained positively with anti-cytokeratin (CK) 7 (Table 1) and CAM5.2 antibodies. CK19 is positive in 92% of the cases. Tumour markers CA19.9 and CEA (carcinoembryonic antigen) are expressed in 93% and 50% of the cases respectively. In contrast, CK20 and CDX2 (homeobox protein CDX-2) only stain rare cells in a minority of ITPNs. The mucin (MUC) family has a particular staining pattern in ITPNs (Table 1), which is sometimes helpful in its differential diagnosis. MUC1 and MUC6 are positive in the majority of cases (88% and 77% respectively) whereas MUC2 and MUC5AC are usually negative (only 2% and 6% ITPNs are positive respectively). Nuclear p53 and p16-INK4 (cyclin-dependent kinase inhibitor 2A) are expressed in 27% and 33% of the cases. Rare focal or scattered cells can be positive for HepPar-1 antigen, chromogranin or nuclear β-catenin. However, ITPNs do not express pancreatic enzymes, trypsin and chymotrypsin, or loss of E-cadherin or Smad4.
Recent molecular findings
Recent genetic studies have found evidence that ITPN is molecularly distinct from IPMN. The most commonly mutated genes in ITPN include PIK3CA, TP53 and CDKN2A, among others [8–18]. Other rare mutations in histone H3 methyltransferase genes, MLL2 and MLL3 (also known as KMT2A and KMT2C), and MCL1 amplification have also been identified in ITPN [19]. However, ITPNs have been shown to have no or rare mutations in KRAS, BRAF, or GNAS. In contrast, IPMNs have high mutation rates in multiple genes [20]. KRAS mutation is thought to be one of the driver genes during IPMN development and mutations in GNAS and RNF43 are also common.
Differential diagnosis
Despite its distinct molecular features, the histology of ITPN can resemble that of IPMN, especially the pancreatobiliary and oncocytic type, making it difficult to distinguish ITPNs from IPMNs by morphology alone. The key morphologic features that characterize ITPNs as compared to IPMNs are shown in Table 2 and Figure 2. Overall, cystic components are infrequent with ITPNs in contrast to IPMNs, which are predominantly cystic lesions. Mucin is another distinguishing feature, which is sparse or absent with ITPNs but abundant with IPMNs. IPMNs also have significantly more morphologic variation according to epithelial subtype, and their degree of cytologic and architectural atypia varies from low- to high-grade dysplasia, whereas ITPNs typically demonstrate uniform high-grade dysplasia. On the other hand, comedo-like necrosis is frequent with ITPNs but rare with IPMNs.
The cytologic and architectural distinctions between ITPNs and IPMNs are confounded by the wide spectrum of morphologies and degree of dysplasia that are seen with IPMNs. Among the four recognized epithelial subtypes of IPMN, the pancreatobiliary and oncocytic type IPMN are the types that are most easily confused with ITPN. Similar to ITPN, both pancreatobiliary and oncocytic type IPMNs have high-grade dysplasia and often complex architecture. Nevertheless, the architecture of these IPMN subtypes remains predominantly papillary in nature as compared to the tubular or tubulopapillary architecture of ITPNs. In addition, the oncocytic IPMN has intraepithelial lumens as well as cells with abundant granular eosinophilic cytoplasm. Subtypes of IPMN also differ from ITPN in their immunohistochemical profiles. Most ITPNs are MUC6 positive and MUC5AC negative, whereas the opposite is true for most IPMNs (MUC6 negative and MUC5AC positive). The immunohistochemical findings with the oncocytic subtype of IPMN are most similar to findings with ITPNs, although some studies found MUC5AC can be positive with oncocytic IPMNs. Use of a mitochondrial stain (e.g. phosphotungstic acid–hematoxylin, Novelli stain, anti-apoptin 111.3 antibody) may allow an oncocytic IPMN to be distinguished from an ITPN on the basis of abundant mitochondria in cytoplasm [12].
Intraductal acinar cell carcinoma can also be confused with ITPN due to its occasional intraductal growth pattern. However, intraductal acinar cell carcinoma will typically stain positively for pancreatic enzymes such as trypsin, chymotrypsin or Bcl-10 (B-cell lymphoma/leukemia 10), and negatively for CK7 and CK19 by immunohistochemistry [4, 21].
Conclusion
ITPN is a relatively new diagnostic entity that occurs infrequently, predominantly in older patients. One-third of patients can be asymptomatic. Although invasive carcinoma is present in most ITPNs, the prognosis of these tumours appears to be significantly more favourable than pancreatic ductal adenocarcinoma. ITPNs generally arise in and obstruct the main pancreatic duct with circumscribed, solid nodules that are grossly visible. Histologically, these tumours are characterized by back-to-back tubules forming complex cribriform structures and uniform high-grade dysplasia. Necrosis is frequent but cytoplasmic and intraluminal mucin is scant to absent, which is in contrast with IPMNs. Molecular studies support that ITPN is a distinct entity from other intraductal neoplasms of pancreas, such as IPMN. With increased recognition of ITPNs, we expect to learn more information about its pathological features and prognostic implications.
References
1. Adsay NV, Fukushima N, Furukawa T, Hruban RH, Klimstra DS, Klöppel G, et al. Intraductal neoplasms of the pancreas. In: Bosman FT, Carneiro F, Hruban RH, Theise ND, eds. World Health Organization Classification of Tumours of the Digestive System, pp. 304–313, 4th edn. International Agency for Research on Cancer 2010.
2. Yamaguchi H, Shimizu M, Ban S, Koyama I, Hatori T, Fujita I, Yamamoto M, Kawamura S, Kobayashi M et al. Intraductal tubulopapillary neoplasms of the pancreas distinct from pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 2009; 33(8): 1164–1172.
3. Rooney SL, Shi J. Intraductal tubulopapillary neoplasm of the pancreas: an update from a pathologist’s perspective. Arch Pathol Lab Med 2016; 140(10): 1068–1073.
4. Basturk O, Adsay V, Askan G, Dhall D, Zamboni G, Shimizu M, Cymes K, Carneiro F, Balci S et al. Intraductal tubulopapillary neoplasm of the pancreas: A clinicopathologic and immunohistochemical analysis of 33 cases. Am J Surg Pathol 2017; 41(3): 313–325.
5. Bhuva N, Wasan H, Spalding D, Stamp G, Harrison M. Intraductal tubulopapillary neoplasm of the pancreas as a radiation induced malignancy. BMJ Case Rep 2011; 2011.
6. Del Chiaro M, Mucelli RP, Blomberg J, Segersvard R, Verbeke C. Is intraductal tubulopapillary neoplasia a new entity in the spectrum of familial pancreatic cancer syndrome? Fam Cancer 2014; 13(2): 227–229.
7. Motosugi U, Yamaguchi H, Furukawa T, Ichikawa T, Hatori T, Fujita I, Yamamoto M, Motoi F, Kanno A et al. Imaging studies of intraductal tubulopapillary neoplasms of the pancreas: 2-tone duct sign and cork-of-wine-bottle sign as indicators of intraductal tumor growth. J Comput Assist Tomogr 2012; 36(6): 710–717.
8. Cooper CL, O’Toole SA, Kench JG. Classification, morphology and molecular pathology of premalignant lesions of the pancreas. Pathology 2013; 45(3): 286–304.
9. Kasugai H, Tajiri T, Takehara Y, Mukai S, Tanaka JI, Kudo SE. Intraductal tubulopapillary neoplasms of the pancreas: case report and review of the literature. J Nippon Medl Sch 2013; 80(3): 224–229.
10. Kolby D, Thilen J, Andersson R, Sasor A, Ansari D. Multifocal intraductal tubulopapillary neoplasm of the pancreas with total pancreatectomy: report of a case and review of literature. Int J Clin Exp Pathol 2015; 8(8): 9672–9680.
11. Amato E, Molin MD, Mafficini A, Yu J, Malleo G, Rusev B, et al. Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. J Pathol 2014; 233(3): 217–227.
12. Bledsoe JR, Shinagare SA, Deshpande V. Difficult diagnostic problems in pancreatobiliary neoplasia. Arch Pathol Lab Med 2015; 139(7): 848–857.
13. Kloppel G, Basturk O, Schlitter AM, Konukiewitz B, Esposito I. Intraductal neoplasms of the pancreas. Semin Diagn Pathol 2014; 31(6): 452–466.
14. Reid MD, Saka B, Balci S, Goldblum AS, Adsay NV. Molecular genetics of pancreatic neoplasms and their morphologic correlates: an update on recent advances and potential diagnostic applications. Am J Clin Pathol 2014; 141(2): 168–180.
15. Schlitter AM, Jang KT, Kloppel G, Saka B, Hong SM, Choi H, Offerhaus GJ, Hruban RH, Zen Y et al. Intraductal tubulopapillary neoplasms of the bile ducts: clinicopathologic, immunohistochemical, and molecular analysis of 20 cases. Mod Pathol. 2015; 28(9): 1249–1264.
16. Urata T, Naito Y, Nagamine M, Izumi Y, Tonaki G, Iwasaki H, Sasaki A, Yamasaki A, Minami N et al. Intraductal tubulopapillary neoplasm of the pancreas with somatic BRAF mutation. Clin J Gastroenterol 2012; 5(6): 413–420.
17. Yamaguchi H, Kuboki Y, Hatori T, Yamamoto M, Shimizu K, Shiratori K, Shibata N, Shimizu M, Furukawa T. The discrete nature and distinguishing molecular features of pancreatic intraductal tubulopapillary neoplasms and intraductal papillary mucinous neoplasms of the gastric type, pyloric gland variant. J Pathol 2013; 231(3): 335–341.
18. Yamaguchi H, Kuboki Y, Hatori T, Yamamoto M, Shiratori K, Kawamura S, Kobayashi M, Shimizu M, Ban S et al. Somatic mutations in PIK3CA and activation of AKT in intraductal tubulopapillary neoplasms of the pancreas. Am J Surg Pathol 2011; 35(12): 1812–1817.
19. Bhanot U, Basturk O, Berger M, Shah R, Scott S, Adsay V, Offerhaus GJ, Hruban RH, Zen Y et al. Molecular characteristics of the pancreatic intraductal tubulopapillary neoplasm. Mod Pathol 2015; 28(2S): 440A.
20. Springer S, Wang Y, Dal Molin M, Masica DL, Jiao Y, Kinde I, Blackford A4, Raman SP5, Wolfgang CL et al. A combination of molecular markers and clinical features improve the classification of pancreatic cysts. Gastroenterology 2015; 149(6): 1501–1510.
21. Hosoda W, Sasaki E, Murakami Y, Yamao K, Shimizu Y, Yatabe Y. BCL10 as a useful marker for pancreatic acinar cell carcinoma, especially using endoscopic ultrasound cytology specimens. Pathol Int 2013; 63(3): 176–182.
The authors
Shula Schechter MD; Jiaqi Shi* MD, PhD
Department of Pathology, University of Michigan,
Ann Arbor, MI 48109 USA
*Corresponding author
E-mail: jiaqis@med.umich.edu
Urinary galactitol quantitation by gas chromatography–mass spectrometry for the diagnosis of galactosemia
, /in Featured Articles /by 3wmediaGalactosemia is an inborn error of metabolism caused by the deficiency of any of the three principal enzymes (GALT, GALK and GALE) involved in the Leloir pathway. The application of urinary galactitol as a diagnostic and monitoring marker for galactosemia has been extensively researched but the practice varies in different centres. The Willink Biochemical Genetic Laboratory has recently developed and evaluated a method to quantitate urinary galactitol by gas chromatography–mass spectrometry and revisited its use as a first-line diagnostic test for galactosemia. The analytical performance characteristics of the method, established age-related reference ranges, and the relationship between urinary galactitol excretion and hepatic dysfunctions will be discussed.
by Yuh Luan Choo, Teresa Hoi-Yee Wu, Jackie Till and Dr Mick Henderson
Galactosemia: an overview
Galactosemia is a group of three inborn errors of galactose metabolism each with an autosomal recessive inheritance pattern. The deficiency or absence of galactose-1-phosphate uridyltransferase (GALT), galactokinase (GALK) or galactose-4-epimerase (GALE) enzymes involved in the Leloir pathway leads to toxic accumulation of galactose, hence the term ‘galactosemia’. Classical galactosemia is the most common form of galactosemia caused by GALT deficiency. The prevalence of classical galactosemia varies greatly across different populations in the world, i.e. 1 : 10 000–1 : 20 000 live births in Ireland, 1 : 25 000-1 : 44 000 live births in the United Kingdom, 1 : 50 000 cases in the United States, 1 : 100 000 newborns in Japan, and relatively low frequency in Asian populations [1]. GALK deficiency has a high prevalence of 1 : 1600 in the Romani Gypsy population [2], but in other populations GALK and the GALE deficiency are more rare and can present with acute and life-threatening clinical signs and symptoms, typically manifested within the first few days to weeks of life after consumption of breast milk and galactose-containing formula. Clinical symptoms such as jaundice, vomiting, failure to thrive and poor feeding are commonly observed in galactosemic babies [3]. Signs and symptoms of abnormal carbohydrate metabolism, kidney and liver dysfunction including aminoaciduria, hepatomegaly, hypoglycemia and elevated blood galactose and urinary galactitol are characteristic of this disorder. Untreated galactosemia can potentially lead to neonatal death. Early diagnosis and treatment is critical and usually life-saving. However, there are long-term clinical complications, including cataracts, short stature, neurodevelopmental problems, premature ovarian failure, developmental delay and impaired cognitive functions [4].
Biochemical tests for galactosemia and their limitations
Newborn bloodspot screening (NBS) for galactosemia is not currently recommended by the United Kingdom Newborn Screening Committee because it fails to meet their strict criteria. Current tests have high false-positive rates and early treatment is only partially successful. However, galactosemia is frequently detected under the existing protocol owing to affected babies having elevated phenylalanine (≥200 µmol/L) and tyrosine (≥240 µmol/L) and so are investigated for probable liver diseases [5].
To date, a small number of laboratory tests are offered by specialist metabolic centres in the UK to aid the diagnosis and monitoring of galactosemia, including urinary sugar chromatography, the Beutler fluorescent spot test, urinary galactitol quantitation, quantitative assays of erythrocyte GALT, GALK and GALE enzymes, genetic analysis and galactose-1-phosphate (Gal-1-P) analysis (Table 1).
Urinary sugar chromatography
Increased urinary excretion of galactose, a feature of galactosemia, will give rise to a positive reducing substances result. The identification of the sugar is possible by a chromatography technique, as is the field method in the UK. These are useful first-line tests; however, false-negative results may be seen in patients who have already started a lactose-free diet.
Beutler test
Another commonly used first-line test that qualitatively detects the activity of GALT is the Beutler fluorescent spot test. This is a robust, technically simple test that works well in most situations. However, false-negative results could be expected following a blood transfusion. Also as the endogenous enzyme glucose-1-phosphate dehydrogenase (G6PD) is used as a linked enzyme in the Beutler method, G6PD deficiency will lead to a false-positive result.
GALT, GALK and GALE enzyme assay
The gold standard diagnostic tests are the quantitative assay for GALT, GALK and GALE to distinguish and confirm the three forms of galactosemia. However, blood transfusion will affect the validity of the enzyme results in the same manner as the Beutler test. Detection of the enzyme activities in lymphocytes may be helpful but all of these assays are laborious and time-consuming.
Galactose-1-phosphate (Gal-1-P) quantitation
The quantitative measurement of galactose-1-phosphate (Gal-1-P) is another technically complicated test that is useful to support the diagnosis in all forms of galactosemia. Gal-1-P has also been used as a biomarker to monitor dietary compliance in galactosemic patients; however, it is not a reliable marker for long-term monitoring because it reflects only the galactose ingestion in the past 24 hours and poorly correlates with long-term clinical outcome [6].
Urinary galactitol quantitation
Urinary galactitol, an end product of galactose formed by an alternative pathway, is invariably excreted in significant quantities in patients with all forms of galactosemia. As galactose is produced endogenously, the level of urinary galactitol is expected to be less affected by the dilutional effect of the blood transfusion or the exogenous/dietary source of galactose. In comparison to normal healthy controls, urinary galactitol excretion is significantly elevated at birth in all forms of galactosemia, including the milder phenotypes of GALT, i.e. S135L homozygosity [7] and in the Duarte variants [8]. The level of urinary galactitol decreases rapidly following commencement of dietary treatment but still remains above the reference ranges for normal healthy controls [7]. However, several studies have shown that galactitol is not correlated with dietary galactose intake or erythrocyte Gal-1-P concentration [8], nor with the development of long-term complications in patients with classical galactosemia [9]. In addition, the high intra-individual biological variability of urinary galactitol may limit its value in disease investigation and monitoring [10].
The practice in the diagnosis and monitoring of galactosemia varies widely, in particular on the use of urinary galactitol. The latest international guideline for classical galactosemia recommended that although urinary galactitol is unsuitable for disease monitoring, it could be used as a ‘supportive diagnostic test’ following blood transfusions [11], a treatment frequently used in neonatal care units. However, this test is not widely available and may be underused. Further research is necessary to evaluate the clinical usefulness of urinary galactitol in aiding the diagnosis and monitoring of galactosemia.
Measurement of urinary galactitol
Galactitol is the toxic metabolic by-product formed intracellularly following reduction of galactose by aldose reductase. Galactitol is subsequently excreted in the urine as it cannot be further oxidized by sorbitol dehydrogenase. This sugar alcohol has been extensively studied in urine, blood, amniotic fluid, liver, kidney, cardiac muscle, skeletal muscle, brain and the eye lens. Most clinically relevant data were derived from investigations on urinary galactitol. The analytical methods employed for identification and measurement of urinary galactitol have involved gas–liquid chromatography with trimethylsilyl (TMS) or methoxylamine-acetate derivatives, isotope dilution gas chromatography–mass spectrometry (GC-MS) with acetate derivative, reverse-phase high-performance liquid chromatography, thin-layer chromatography and proton magnetic resonance spectroscopy. Most research reported that GC-MS is particularly suitable for the quantitation of urinary polyols as it offers high resolution, great sensitivity and rapid analytical speed [12].
Urinary galactitol quantitation by gas chromatography–mass spectrometry
The Willink Biochemical Genetic Laboratory conducted a preliminary study on urinary galactitol quantitation by using a GC-MS method to evaluate the key analytical validation components, establish the age-related reference ranges, and to study the relationship between urinary galactitol excretion and hepatic dysfunctions. The study included plain urine samples from two known patients with galactosemia, random urine samples from eight unaffected patients with suspected hepatic dysfunction, and 120 individuals unaffected by galactosemia, received in the Willink Laboratory for a metabolic screen. The procedure was modified from the method described by Pettit et al. and Allen et al. based on the method principle of acetate derivatives formation followed by separation and detection using GC-MS [13, 14]. The method was linear from 2.5 µmol/L to 330 µmol/L. The lower limit of detection (LoD) and lower limit of quantification (LoQ) were 3 µmol/L and 9 µmol/L. Intra- and inter-assay precisions were 1.41–6.22% and 2.54–17.04% respectively at levels across the measuring range. We used a total of 27 samples from the ERNDIM (European Research Network for evaluation and improvement of screening, Diagnosis and treatment of Inherited Disorders of Metabolism) ‘Specialist Assays in Urine’ external quality assessment (EQA) scheme to test if our method was in agreement with those of other specialist laboratories. Figure 1 showed that the results from the GC-MS method were in good agreement with the method means (R2=0.944). We showed that samples for urinary galactitol measurement were stable up to 7 days under storage at −20 °C, 4 °C and room temperature. Our findings and other studies demonstrated that urinary galactitol excretion in both normal and galactosemic subjects are age-dependent, with the highest excretion at a younger age (Fig. 2). A minimal amount of galactitol can be found in urine samples of healthy individuals owing to the generation of galactose by endogenous metabolic reactions. Newborns are expected to excrete a greater amount of galactitol than older children as the neonatal liver is not yet fully developed and, thus, less effective in metabolizing the increased load of galactose after milk feeding. The age-related reference ranges were ≤85, ≤68, ≤29, ≤23, ≤9 and ≤4 µmol/mmol creatinine for the 0–3 months, 4–11 months, 1–2 years, 3–6 years, 7–15 years and >15 years age groups, respectively. In our study, galactosemic patients excreted 9-fold to ≥800-fold more urinary galactitol than the age-matched control group, whereas non-galactosemic patients with suspected hepatic dysfunction excreted 3-fold more. An elevated urinary galactitol result alone is does not identify whether galactosemia is caused by enzyme deficiency in the Leloir pathway or by other secondary causes. It is of utmost importance to consider further biochemical and radiological investigations for patients with hepatic dysfunctions and metabolic disorders in order to differentiate and confirm the diagnosis of hypergalactosemia.
Conclusion and future work
Further work is required for a comprehensive analytical and clinical validation of the test method, but our preliminary data are promising and demonstrate that the GC-MS quantitation of urinary galactitol would be acceptable for the diagnosis of galactosemia. Urinary galactitol is potentially very useful as a supportive diagnostic test following blood transfusions and its use should be encouraged. Its application as a first-line test for all forms of galactosemia is undisputable. A full evaluation of its clinical application will be possible following implementation of this assay into routine service in the Willink Biochemical Genetics Laboratory.
Acknowledgements
We would like to thank Graeme Smith and James Cooper for their technical expertise in helping to set up and validate the GC-MS assay for galactitol in our laboratory. We would also like to thank Ann Brown and the staff of the Clinical Chemistry Department at Southmead Hospital, Bristol, for sharing their in-house standard operating procedure for this method and demonstrating its use within their laboratory.
The Willink Laboratory acknowledges the use of data derived from ERNDIM EQA materials in this publication. The use of ERNDIM EQA materials does not imply that ERNDIM endorses the methods used or the scientific validity of the findings in this publication. ERNDIM (www.erndim.org) is an independent, not for profit foundation that provides EQA schemes in the field of inborn errors of metabolism with the aim of improving diagnosis, treatment and monitoring of inherited metabolic diseases.
References
1. Saleem U, Mahmood S, Kamran SH, Mutt MA, Ahmad B. Prevalence, epidemiology and clinical study of galactosemia. J App Pharm 2012; 4(1): 524–530.
2. Kalaydjieva L, Perez-Lezaun A, Angelicheva D, Onengut S, Dye D, Bosshard NU, Jordanova A, Savov A, Yanakiev P, et al. Founder mutation in the GK1 gene is responsible for galactokinase deficiency in Roma (gypsies). Am J Hum Genet 1999; 65(5): 1299–1307.
3. Waggoner DD, Buist NRM, Donnell GN. Long-term prognosis in galactosaemia: results of a survey of 350 cases. J Inherit Metab Dis 1990; 13(6): 802–818.
4. Walter JH, Collins JE, Leonard JV, Chiswick M and Marcovitch H. Recommendations for the management of galactosaemia commentary. Arch Dis Child 1999; 80(1): 93–96.
5. UK National Screening Committee. Screening for galactosaemia: external review against programme appraisal criteria for the UK National Screening Committee (UK NSC). Bazian Ltd. 2014. http://legacy.screening.nhs.uk/screening-recommendations.php.
6. Van Calcar SC, Bernstein LE, Rohr FJ, Scaman CH, Yannicelli S, Berry GT. A re-evaluation of life-long severe galactose restriction for the nutrition management of classic galactosemia. Mol Genet Metab 2014; 112(3): 191–197.
7. Palmieri M, Mazur A Berry GT Ning C, Wehrli S, Yager C, Reynolds R, Singh R, Muralidharan K, et al. Urine and plasma galactitol in patients with galactose-1-phosphate uridyltransferase deficiency galactosaemia. Metabolism 1999; 48: 1294–1302.
8. Ficicioglu C, Hussa C, Gallagher PR, Thomas N, Yager C. Monitoring of biochemical status in children with Duarte galactosemia: utility of galactose, galactitol, galactonate, and galactose 1-phosphate. Clin Chem 2010; 56(7): 1177–1182.
9. Cleary MA, Heptinstall LE, Wraith JE, Walter JH. Galactosaemia: relationshiop of IQ to biochemical control and genotype. J Inherit Metab Dis 1995; 18, 151–152.
10. Hutcheson ACJ, Murdoch-Davis C, Green A, Preece MA, Allen J, Holton JB, Rylance G. Biochemical monitoring of treatment for galactosaemia: biological variability in metabolite concentrations. J Inherit Metab Dis 1999; 22(2): 139–148.
11. Welling L Bernstein LE, Berry GT, Burlina AB, Eyskens F, Gautschi M, Grünewald S, Gubbels CS, Knerr I, et al. International clinical guideline for the management of classical galactosaemia: diagnosis, treatment, and follow-up. J Inherit Metab Dis 2017; 40(2): 171–176.
12. Haga H, Nakajima T. Determination of polyol profiles in human urine by capillary gas chromatography. Biomed Chromatogr 1989; 3(2): 68–71.
13. Pettit BR, King GS, Blau K. The analysis of hexitols in biological fluid by selected ion monitoring. Biomed Mass Spectrom 1980; 7(7): 309–313.
14. Allen JT, Holton JB, Lennox AC, Hodges IC. Early morning urine galactitol levels in relation to galactose intake: A possible method of monitoring the diet in galactokinase deficiency. J Inherit Metab Dis 1988; 11(S2): 243–245.
The authors
Yuh Luan Choo1 MSc; Teresa Hoi-Yee Wu2 MSc, FRCPath; Jackie Till2 BSc; Mick Henderson*2 PhD, FRCPath
1Faculty of Medical and Human Science, University of Manchester, Manchester
M13 9PL, UK
2Willink Biochemical Genetics Laboratory, Manchester, Manchester M13 9PL, UK
*Corresponding author
E-mail: Mick.henderson@nhs.net
LC-MS/MS measurement of serum steroids in the clinical laboratory
, /in Featured Articles /by 3wmediaIn recent decades liquid chromatography–tandem mass spectrometry (LC-MS/MS) has become more widespread in the clinical laboratory, bridging the analytical gap between high-throughput (but interference prone) immunoassays and the highly specific (but labour intensive) technique of gas chromatography–mass spectrometry (GC-MS). This article discusses serum steroid measurement by LC-MS/MS and describes a multiplexed LC-MS/MS steroid panel recently launched at Imperial College Healthcare NHS Trust.
by Dr Emma L. Williams
Introduction
Historically steroid hormones have been measured, primarily in urine, by GC-MS and in serum and plasma by radio-immunoassay. Both techniques require sample extraction prior to analysis and for the former there is a need for derivatization to form volatile derivatives. Thus the assays are laborious and time consuming and have been the preserve of research and specialist laboratories. More recently automated immunoassays have been used in routine clinical laboratories, but these are notorious for being highly prone to interference as a result of their inherent specificity problems [1]. In recent decades LC-MS/MS has come to the fore, offering a promising alternative to immunoassays for high-throughput, specific measurement of serum steroids and it is now the method of choice in many clinical laboratories. LC-MS/MS measurement of serum steroids is informative in the clinical investigation of conditions such as hirsutism, polycystic ovarian syndrome (PCOS) and infertility. In addition LC-MS/MS steroid measurement forms part of a diagnostic triad, along with urine steroid profiling by GC-MS and whole gene sequencing of genomic DNA, for inherited steroidogenic defects including the congenital adrenal hyperplasias (CAH) and disorders of sexual differentiation.
LC-MS/MS measurement
Significant advances in LC-MS/MS technology have enabled the development of high-throughput, sensitive and precise assays for steroid measurement. Figure 1 depicts the biosynthetic pathways of steroidogenesis. LC-MS/MS assays have now been published for all of the steroids in this pathway, using a variety of approaches for sample preparation prior to analysis. Protein precipitation, liquid–liquid extraction, solid phase extraction and supported liquid extraction have all been used for the preparation step. In my laboratory, semi-automated off-line solid phase extraction has been implemented in order to achieve higher throughput. This extraction approach is used to prepare samples prior to ultra-performance (UP)LC-MS/MS analysis using electrospray ionization with detection by multiple reaction monitoring (MRM). The majority of steroids are measured in positive ionization mode, although we use negative ionization mode for aldosterone and dehydroepiandrosterone sulphate (DHEAS).
For accurate LC-MS/MS quantitation, stable isotope internal standards (IS) are required. Addition of IS to all samples, calibrators and quality controls (QCs) is carried out prior to extraction and LC-MS/MS analysis. The ratios of analyte to IS signals are determined to correct for effects of the matrix upon signal intensity, which may be due to ion suppression or enhancement. Typically in LC-MS/MS assays the IS will have two or more hydrogens replaced by deuterium atoms. The IS has a different mass and ion transition to the analyte, while retaining its chemical and physical properties and thus behaves the same way as the analyte throughout the analytical procedure. Carbon-13 labelled IS are increasingly being used as they have become more available. These co-elute more completely with the non-labelled analyte and are, therefore, more effective at correcting for matrix effects compared to deuterium labelling, which alters polarity and increases the possibility of non-co-elution.
An important factor to consider in steroid LC-MS/MS assays is that of specificity, given the similarities in structures of the various steroid intermediates in the steroidogenic pathway.
There are several examples of steroids that have the same molecular weight and are, therefore, isobaric. It is vital that these isobaric steroids are chromatographically resolved as they will undergo the same ion transitions in the mass spectrometer. If not resolved, they would be measured as if they were the same steroid and, therefore, be a cause of positive interference. For example 11-deoxycortisol and 21-deoxycortisol have the same molecular weight (Fig. 2) and undergo the same ion transitions, but can be chromatographically resolved using the selectivity of the mobile phase. It can be seen in Figure 3 that these steroids are successfully resolved in our laboratory method, which uses reverse phase T3 chromatography.
LC-MS/MS steroid assays
In the clinical laboratory, testosterone is the serum steroid most frequently measured by LC-MS/MS analysis. In the external quality assessment scheme offered by the United Kingdom National External Quality Assessment Service (UK NEQAS), 43 (21%) participating labs use LC-MS/MS, with the remainder relying upon automated immunoassays. In my laboratory, both measurement techniques are used, whereby all female samples with elevated immunoassay testosterone results >2.0 nmol/L are reflexed for LC-MS/MS confirmation. In a recent audit of over 5000 female samples in which testosterone was measured we found that of over 800 elevated samples reflexed for confirmation, 23% of these are subsequently found to have normal LC-MS/MS results within the reference range. It is, therefore, essential that elevated female immunoassay results are confirmed by LC-MS/MS to avoid falsely elevated results being reported. Norethisterone, a synthetic form of progesterone used in hormonal contraceptives, is a commonly encountered cause of positive interference in immunoassays for testosterone in female samples [2].
Advantages of multiplexed assays
Testosterone is measured in the investigation of females presenting with clinical signs of hyperandrogenism, e.g. acne and hirsutism and in the investigation of infertility and PCOS. Following the introduction of LC-MS/MS assays into the clinical laboratory for the combined measurement of testosterone and androstenedione it became clear that androstenedione is the cause of hyperandrogenism in a subgroup of patients with PCOS [3]. These cases previously may have been undiagnosed when the testosterone measured in isolation was found to be normal. This observation highlights the benefits of being able to measure two or more steroids simultaneously, which is not possible with radio-immunoassays or in routine automated immunoassays.
17-Hydroxyprogesterone (17-OHP) measurement is used to screen for 21-hydroxylase deficiency; the most common cause of CAH, accounting for ~85% of cases. 17-OHP sits at a branch point for either cortisol or androgen synthesis (Fig. 1) and accumulates when 21-hydroxylase is deficient. However, it can also be raised in normal newborns, particularly in premature neonates, and is influenced by birth weight and stress. In 21-hydroxylase deficiency, 21-deoxycortisol is formed as a side product from the accumulated 17-OHP in a reaction catalysed by 11-beta hydroxylase. The LC-MS/MS measurement of 21-deoxycortisol for the diagnosis of CAH was first described by Cristoni et al. [4] and it allows accurate diagnosis of 21-hydroxylase deficiency in newborns independent of prematurity, birth weight and stress [5]. Shackleton has proposed that a second tier panel comprising 17-OHP, cortisol, 21-deoxycortisol and androstenedione is used in newborn screening for 21-hydroxylase deficiency with a third tier of urinary GC-MS analysis to clinch the final diagnosis [6]. The addition of 11-deoxycortisol to this panel permits the diagnosis of 11-beta-hydroxylase deficiency, the second most common form of CAH. Such a panel has been applied to second tier testing for CAH [7].
In my laboratory a semi-automated solid phase extraction (SPE) LC-MS/MS method for the simultaneous measurement of androstenedione, testosterone and 17-OHP has been in use since April 2016. The SPE uses Waters Oasis PRiME HLB, 96 well, μ-elution plates and is performed using a Tecan Freedom Evo automated Liquid Handler. One hundred microlitres of sample is mixed with IS and proteins are precipitated with methanol and water. Supernatants are applied to the wells of the SPE plate and drawn through under vacuum. Following washing with 0.1% formic acid in 35% methanol, steroids are eluted with methanol and water enabling direct LC-MS/MS analysis of the eluates.
Using a Waters Acquity UPLC system, samples are injected onto a Waters Acquity UPLC HSS T3 column (2.1 × 50 mm) and separated by water/methanol/ammonium acetate/formic acid gradient elution. The analysis is performed using a Waters Acquity-TQD mass spectrometer in electrospray positive ionization mode. The analytes and their co-eluting isotopic ISs are detected using MRM. Quantifier transitions (m/z) monitored are 287>97 for androstenedione, 289>97 for testosterone and 331>97 for 17-OHP.
The method underwent full validation prior to implementation according to Clinical and Laboratory Standards Institute (CLSI) guidelines and as recommended by Honour [8] and demonstrated excellent linearity over the analytical range, with all r2 values ≥0.99. Overall process efficiency was 100–108.3%, demonstrating excellent recovery and minimal ion suppression/enhancement. Intra-assay precision was 2.6–8.1% for all analytes across the measurement range, and inter-assay precision varied from 4.9 to 10.8%. Analysis of UK NEQAS samples revealed minimal negative bias and the high specificity of the assay was confirmed by spiking and interference studies. The newly developed assay compared favourably with the stand-alone LC-MS/MS methods in use previously in our laboratory, with no requirement to re-derive reference intervals. This supra-regional assay service (SAS) accredited steroid panel assay has been in routine use in our LC-MS/MS laboratory since April 2016, streamlining the analytical service. The assay is carried out two or three times a week, with each full plate accommodating around 80 patient samples, plus standards and controls, with automated sample extraction completed in ~ 90 minutes and the LC-MS/MS sample to sample injection time is 5 minutes.
We have recently evaluated a seven steroid LC-MS/MS assay with the addition of cortisol, DHEAS, 11-deoxycortisol and 21-deoxycortisol into the panel. Figure 3 shows the total ion chromatogram of the steroids quantified by this assay. Using a Waters Acquity-TQD mass spectrometer and a slightly modified experimental set-up, the lower limits of quantification obtained were 16.5 nmol/L for cortisol, 2nmol/L for DHEAS, 7nmol/L for 11-deoxycortisol and 2nmol/L for 21-deoxycortisol.
In conclusion, LC-MS/MS steroid panels are a valuable addition to the diagnostic work up of patients being investigated for hyperandrogenism and in the investigation of steroidogenic defects. The increased availability of semi-automated, high-throughput LC-MS/MS assays for multiplexed steroid measurement has opened the door for their future application in targeted metabolomic research. Finally, in the clinical laboratory setting the future continues to look bright for the role of accurate and robust measurement by LC-MS/MS in place of immunoassays as the method of choice for routine serum steroid measurement.
References
1. Jones AM, Honour JW. Unusual results from immunoassays and the role of the clinical endocrinologist. Clin Endocrinol Oxf 2006; 64: 234–244.
2. Jeffery J, MacKenzie F, Beckett G, Perry L, Ayling R. Norethisterone interference in testosterone assays. Ann Clin Biochem 2014; 51: 284–288.
3. Livadas S, Pappas C, Karachalios A, Marinakis E, Tolia N, Drakou M, Kaldrymides P, Panidis D, Diamanti-Kandarakis E. Prevalence and impact of hyperandrogenemia in 1218 women with polycystic ovarian syndrome. Endocrine 2014; 47: 631–638.
4. Cristoni S, Cuccato D, Sciannamblo M, Bernardi LR, Biunno I, Gerthoux P, Russo G, Weber G, Mora S. Analysis of 21-deoxycortisol, a marker of congenital adrenal hyperplasia, in blood by atmospheric pressure chemical ionization and electrospray ionization using multiple reaction monitoring. Rapid Commun Mass Spectrom 2004; 18: 77–82.
5. Janzen N, Peter M, Sander S, Steuerwald U, Terhardt M, Holtkamp U, Sander J. Newborn screening for congenital adrenal hyperplasia: additional steroid profile using liquid chromatography-tandem mass spectrometry. J Clin Endocrinol Metab 2007; 92: 2581–2589.
6. Shackleton C. Clinical steroid mass spectrometry: a 45-year history culminating in HPLC-MS/MS becoming an essential tool for patient diagnosis. J Steroid Biochem Mol Biol 2010; 121: 481–490.
7. Rossi C, Calton L, Hammond G, Brown HA, Wallace AM, Sacchetta P, Morris M. Serum steroid profiling for congenital adrenal hyperplasia using liquid chromatography-tandem mass spectrometry. Clin Chim Acta 2010; 411: 222–228.
8. Honour JW. Development and validation of a quantitative assay based on tandem mass spectrometry. Ann Clin Biochem 2011; 48: 97–111.
The author
Emma L. Williams PhD, FRCPath
North West London Pathology, Imperial College Healthcare NHS Trust, London
W6 8RF, UK
E-mail: emma.walker15@nhs.net
Making standardization simple
, /in Featured Articles /by 3wmediaMass spectrometry (MS) is a well-known and broadly used analytical technique, and one that is particularly effective when coupled with liquid chromatography (LC). LC-MS/MS operates by analyte separation, ionization, mass analysis and detection, and lends itself as an ideal technique to meet the needs of a range of laboratory types. Over the past decade, LC-MS/MS has been applied across several different fields of clinical diagnostics and has become commonplace for forensic and clinical toxicology. However, until now it has only been used across a limited number of specialities, including endocrinology and therapeutic drug monitoring.
By Professor Brian Keevil and Dr Sarah Robinson
Such a powerful technique has the potential to bring significant advantages to the clinical setting, and would enable clinicians to analyse multiple analytes at greater specificities than immunoassay-based methods. It has the potential to supersede alternative methods since it avoids the issues surrounding interferences and the subsequent generation of unreliable data. Even with such advantages, LC-MS/MS has not yet been further adopted by the clinical community. The lack of an automated system has limited its suitability to routine clinical use, while also presenting challenges to laboratories under pressures to standardize and harmonize their practices. Current LC-MS/MS systems involve multiple and complex manual stages that are open to human error while being both time- and labour-intensive. Furthermore, the lack of standardization of LC-MS/MS methods is deterring clinical labs from benefiting from their advantages.
Standardization is critical in clinical laboratories since it is necessary to ensure the correct results are obtained and they are in accordance with results from other labs, especially for therapeutic drug monitoring and endocrine applications.
The challenge of standardization
One of the barriers to more widespread LC-MS/MS use is the lack of properly standardized methods and different laboratories will often use a wide range of techniques, equipment and internal standards. Together, these factors may mean that different results are generated from the same sample.
This level of variation makes it challenging to obtain proper standardization of LC-MS/MS results and is highly problematic. Not only does it become difficult to control results within a lab and ensure they remain comparable year on year, but it can create discrepancies between labs. This could ultimately lead to incorrect patient diagnoses and clinicians recommending the wrong treatment programmes.
The drive for change
Until now, LC-MS/MS systems have been designed with the research laboratory in mind and, as such, are highly configurable making them great for developing methods. However, the needs of the clinical lab are different from those of the research community. The clinical setting requires a dedicated system that not only promotes, but also facilitates standardization. Studies have shown that, through careful use of the same instrument, column and methods, it is possible to generate consistent and reliable resulting data from LC-MS/MS systems based at different laboratories. There is currently a drive from organizations, such as the International Federation of Clinical Chemistry (IFCC), the Centers for Disease Control and Prevention (CDC), and the Endocrine Society, to harmonize assays across laboratories to improve levels of quality. The adoption of one dedicated system among an entire network of laboratories would not only satisfy this organizational drive, but also help clinicians be confident that the data across their entire network is standardized, and thus comparable and repeatable.
The availability of a dedicated system with standardized methods and procedures would make this process significantly easier and remove one of the primary barriers to uptake of this gold standard technique. A dedicated system would need to be optimized for the specific methods run by each laboratory, and available with columns, reagents, calibrators and controls that are consistent and designed specifically for the system. This would help to ensure all data generated is both reproducible and accurate – paramount to patient diagnosis and care. In addition, a clinical LC-MS/MS system would need to be automated and easy to use. Clinical labs are extremely busy so even the most junior members of the staff must be able to operate the instrument and walk away with the confidence that samples are being analysed without error or the need for manual intervention. A system such as this would help to ensure patients were properly diagnosed and appropriate treatment plans devised.
Breaking through the barrier
If a network of laboratories decided to start using a dedicated clinical analyser, it would be able to adopt common reference ranges and reagents, which would provide much greater confidence in the consistency of results. For example, if a patient was transferred to a different hospital mid-way through treatment then there would be a level of assurance that the test results would be the same from both facilities. The data would therefore be directly comparable as long as both labs were using the same dedicated LC-MS/MS system.
Proper standardization is extremely important, yet challenging, and is a key consideration when deciding on an analytical method for implementation. An automated, dedicated clinical LC-MS/MS system would enable inter-laboratory standardization, while allowing interference-prone immunoassay-based tests to be phased out and replaced by clinical LC-MS/MS analysers. The results obtained from one laboratory would then be consistent over many years, and match those results generated from the same patient samples in other labs using the same system. Furthermore, such a system could be operated by the entire laboratory team, removing the need for in-depth and specialist training. This ease of use would decrease the investment required in training, while freeing up more experienced team members to focus on their research.
Conclusion
Analytical techniques are a core component to clinical workflow to ensure accurate patient diagnosis and treatment. LC-MS/MS has clear advantages over alternative immunoassay-based methods, with the ability to analyse multiple analytes at greater specificities. However, its uptake across the clinical community has been slow. This is because LC-MS/MS systems to date have been developed for use in research laboratories, and although the data have been demonstrated to be of high quality, the technology does not simply translate to the needs of the clinical lab.
With analytical needs that directly correlate to patient treatment plans, analytical methods within the clinical lab need to be automated, standardized, reliable and provide walk-away capabilities. This clear need for a dedicated analytical technique has driven the development of the new Thermo Scientific™ Cascadion™ SM Clinical Analyzer*. This dedicated clinical LC-MS/MS system is accurate, easy to use, and has been designed specifically for the clinical laboratory, facilitating standardization both on an inter- and intra-laboratory level to enable clinicians to fully leverage the power of this technique. The impact of this system would help laboratories and laboratory networks to meet their clinical needs.
To find out more, visit www.thermofisher.com/cascadion
*This product is in development and not available for sale. This product is not CE marked or FDA 510(k) cleared.
The authors
Professor Brian Keevil1 and Dr Sarah Robinson2
1Consultant Clinical Scientist and Head of the Clinical Biochemistry Department, University Hospital of South Manchester
2Market Development Specialist, Thermo Fisher Scientific
Steroid testing with the Triple Quad mass spectrometer: profiling with the Gold Standard
, /in Featured Articles /by 3wmediaIn the human body, steroid hormones are involved in a variety of regulatory processes, which makes them also important diagnostic markers for a range of diseases. However, due to their high chemical similarity, they can represent a challenge for many assays – immunoassays in particular suffer from cross-reactivities. In comparison, LC-MS/MS-based assays provide high specificity in combination with the ability to determine several steroids in one run.
by Dr Marc Egelhofer
Steroids have a common distinct chemical structure – they consist of a cholesterol backbone with 3 hexane rings and a pentane ring. The hormones are synthesized in the adrenal cortex (corticosteroids) as well as in the reproductive organs (androgens, estrogens). Several doping agents are also artificial derivatives of the male sexual hormone testosterone, called anabolics, and are used abusively to increase muscle and bone synthesis.
With a distinguished role in regulatory processes of the human body, dysfunctional steroid release can be responsible for many diseases with sometimes extremely unspecific symptoms (see Table 1). One example is aldosteronism, where the adrenal glands produce excessive amounts of the steroid hormone aldosterone. This leads to lowered levels of potassium in the blood (hypokalemia) and an increased excretion of hydrogen ions (alkalosis). Patients suffer from muscle spasms, fatigue, headaches, high blood pressure, and muscle weakness. However, these symptoms can be attributed to many diseases, and only the clinical evaluation of aldosterone plasma levels can ensure a correct diagnosis.
Challenging targets
The chemical similarity of the steroid structure can be a challenge, in particular in a clinical setting where requirements in specificity and selectivity need to be met. This problem becomes evident when looking at epidemiological studies of major diseases, where many different assay methods with a varying performance are used, resulting in an inability to compare data [1]. The discrepancies in assay performance also limit investigations where comparisons of absolute steroid concentration values are used, rather than relative levels. For example, absolute steroid hormone concentrations are needed when analysing effects of hormonal threshold concentrations to obtain a certain disease outcome – or not.
Steroid profiling
A lot of the published literature and of our knowledge about the physiology of steroid hormones is based on radioimmunoassays (RIA). One of the reasons for discrepancies in values, however, is that immunoassays suffer from various interferences due to antibody cross-reactions with other steroid hormones. In contrast, mass spectrometry has been recognized as the best available method for the accurate analysis of steroids in biological samples [2]. It overcomes limitations of immunoassays, while also simplifying the sample preparation in comparison to GC-MS/MS analysis that requires lengthy derivatization processes to obtain the analytes in the gaseous phase for separation.
We have developed a CE-IVD assay for mass spectrometry (MassChrom Steroids) for the determination of 15 steroid hormones. The subsequent analysis takes place in multi reaction monitoring mode (MRM). In this mode, the first and second mass spectrometers are set to a fixed certain mass. MS1 selects only the molecular ion, and ions with a different mass are disregarded. The molecular ion then fragments in the collision cell and MS2 detects the characteristic fragment. The MRM mode makes it possible to determine several steroids in a single run, thereby reducing the time for analysis and increasing the effectiveness of the method. The 15 hormones that can be analysed with this method are divided into two panels for a clear separation of each of the analytes (see Figure 1).
The chromatographic setup, including the analytical column, is identical for all analytes, thereby eliminating the need to change columns or mobile phases between separate runs. Depending on requirements and throughput, sample preparation can be performed in 96 SPE well plates or SPE columns. The assay has been tested on a range of systems, such as the AB Sciex Triple Quad 4500 or the Waters Xevo TQS instruments.
Salivary sampling
Plasma sampling can represent a problem, in particular for parameters that need to be collected several times a day or under stress-free conditions. Saliva consists of 99.5% water, electrolytes, mucus, white blood cells, epithelial cells, glycoproteins and enzymes, though saliva is also a carrier of steroid hormones. The speed at which they are transferred from blood into saliva is controlled by passage through the lipophilic layers of the capillaries and glandular epithelial cells. Consequently, the more lipophilic the molecules the faster is the transfer through these barriers. Salivary concentrations are therefore dependent on the lipophilic properties of the molecule — lipid-soluble steroids such as cortisol have higher concentrations, whereas more hydrophilic substances such as dehydroepiandrosterone-sulfate (DHEA-S) have much lower concentrations relative to the free plasma levels [3].
One of the common medical indications of cortisol testing in saliva is the screening for Cushing’s syndrome, a pathological increase of cortisol [4]. This hypercortisolism can be due to an endogenous overproduction or based on the intake of exogenous glucocorticoids. Symptoms may include obesity, hypertension, hyperglycemia, muscle weakness and osteoporosis. However, these symptoms are also not specific – the majority of individuals with some or all of the symptoms will not suffer from Cushing’s syndrome, therefore, the analysis of cortisol plays a significant role in the identification of the disease.
Cortisol levels do vary significantly over the course of the day (see Figure 2), making it a requirement to measure several times a day. Salivary sampling represents a simple, non-invasive and, for the patient, stress-free sampling method [5]. After a short introduction, patients can collect their sample by themselves at home, which results in a simple process to obtain samples at different stages of the circadian cycle.
The non-invasive nature of the collection procedure also enables samples to be obtained from patients afraid of venipuncture without provoking an unwanted adrenal stress response, especially in children and phobic patients. A disturbing influence of stress-induced adrenal activity is less likely, making salivary sampling more reliable compared with serum, in particular in stress research and pediatric applications [3].
We have developed a CE-IVD method for the determination of cortisol and cortisone in saliva with a sample prep procedure that is performed by filtration and in just a few steps (see Table 2).
The use of stable isotopically labelled internal standards for both analytes ensures reproducible and reliable quantification of the parameters. The performance data are 96-105% for the recovery of spiked samples, an intraassay variation of CV = 2-5%, and interassay variation of CV = 2-7 %, and the lower limit of quantification is 0.27 µg/l (see Figure 3).
Conclusions
Immunoassays are widely used for the measurement of steroids, though it is accepted that these methods suffer from various interferences due to antibody cross-reactions with other steroid hormones. In contrast, LC-MS/MS has been recognized as the best available method for the accurate analysis of steroids in biological samples. LC-MS/MS overcomes many limitations of immunoassays, enhances diagnostic utility of the testing, and expands diagnostic capabilities in endocrinology. In addition to the superior quality of the measurements, LC-MS/MS can help in the standardization and harmonization of steroid testing among clinical laboratories. Commercial suppliers offer complete solutions from sample to result that allow the determination of steroids with LC-MS/MS as the gold standard and without the need to go through the development of an in-house method.
References
1. Stanczyk F. et al. Standardization of Steroid Hormone Assays: Why, How and When? Cancer Epidemiol. Biomarkers Prev. 2017; 16(9): 1713-1719.
2. Rosner W. et al. Position statement: Utility, limitations, and pitfalls in measuring testosterone: an Endocrine Society position statement. J Clin Endocrinol Metab 2017; 92(2): 405-13.
3. Gröschl M. Current Status of Salivary Hormone Analysis Clin. Chem. 2008; 1759 54(11): 1759-69.
4. Nieman L.K. et al. The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2008; 93(5):1526-40.
5. De Palo EF et al. Human saliva cortisone and cortisol simultaneous analysis using reverse phase HPLC technique. Clin Chim Acta. 2009; 405(1-2): 60-5.
The author
Marc Egelhofer PhD*
Chromsystems Instruments & Chemicals GmbH, Am Haag 12, 82166 Gräfelfing, Germany
*Corresponding author,
egelhofer@chromsystems.de
Fundamental research: Europe is not bridging the gap with the US
, /in Featured Articles /by 3wmediaOctober 2nd marked the 100th anniversary of the birth of Christian de Duve, Nobel Prize-winning Belgian cytologist and biochemist who discovered two cell organelles, lysosome (in 1955) and peroxisome (in 1966), for which he shared the 1974 Nobel Prize in Physiology or Medicine with fellow Belgian Albert Claude and Romanian-born American George Palade. The award recognized their ‘discoveries concerning the structural and functional organization of the cell’. Albert Claude pioneered the application of electron microscopy for the study of animal cells and developed the technique of differential centrifugation during the 1930’s and 40’s at the Rockefeller Institute while George Palade discovered what are now known as ribosomes, further demonstrating their role in protein synthesis and describing the protein secretory process. De Duve’s work was a direct consequence of Claude’s contributions in the chemical fractionation of cell components and his discovery of lysosomes laid the groundwork for the understanding of the mechanisms of several metabolic disorders such as Pompe disease and Gaucher disease. These rare diseases are grouped together under the name of Lysosomal Storage Disorders (LSDs), a group of approximately 50 inherited metabolic disorders resulting from defects in lysosomal function which affect mostly children who often die at a young and unpredictable age.
Although there are currently no cures for LSDs (despite the promises of gene therapy) and treatment is mostly symptomatic, enzyme replacement therapy (ERT) has been shown to minimize symptoms and prevent permanent organ damage. Early detection is therefore critical to allow treatment and control of these rare disorders in newborns and depends on the availability of accurate screening tests. The US FDA has recently cleared a neonatal screening test for Mucopolysaccharidosis Type 1 (MPS I), Pompe disease, Gaucher disease and Fabry disease through the de novo premarket review pathway. The Seeker system (which is also CE-marked and manufactured by Baebies, Durham, NC, USA) consists of a reagent kit and instrument for measuring the activity of enzymes associated with any of the four LSDs in dried blood samples collected from the prick of a newborn’s heel 24 to 48 hours after birth.
None of these developments would be possible without advances in fundamental research and, unfortunately, Europe is still lagging behind the US and possibly China in this respect. In Belgium, a major research funding organization (the FNRS, founded in 1928) recently announced it could only finance 20% of grant requests although 60% were qualified as exceptional or excellent. It is high time for European governments and institutions to heed the late Professor de Duve’s words: ‘To overcome disease one must first understand it’.
Laboratory assessment of mild traumatic brain injury by use of neurotoxicity biomarkers
, /in Featured Articles /by 3wmediaMild traumatic brain injury (mTBI) and concussion from sporting/recreational activities are relatively common. However, assessment of mTBI is difficult and many incidents of mTBI and concussion are unrecognized and/or not reported. Levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) peptide, a product of the proteolytic degradation of AMPA receptors, have been found to be raised in mTBI and the development of point-of-care (POC) tests based on the recognition of the AMPAR peptide is underway. Such POC tests will be useful at the pitch sideline or in the combat field for aiding objective diagnosis and management of subtle brain injury.
by Prof. Svetlana A. Dambinova, Rozalyn Heath and Dr Galina A. Izykenova
Introduction
Mild traumatic brain injury (mTBI) including concussion is the most frequent form of injury in military and civilian settings with the highest prevalence among young adults aged 15 to 24 years. Each year sports and recreational activities contribute about 3.8 million cases of mTBI in the USA [1], whereas brain injuries caused by explosions are the most common combat wounds in the military arena.
Assessment of mTBI regardless of origin is complicated. Many primary mTBIs, and particularly concussions, go unrecognized or are not reported when there is no loss of consciousness. Additionally, without sufficient reports of previous incidents, soldiers and competitive athletes are often subjected to multiple concussions. There are several challenges to identify immediate (or primary acute and subacute within 24 hours and up to 2 weeks respectively) impact, secondary (beyond 14 days) and cumulative (brain-related seizures) consequences that might follow multiple concussions or mTBI.
Normally, acute subclinical concussions associated with micro-edema formation that is reversible and not visible on conventional computed tomography and magnetic resonance imaging (MRI) methods. Advanced neuroimaging techniques (diffusion tensor imaging, functional MRI, and positron emission tomography) that can register minor structural and microvascular changes are primarily used for research. These modalities are not available in emergency situations or for routine clinical evaluations and have a limited application in persons with metal implants [2] or claustrophobia [3].
Currently, there is an unmet diagnostic need to reveal brain micro-damage following concussion by use of a rapid and affordable assay detecting, for instance, neurotoxicity (immunoexcitotoxicity) biomarkers in the bloodstream [4]. Analogous to NR2 peptide as a biomarker for cortical lesions in transient ischemic attack (TIA)/strokes [5], we proposed that the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) peptide marker is able to differentiate subtle brain injury in white matter associated with concussions.
Neurotoxicity biomarkers in mTBI
It is known that the family of ionotropic glutamate receptors (GluRs) implying N-methyl-D-aspartate (NMDAR), AMPAR and kainite receptors are involved in the regulation of synaptic connectivity in cortical/subcortical and brainstem areas [4,5]. Recently, it was shown that AMPAR represents a biomarker for the neurotoxicity cascade underlying subtle brain injury [6].
The family of location-specific GluRs is involved in more than 80% of cortical and subcortical neuronal communications underlying superior mental functions [7]. AMPAR is primarily distributed in the forebrain and subcortical pathways [8], and strategically located on surfaces of small cerebral arteries regulating blood circulations in white matter substructures [9]. Symptomatically the impact to brain may lead to executive brain dysfunctions associated with subcortical areas. Visual and cognitive deficits (including problems with memory, intellect, concentration and attention) might be an aftermath of subtle repetitive injuries to deep brain structures due to more severe cases of mTBI.
In acute and subacute phases of mTBI, a massive release of glutamate, which upregulates excitotoxic AMPARs has been detected [4]. The GluR1-subunit of N-terminal AMPAR fragments is rapidly cleaved by extracellular proteases and fragments carrying immune active epitopes released into the bloodstream through the compromised blood–brain barrier (BBB). This degradation product can be detected directly in the blood as AMPAR peptide fragments (molecular weight 5–7 kDa) [4]. The protective effects of a compromised BBB impacting neurotoxicity are exacerbated further when accompanied by a delayed immunological response generating peripheral anti-CNS antibodies [10].
Concussion assays development
To detect AMPAR peptide, magnetic-particle-based enzyme-linked immunosorbent assay (MP-ELISA) containing unique reagents has been developed. MP-ELISA involved a sandwich or ‘bridging’ assay where the suspended in solution microparticles coated by capture antibodies are binding to two epitopes of AMPAR peptide and reaction is revealed by probe-detection antibodies (Fig. 1). The probe is an enzyme that generates a colour reaction. The assay includes control samples (reference standards) produced synthetically or as a fusion human protein.
A feasibility study detecting the AMPAR peptide in a single blood draw taken from club sport athletes and professional football players in acute and subacute stage of concussions evaluated cut-offs of 0.4 and 1.0 ng/mL respectively for the assessment of single and recurrent concussions (Table 1) [11,12]. The predictive value of the test was assessed as 91% with a likelihood ratio of 11–12 for recognizing individuals with mTBI. If the test at a cut-off point of 0.4 ng/mL was negative, the post-test probability for a single concussion would be <4%.
AMPAR peptide concentrations in plasma for a military cohort suffering mTBI showed increased levels with an average concentration of 2.98 ng/mL [13]. In this study, the optimal cut-off value for recurrent mTBI was similar to professional players (Table 1), at which a positive predictive value of 93% was achieved. The trade-offs between true-positive and false-positive yielded in an area under the receiver operating characteristic (ROC) curve of 0.97.
Early experimental and clinical research of antibodies to AMPA receptors (AMPAR Ab) as an immunoexcitotoxicity biomarker has demonstrated their diagnostic value in detecting pathological brain-spiking activity and epileptic seizures [14,15] as a consequence of traumatic brain injury, thereby representing a prognostic risk factor [16]. Clinical studies of GluR1 antibodies in adult patients with different chronic neurological pathology (n=1866) performed in Russia, Germany, Ireland, Poland and the USA have demonstrated diagnostic potential (sensitivity of 86%-88% and specificity of 83–97%) in assessment of post-traumatic seizures.
In sport-related multiple concussions, AMPAR Ab values remained abnormally high in the blood of some athletes who had headaches and visual problems. It was suggested that this finding may reflect persistent changes in the subcortical areas of the brain. The diagnostic value of AMPAR Ab (sensitivity of 86–88%, specificity of 83–97% at 1.5 ng/ml cut-off) in assessment of seizures defined by electroencephalogram (EEG) with history of sustained single or multiple TBI have been demonstrated for children and adult patients indicating a development of ‘chronic’ conditions [13].
Sideline testing of AMPAR peptide and antibody
Recognizing the medical need for sideline testing for mTBI (largely for emergency care), a point-of-care (POC) testing platform has been recently undertaken for AMPAR peptide and antibody assays are being tested in clinical studies (www.drdbiotech.com).
A lateral flow sandwich assay to detect AMPAR Ab consists of a blood filtering sample pad, a pad containing gold nanoshells conjugated to protein A, a nitrocellulose strip with immobilized AMPAR peptide, a control line, and a cellulose absorbent. Applied to the blood filter, erythrocytes are removed from the sample, which passes to the conjugate pad where AMPAR IgGs are captured by protein A. When the complex reaches the peptide test line stripe on nitrocellulose, it binds to the test line yielding a visible signal with intensity proportional to the concentration of the AMPAR Ab presented in the sample (Fig. 2).
The control line then captures a portion of the remaining nanoshells regardless of the presence or absence of the peptide (Fig. 3).
The AMPAR peptide prototype test that works on a similar principle, employed gold nanoparticles as the signal-generating species covalently bound to specific antibodies against AMPAR peptide. This assay captures the AMPAR peptide from the blood sample between two different Abs, one immobilized on the nitrocellulose and the other on the gold nanoshells. This ‘bridging’ of the analyte leads to the immobilization of the particles at the test line producing a colour signal.
Conclusion
The laboratory assessment of concussion at the pitch sideline in competitive contact sports or on the field of combat is required to assist in the objective confirmation of when an injured athlete should return to play or a soldier may return to duty. Accurate diagnosis of concussion and appropriate management of subtle brain injury to prevent damage to the long-term health of athletes and others at risk of re-injury. Specific brain biomarkers detected by a rapid blood test would have important diagnostic/prognostic capabilities, particularly for concussion, to objectively evaluate early signs of further brain-function deterioration and assist in navigating personalized therapy when required. Clinical use of blood tests can reliably detect subtle brain impact, predict consequences and aid in triaging persons with persistent symptoms after a recurrent concussion for diffuse tensor or diffuse-weighted imaging modalities of MRI [17].
Early identification of concussion has the potential to become a key component of a successful treatment strategy and outcome monitoring. Advances in analytical assay technologies have made it possible to develop a rapid, cost-effective test that can be used to target populations and select a risk group for post-traumatic seizures to direct to the immediate attention of a specialist.
The opportunity of using ‘yes/no’ lateral flow tests without a need for an instrumental readout, being simply read by eye, would make a huge difference in supplying coaches with reliable, simple and rapid tests in return-to-play decisions. There is also a high demand for portable POC tests for mTBI diagnosis in military combat and civilian emergency settings.
References
1. Faul M, Xu L, Wald MM, Coronado VG. Traumatic brain injury in the United States. Emergency department visits, hospitalizations, and deaths 2002–2006. Atlanta, GA. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control 2010 (https://www.cdc.gov/traumaticbraininjury/pdf/blue_book.pdf).
2. Klinke T, Daboul A, Maron J, Gredes T, Puls R, Jaghsi A, Biffar R. Artifacts in magnetic resonance imaging and computed tomography caused by dental materials. PLoS One 2012; 7: e31766–31771.
3. Napp AE, Enders J, Roehle R, Diederichs G, Rief M, Zimmermann E, Martus P, Dewey M. Analysis and prediction of claustrophobia during MR imaging with the Claustrophobia Questionnaire: an observational prospective 18-month single-center study of 6500 patients. Radiology 2017; 283: 148–157.
4. Dambinova SA. Diagnostic challenges in traumatic brain injury. IVD Technology 2007; 3: 3–7.
5. Dambinova SA. Biomarkers for transient ischemic attack (TIA) and ischemic stroke. Clin Lab Inter 2008; 32: 7–10.
6. Danilenko UD, Khunteev GA, Bagumyan A, Izykenova GA. Neurotoxicity biomarkers in experimental acute and chronic brain injury. In: Dambinova SA, Hayes RL, Wang KKW (editors). Biomarkers for TBI. RSC Publishing, RSC Drug Discovery Series 2012; pp87–98.
7. Gill S, Pulido O. Glutamate receptors in peripheral tissue. In: Gill S, Pulido O (editors). Excitatory transmission outside the CNS. Kluwer Academic Publishers 2010; p3.
8. Hammond JC, McCullumsmith RE, Funk AJ, Haroutunian V, Meador-Woodruff JH. Evidence for abnormal forward trafficking of AMPA receptors in frontal cortex of elderly patients with schizophrenia. Neuropsychopharmacology 2010; 35: 2110–2119.
9. Christensen PC, Samadi-Bahrami Z, Pavlov V, Stys PK, Moore GR. Ionotropic glutamate receptor expression in human white matter. Neurosci Lett 2016; 630: 1–8.
10. Raad M, Nohra E, Chams N, Itani M, Talih F, Mondello S, Kobeissy F. Autoantibodies in traumatic brain injury and central nervous system trauma. Neuroscience 2014; 281: 16–23.
11. Dambinova SA, Shikuev AV, Weissman JD, Mullins JD. AMPAR peptide values in blood of nonathletes and club sport athletes with concussions. Mil Med 2013; 3: 285–290.
12. Dambinova SA, Maroon JC, Sufrinko AM, Mullins JD, Alexandrova EV, Potapov AA. Functional, structural, and neurotoxicity biomarkers in integrative assessment of concussions. Front Neurol 2016; 7: 172.
13. Mullins JD. Biomarkers of TBI: implications for diagnosis and management of contusions. AMSUS 118th Annual Continuing Education Meeting. Seattle, WA, USA 2013; 147. (http://amsusce.org/wp-content/uploads/2015/05/Abstract-Summaries-10.22.13.2.pdf)
14. Dambinova SA, Izykenova GA, Burov SV, Grigorenko EV, Gromov SA. The presence of autoantibodies to N-terminus domain of GluR1 subunit of AMPA receptor in the blood serum of patients with epilepsy. J Neurol Sci 1997; 152: 93–97.
15. Dambinova SA, Granstrem OK, Tourov A, Salluzzo R, Castello F, Izykenova GA. Monitoring of brain spiking activity and autoantibodies to N-terminus domain of GluR1 subunit of AMPA receptors in blood serum of rats with cobalt-induced epilepsy. J Neurochem 1998; 71: 2088–2093.
16. Goryunova AV, Bazarnaya NA, Sorokina EG, Semenova NY, Globa OV, Semenova ZhB, Pinelis VG, Roshal’ LM, Maslova OI. Glutamate receptor antibody concentrations in children with chronic post-traumatic headache. Neurosci Behav Physiol 2007; 37:761–764.
17. Bonow RH, Friedman SD, Perez FA, Ellenbogen RG, Browd SR, MacDonald CL, Vavilala MS, Rivara FP. Prevalence of abnormal magnetic resonance imaging findings in children with persistent symptoms after pediatric sports-related concussion. J Neurotrauma 2017; 34: 1–7.
The authors
Svetlana A Dambinova*1 DSc, PhD; Rozalyn Heath1; Galina A Izykenova2 PhD
1Brain Biomarkers Research Laboratory, DeKalb Medical Center, Decatur, GA, USA
2GRACE Laboratories, LLC, Atlanta, GA, USA
*Corresponding author
E-mail: dambinova@aol.com
Translating stroke biomarkers for patient benefit
, /in Featured Articles /by 3wmediaStroke biomarkers provide much insight into stroke biology that could be translated for patient benefit. When carefully harnessed, these biomarkers could guide decision-making in challenging clinical scenarios. This article offers an overview on current notable brain biomarkers that could aid clinicians in acute stroke management.
by Geelyn J.L. Ng and Dr Raymond C.S. Seet
Introduction
Stroke is a leading cause of permanent disability and the second most important cause of death globally [1]. Against a backdrop of a rapidly ageing society, there are concerns that a silent epidemic of stroke looms over our population.
Ischemic stroke, a subset that affects 87% of stroke population, results from atherosclerosis that affects predominantly the cerebral vasculature. Atherosclerosis of the blood vessels can lead to a cessation or depletion of blood flow to the brain, triggering cerebral ischemia when brain tissues are no longer viable. Blood clots can also be formed in blood vessels and in the heart, subsequently dislodging into the brain (‘embolic stroke’). Presently, there are only two clinically adopted methods of acute reperfusion treatment – intravenous recombinant tissue plasminogen activator (TPA) [2] and endovascular treatment through device-driven retrieval or aspiration of blood clots [3]. Although good functional recovery is five times more likely to occur with early reperfusion [3], the use of acute reperfusion treatment is restricted to a small group of patients where the benefits of treatment are weighed against the persisting risk of hemorrhagic transformation [4].
Sieving out stroke patients who are at risk of recurrent attacks is the first step to enable accurate triaging of patients to specialized units for in-depth observation and individualized treatment for complications arising from stroke. Presently, such identification is highly reliant on a clinician’s intuition and knowledge of neurologic deficits, as well as neuroimaging results. Tapping into the use of cerebral ischemia biomarkers could shed light on the complex pathological consequences following ischemic stroke and bring forth an unbiased system to weigh risks and benefits of treatments for clinicians and researchers alike.
Biomarkers are biological indicators of physiology that are objectively measured for use in risk stratification and development of therapeutic strategies. Having high sensitivity and specificity for the outcome it is expected to diagnose is generally a trait of a good biomarker, especially when targeting a complex and heterogenous disease such as stroke. Using a multi-biomarker platform could aim at different pathways of this multifaceted disease, thereby allowing for a more comprehensive treatment. Due to the presence of the blood-brain barrier (BBB) that holds a tight control over the inflow and outflow of particles, human brain tissues are typically difficult to access, making it impracticable to measure a biomarker within the brain. During cerebral ischemia, the BBB is broken down, causing brain-derived biomarkers to be released into the blood circulation, making it possible for a closer examination of the pathologic processes that take place following stroke onset. Although many biomarkers exist that could aid in stroke research, we have previously focused on notable blood-based stroke biomarkers that may play a bigger part in supporting the difficult clinical decision-making process [5]. This article will be providing an overview of several well-researched blood-based biomarkers, with much potential in aiding the clinical assessment of stroke patients.
Stroke biomarkers in the clinical scene
Studies in ischemic stroke have investigated the usefulness of blood-based biomarkers in identifying stroke mimics, establishing stroke etiology and prognosticating stroke severity and outcomes, such as vascular events and functional recovery [6, 7]. Presently, use of biomarkers in routine clinical practice remains uncommon, as stroke severity is still determined mainly through a thorough clinical neurological assessment and subjective interpretation of neuroimaging findings by a skilled physician. Nevertheless, having an objective means to prognosticate an outcome via a blood sample retrieved from a patient upon stroke presentation could add value to clinical decision-making, especially during times when neuroimaging results and clinical interpretations are unable to yield conclusive results. As stroke is a heterogeneous condition, investigating biomarkers that target different stroke pathways could be promising in establishing a multi-biomarker platform, especially for outcomes such as hemorrhagic transformation (HT), early neurologic deterioration (END) and malignant cerebral infarction.
Matrix metalloproteinase-9
Although administrating TPA could potentially achieve the benefit of arterial recanalization, the risk of symptomatic intracranial secondary hemorrhage within the infarcted brain tissues must not be forgotten. Matrix metalloproteinase-9 (MMP-9) is an enzyme that degrades the basal lamina and breaks down the extracellular matrix when activated during TPA treatment. The function of the BBB is crippled in this process and an inflammatory cascade is initiated, resulting in edema and the dreaded HT [8]. Apart from its involvement in HT, MMP-9 could also be used to identify high-risk END patients and plays a part in malignant cerebral infarction.
C-reactive protein
C-reactive protein (CRP) is a sensitive systemic marker of inflammation and a well-researched biomarker of ischemic stroke found in the blood plasma. CRP has been associated with END and noted to be predictive of adverse outcome, where ischemic stroke patients with higher CRP levels tend to suffer from a significantly worse outcome and mortality [9, 10].
S100β
S100β is a biomarker of ischemic stroke expressed by neuronal cells that can be released into the bloodstream when the BBB is compromised. Its concentration needs to be carefully balanced, as it may be protective in low concentrations, but at high levels has been shown to predict cerebral malignant infarction and correlate with infarct size [11, 12]. However, trial data on the use of biomarkers to guide clinical decisions leading to early decompressive surgery are currently lacking. Several studies have also uncovered an increase in S100β in ischemic stroke patients who present 1 to 7 days from symptom onset [13, 14]. In acute stroke patients, elevated S100β serum levels before thrombolytic therapy have also been demonstrated as a risk factor for HT [15].
N-terminal pro-brain natriuretic peptide
The brain natriuretic peptide (BNP) and its precursor, N-terminal proBNP (NT-proBNP), have been extensively studied as useful biomarkers for the prognosis and diagnosis of heart failure [16]. In recent years, BNP is gradually gaining recognition as a marker of atrial fibrillation (AF) and, therefore, as a biomarker to diagnose and predict stroke of cardioembolic origin [17, 18]. Plasma BNP levels have also been demonstrated to have significant correlations with infarct volume and National Institutes of Health stroke scale (NIHSS), making it a potentially powerful clinical biomarker for acute ischemic stroke [19].
Uric acid
Although uric acid has been adopted clinically for metabolic diseases, it is slowly garnering interest in the field of cardiovascular diseases due to its antioxidant properties. Despite data to suggest a strong association between uric acid levels and positive stroke outcomes [20, 21], several studies have observed an adverse relationship where higher uric acid levels were found to predict poor functional outcome and increased mortality [22, 23]. This disparity could highlight a dual role of uric acid in stroke, where both high and low levels of uric acid could adversely affect stroke outcomes [24]. Much remains to be explored for this biomarker before it could be roled out for use in stroke prognosis or diagnosis.
F2-isoprostanes
The product of arachidonic acid peroxidation generated by free radicals, F2-isoprostanes is well-established as a reliable biomarker for oxidative damage. Even though stroke is widely known as partly the result of oxidative damage, the relationship between F2-isoprostanes and human stroke remains poorly understood. Studies have demonstrated its importance in ischemic stroke as elevated levels of F2-isoprostanes could be observed in patients during the early course of stroke onset, with one even as early as three hours after [25–27].
Conclusion
Cerebral ischemia biomarkers have the potential to bridge translational gaps in medicine by shedding light on the pathological events leading to cerebral infarction and the ischemic cascade, aiding in clinical assessment during the critical time-sensitive decision-making process. Results in this area are still emerging, and more efforts could focus on ensuring the feasibility of incorporating stroke biomarkers for patient benefit. The translation of stroke biomarkers to clinical practice is challenging but can be extremely rewarding, especially when such concerted efforts of researchers, clinicians, industry partners and regulatory authorities result in a positive outcome for stroke patients.
Acknowledgements
We would like to thank the National Medical Research Council, Singapore (NMRC/CSA-SI/0003/2015, NMRC/CNIG/1115/2014 and NMRC/MOHIAFCat1/0015/2014) for their generous support.
References
1. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388(10053): 1459–1544.
2. NINDS rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995; 333(24): 1581–1587.
3. Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, et al. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2015; 46(10): 3020–3035.
4. Seet RC, Rabinstein AA. Symptomatic intracranial hemorrhage following intravenous thrombolysis for acute ischemic stroke: a critical review of case definitions. Cerebrovasc Dis 2012; 34(2): 106–114.
5. Ng GJL, Quek AML, Cheung C, Arumugam TV, Seet RCS. Stroke biomarkers in clinical practice: a critical appraisal. Neurochem Int 2017; 107: 11–22.
6. Bustamante A, López-Cancio E, Pich S, Penalba A, Giralt D, García-Berrocoso T, et al. Blood biomarkers for the early diagnosis of stroke: The Stroke-Chip Study. Stroke 2017; 48(9): 2419–2425.
7. Whiteley W, Chong WL, Sengupta A, Sandercock P. Blood markers for the prognosis of ischemic stroke: a systematic review. Stroke 2009; 40(5): e380–389.
8. Barr TL, Latour LL, Lee KY, Schaewe TJ, Luby M, Chang GS, et al. Blood-brain barrier disruption in humans is independently associated with increased matrix metalloproteinase-9. Stroke 2010; 41(3): e123–128.
9. Muir KW, Weir CJ, Alwan W, Squire IB, Lees KR. C-reactive protein and outcome after ischemic stroke. Stroke 1999; 30(5): 981–985.
10. Idicula TT, Brogger J, Naess H, Waje-Andreassen U, Thomassen L. Admission C-reactive protein after acute ischemic stroke is associated with stroke severity and mortality: the ‘Bergen stroke study’. BMC Neurol 2009; 9: 18.
11. Vahedi K, Hofmeijer J, Juettler E, Vicaut E, George B, Algra A, et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol 2007; 6(3): 215–222.
12. Abraha HD, Butterworth RJ, Bath PM, Wassif WS, Garthwaite J, Sherwood RA. Serum S-100 protein, relationship to clinical outcome in acute stroke. Ann Clin Biochem 1997; 34(Pt4): 366–370.
13. Aurell A, Rosengren LE, Karlsson B, Olsson JE, Zbornikova V, Haglid KG. Determination of S-100 and glial fibrillary acidic protein concentrations in cerebrospinal fluid after brain infarction. Stroke 1991; 22(10): 1254–1258.
14. Buttner T, Weyers S, Postert T, Sprengelmeyer R, Kuhn W. S-100 protein: serum marker of focal brain damage after ischemic territorial MCA infarction. Stroke 1997; 28(10): 1961–1965.
15. Foerch C, Wunderlich MT, Dvorak F, Humpich M, Kahles T, Goertler M, et al. Elevated serum S100B levels indicate a higher risk of hemorrhagic transformation after thrombolytic therapy in acute stroke. Stroke 2007; 38(9): 2491–2495.
16. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA Guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 2013; 128(16): e240–327.
17. Naya T, Yukiiri K, Hosomi N, Takahashi T, Ohkita H, Mukai M, et al. Brain natriuretic peptide as a surrogate marker for cardioembolic stroke with paroxysmal atrial fibrillation. Cerebrovasc Dis 2008; 26(4): 434–440.
18. Fonseca AC, Matias JS, Pinho e Melo T, Falcao F, Canhao P, Ferro JM. N-terminal probrain natriuretic peptide as a biomarker of cardioembolic stroke. Int J Stroke 2011; 6(5): 398–403.
19. Tomita H, Metoki N, Saitoh G, Ashitate T, Echizen T, Katoh C, et al. Elevated plasma brain natriuretic peptide levels independent of heart disease in acute ischemic stroke: correlation with stroke severity. Hypertens Res 2008; 31(9): 1695–1702.
20. Amaro S, Urra X, Gomez-Choco M, Obach V, Cervera A, Vargas M, et al. Uric acid levels are relevant in patients with stroke treated with thrombolysis. Stroke 2011; 42(1 Suppl): S28–32.
21. Chamorro A, Obach V, Cervera A, Revilla M, Deulofeu R, Aponte JH. Prognostic significance of uric acid serum concentration in patients with acute ischemic stroke. Stroke 2002; 33(4): 1048–1052.
22. Weir CJ, Muir SW, Walters MR, Lees KR. Serum urate as an independent predictor of poor outcome and future vascular events after acute stroke. Stroke 2003; 34(8): 1951–1956.
23. Karagiannis A, Mikhailidis DP, Tziomalos K, Sileli M, Savvatianos S, Kakafika A, et al. Serum uric acid as an independent predictor of early death after acute stroke. Circ J 2007; 71(7): 1120–1127.
24. Seet RC, Kasiman K, Gruber J, Tang SY, Wong MC, Chang HM, et al. Is uric acid protective or deleterious in acute ischemic stroke? A prospective cohort study. Atherosclerosis 2010; 209(1): 215–219.
25. Sanchez-Moreno C, Dashe JF, Scott T, Thaler D, Folstein MF, Martin A. Decreased levels of plasma vitamin C and increased concentrations of inflammatory and oxidative stress markers after stroke. Stroke 2004; 35(1): 163–168.
26. Ward NC, Croft KD, Blacker D, Hankey GJ, Barden A, Mori TA, et al. Cytochrome P450 metabolites of arachidonic acid are elevated in stroke patients compared with healthy controls. Clin Sci (Lond) 2011; 121(11): 501–507.
27. Seet RC, Lee CY, Chan BP, Sharma VK, Teoh HL, Venketasubramanian N, et al. Oxidative damage in ischemic stroke revealed using multiple biomarkers. Stroke 2011; 42(8): 2326–2329.
The authors
Geelyn J.L. Ng1,2 BSc, Raymond C.S. Seet*1,2 MBBS, MRCP (UK), MMed (Int Med), FRCP (UK)
1Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
2Division of Neurology, Department of Medicine, National
University Health System, Singapore
*Corresponding author
E-mail: raymond_seet@nuhs.edu.sg