Differential immuno-capture biochip offers accurate, specific leukocyte counting for HIV diagnosis

Researchers from the University of Illinois at Urbana-Champaign have developed a highly sensitive biosensor based on a differential immuno-capture technology that can detect sub-populations of white blood cells. As part of a small, disposable biochip, the microfluidic biosensor can count CD4+/CD8+ T cells quickly and accurately for AIDS diagnosis in the field.  

“There are 34 million people infected with HIV/AIDS worldwide, many in places that lack testing facilities,” explained Rashid Bashir, an Abel Bliss Professor of Engineering and head of the Department of Bioengineering at Illinois.

“An important diagnostic biomarker for HIV/AIDS is the absolute count of the CD4+ and CD8+ T lymphocytes in the whole blood. The current diagnostic tool—a flow cytometer—is expensive, requires large blood volume, and a trained technician to operate,” Bashir said. “We have developed a microfluidic biosensor based on a differential immuno-capture electrical cell counting technology to enumerate specific cells in 20 minutes using 10 microliters of blood.” (There are about 50 microliters in a drop of blood). 

Human blood is composed of 45 percent of cells with 5 million erythrocytes as compared to only 7000 leukocytes in one microliter of blood. Specific leukocytes like CD4 T cells are of the order of 50-1000 cells per microliter. Electrical cell counting can differentiate cells based on size and membrane properties depending on the frequency of the interrogation signal. However, differentiating cells of same morphology is a challenge.
“For example, a CD4+ T lymphocyte can’t be differentiated from CD4- lymphocytes just by electrical interrogation,” stated Umer Hassan, a postdoctoral researcher in the Bashir’s group and first author of the paper.

“In response to this challenge, we had developed a technique to selectively deplete target leukocytes,” Hassan added. “And our biochip takes whole blood as input, eliminating the need of off-chip sample preparation and effectively reducing the assay time as well.”

In addition to the microfluidic “capture chamber,” the new chip incorporates separate ports for lysing reagents and quenching buffers that preserve the leukocytes for counting by the microfabricated electrodes. Specific leukocytes like CD4 T cells get captured as they interact with the antibodies in the capture chamber; a  second counter recounts the remaining leukocytes. The difference in the respective cell counts give the concentration of the cells captured.

In clinical trials, the differential immuno-capture biochip achieved more than 90 per cent correlation with a flow cytometer for both CD4 T cells for CD8 T cell counts using HIV infected blood samples. The biochip can also be adapted to enumerate other specific cell types such as somatic cells or cells from tissue or liquid biopsies.

The novel biosensor has the potential to be an automated portable blood cell counter for point-of-care applications in developed and resource-limited regions worldwide. Bashir’s group is working on miniaturizing the setup to make the technology handheld, as well as designing a cartridge that can be mass-produced. Engineering at Illinois

Non-invasive diagnosis of diseases such as osteoporosis and Alzheimer’s

Scientists from the University of Granada have developed a new fluorescent dye capable of detecting, in a single test lasting 20 minutes, the presence of phosphate and biothiol inside living cells. This scientific breakthrough could contribute significantly to the early diagnosis of diseases such as osteoporosis, Alzheimer’s, type 2 diabetes, and prostate cancer, since abnormal levels of both substances are associated with these diseases.

The main author behind the study, Luis Crovetto González, explains: “We have successfully managed to create, for the first time, a dual function dye capable of detecting both substances in the same test. Until now, this procedure has been conducted using two separate fluorescent dyes and/or two separate tests.”

In 2014, the same research group patented a new non-invasive method that allows for the measurement, in real-time, of concentration levels of phosphate ions inside living cells. This new dye that they have developed is, in effect, the continuation of this previous research and subsequent patent.

The importance of being able to measure phosphate ions stems precisely from the fact that these measurements can be employed to assess the bioavailability of drugs used to treat certain diseases, among others, osteoporosis.

At present, the only available method for calculating the concentration levels of phosphates found inside the osteoblasts (the precursor cells of bone) is invasive, employing radioactive phosphorous, the use of which carries serious risks. University of Granada

New gene variants found in childhood BMI

An international team of scientists has identified novel gene locations associated with childhood body mass index (BMI)—an important measurement related to childhood obesity. The meta-analysis, covering over 47,000 children, is the largest genetic study to date of childhood BMI.

“Although investigators have found many genes associated with adult BMI, the genetics of childhood BMI has remained largely unknown,” said Struan F.A. Grant, PhD, a genomics researcher at The Children’s Hospital of Philadelphia (CHOP), and one of three co-senior authors of the study. “Given the fact that childhood obesity is an important concern in public health, identifying specific genetic influences could prove useful in designing future preventive interventions and treatments for children.”

The meta-analysis covered 33 genome-wide association studies, including a total of over 45,000 children, all of European ancestry. Of that total, there were 35,668 children from 20 studies in the discovery phase, and 11,873 children from 13 replication studies. The researchers found 15 genomic regions associated with childhood BMI, three of which were novel.

In all, the 15 risk-susceptibility loci account for 2 percent of the variance in childhood BMI. Despite this small proportion, said Grant, it provides crucial novel insight into the biology of obesity and provides opportunities for generalized therapeutic intervention. The 12 previously discovered genetic loci were shared between both adults and children with high BMI. The large overlap, said the authors, suggests that the genetic variants may not exert their effects only in childhood, but may have different effects at different ages.

Grant added that further research may determine whether the three novel loci the study group discovered influence BMI only in childhood, or whether their effects are stronger during childhood.

The current study, said Grant, dovetails with a 2012 meta-analysis he led for the EGG Consortium. That research was the largest genome-wide study of common childhood obesity. “Obviously, much research remains to be done,” said Grant, who added, “As we continue to identify gene variants implicated in paediatric obesity and body mass, we are laying a foundation for research that could provide useful biological targets for better treating childhood obesity, and its negative health consequences.” The Children’s Hospital of Philadelphia

Tracking down deadly infection

The Translational Genomics Research Institute (TGen), working with international investigators, have discovered the source of a potential deadly blood infection in more than 50 South American cancer patients.

Using advanced genomic sequencing, TGen was able to track a potentially deadly and therapy-resistant fungus, Sarocladium kiliense, to a tainted anti-nausea medication given to dozens of cancer patients in Chile and Colombia, according to a report in Emerging Infectious Diseases, published by the U.S. Centers for Disease Control and Prevention.

‘Contamination of medical products, particularly with environmental fungi, poses growing concern and a public health threat, especially in vulnerable populations such as cancer patients,’ said Dr. David Engelthaler, Director of Programs and Operations for TGen’s Pathogen Genomics Division in Flagstaff, Ariz.

‘Increased vigilance and the use of advanced technologies are needed to rapidly identify the likely sources of infection to efficiently guide epidemiologic investigations and initiate appropriate control measures,’ said Dr. Engelthaler, Arizona’s former State Epidemiologist.

This bloodstream-infection outbreak, from June 2013-January 2014, included a cluster of cases at eight hospitals in Santiago, the capital of Chile. All of the patients received the same four intravenous medications. But only one – ondansetron, an anti-nausea medication – was given exclusively to cancer patients.

All of the patients infected with S. Kiliense received ondansetron from the same source, a pharmaceutical company in Columbia. Two of three lots of unopened ondansetron, tested by the Chilean Ministry of Health, yielded vials contaminated with S. Kiliense, forcing a recall of all ondansetron in Chile made by the Columbian manufacturer.

Subsequently, Colombian officials discovered 14 other cases in which patients, given ondansetron from the same Columbian pharmaceutical firm, were infected with S. Kiliense. The source of the contamination was identified only as ‘pharmaceutical company A’ in the CDC report.

S. kiliense has been implicated previously in healthcare-related infections, but the lack of available typing methods has precluded the ability to substantiate sources.

‘The use of whole-genome sequence typing (WGST) to investigate fungal outbreaks has become integral to epidemiologic investigations,’ Dr. Engelthaler said. ‘Our WGST analysis demonstrated that the patient isolates from Chile and Colombia were nearly genetically indistinguishable from those recovered from the unopened medication vials, indicating the likely presence of a single-source infection.’ TGen

How RNA editing may promote tumour growth

A new study provides insight on the potential role played by RNA (ribonucleic acid) editing in cancer.

The findings may further our understanding of an emerging mechanism implicated in tumour initiation and progression, and may thus lead to the development of better treatment options in the future.

In every healthy human cell, the genetic information hard-wired into the DNA is transcribed into messenger RNA, which is in turn translated into proteins, the workhorses of all body tissues and organs. The prevailing view is that most malignancies are caused by DNA mutations, which can lead to the aberrant activation or inactivation of the corresponding protein products and to the consequent out-of-control growth and proliferation of malignant cells. RNA editing, the process by which ‘mutations’ of the RNA sequence are introduced post-transcriptionally, has the potential to impact a variety of cellular processes yet the precise mechanism of how has been poorly understood until now.

Previous studies have shown that more than one million sites in the genome are edited to various degrees. Despite the fact that a majority of these editing sites fall within regions that are not translated to protein, it has been shown that the differences in RNA editing levels between tumour and normal tissues are associated with different clinical outcomes. Currently, only a few coding RNA editing sites have been functionally characterized. However, it is still a puzzle whether and how the majority of the RNA editing events in the un-translated regions affect tumour growth.

Researchers from Boston University School of Medicine (BUSM) analysed 14 tumour types, and identified more than 2,000 genes showing significant changes in RNA editing level between tumour and normal tissues.

“This study suggests that RNA editing may serve as an important epigenetic mechanism of cellular regulation beyond the genetic/DNA level,” explained corresponding author Stefano Monti, PhD, associate professor of medicine at BUSM. “We show that the effect of one epigenetic component can be offset by changes in another epigenetic component. Thus, it is important to have a comprehensive picture of changes in the cancer genome, which may point to vulnerabilities amenable to targeted treatment,” added lead author Liye Zhang, PhD, postdoctoral fellow at BUSM. Boston University School of Medicine

New cytoplasmic role for proteins linked to neurological diseases, cancers

Researchers at UT Southwestern Medical Center have identified a second role for a class of RNA-binding proteins, revealing new insights about neurological diseases and conditions associated with this protein such as autism, epilepsy, and certain types of cancer.

“These data should promote a re-evaluation of those diseases to see if this new function that we’ve identified contributes to those defects,” said senior study author Dr. Michael Buszczak, Associate Professor of Molecular Biology and with the Hamon Center for Regenerative Science and Medicine at UT Southwestern.

The study indicates that RNA-binding fox (Rbfox) proteins oversee translation of messenger RNA, or mRNA, into proteins. Using the fruit fly Drosophila as a model, researchers showed that the Rbfox1 protein, in particular, has this regulatory role.

Rbfox1 proteins were known to play a key role in splicing together coding portions of genes called exons to form mRNA, which is subsequently translated to form proteins. Splicing largely takes place within the nucleus of cells, where many Rbfox1 proteins are found. But there are also variants of Rbfox1 proteins found in the cytoplasm – the portion of the cell outside the nucleus – and the function of those cytoplasmic proteins had not been understood. 

“We found that cytoplasmic Rbfox1 represses the production of specific proteins,” Dr. Buszczak said.

The lead author of the study, UT Southwestern Molecular Biology graduate student Arnaldo Carreira-Rosario, found that Rbfox1 binds to specific elements at the ends of mRNA molecules, preventing these mRNAs from being translated into proteins. If Rbfox1 proteins are lost and mRNA is no longer repressed, that could lead to aberrant growth of cells, or cancers.

The researchers found that cytoplasmic forms of Rbfox1 were required for germ cell development in Drosophila. “Without this protein, the germ cells are blocked in a very specific stage of differentiation and just linger there. They can’t differentiate into mature eggs,” said Dr. Buszczak, an E.E. and Greer Garson Fogelson Scholar in Medical Research.

This block leads to sterility in female Drosophila and, in other contexts, can result in an inappropriate proliferation of cells, which underlies cancer.

Work by co-author Dr. Mani Ramaswami of Trinity College Dublin in Ireland points to a link between the newly identified function of Rbfox1 proteins and neuronal development and function, which could have important implications for a number of the neuronal disorders linked to disruption of Rbfox1.

“The idea is that loss of Rbfox1 causes disease by disrupting protein expression, not RNA splicing,” Dr. Buszczak said. “If this interpretation is correct, then it has implications for how one would develop therapeutics to treat the disease in question.” UT Southwestern Medical Center

Molecule needed for sperm activation

Researchers funded by the National Institutes of Health have discovered the cellular switch that boosts the activity of sperm cells so that they can travel to the egg.  The finding may lead to new options for male contraception as well as treatments for infertility resulting from problems with sperm mobility.

Inside the male reproductive tract, mature sperm are capable of limited movement. This limited movement, however, is not enough to propel them toward the egg when they enter the female reproductive tract. To begin their journey, they must first be activated by the hormone progesterone, which is released by the egg.

The researchers report that the molecule to which progesterone must bind is the enzyme alpha/beta hydrolase domain containing protein 2 (ABHD2), found in the sperm cell’s outer membrane. The study was conducted by Melissa R. Miller and colleagues at the University of California, Berkley, the University of California, San Francisco, and Yale University School of Medicine in New Haven, Connecticut.

“This is an important advance in explaining how sperm become hypermotile in the female reproductive tract,” said Stuart Moss, Ph.D, director of the male reproductive health program at NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development, which funded the study.

“Developing new compounds that block ABHD2 ultimately may yield new contraceptive methods to prevent sperm from reaching the egg.”

Similarly, strategies to bypass or enhance the enzyme might provide therapies for treating infertility resulting from sperm that lack movement capability.

Before a sperm can transition to the hyper-active phase, calcium must pass through the cell’s outer membrane and enter the flagella, the tail-like appendage the cell uses to propel itself.  The sperm protein known as CatSper joins with similar proteins in the flagella to allow the entry of calcium.

When the researchers undertook the current study, it was not known whether progesterone interacted directly with CatSper to trigger the calcium influx, or acted on some other molecule (which, in turn, acted on CatSper). Before treating sperm with progesterone, the researchers exposed them to a chemical that inhibits a particular class of enzymes that they believed could include the candidate molecule that acted on CatSper. The hunch proved correct: the treated cells remained inactive after progesterone exposure, indicating that CatSper was not directly involved.

Working with modified progesterone, the researchers eventually isolated ABHD2 from the sperm tails. When the researchers inactivated ABHD2, exposure to progesterone failed to activate the sperm cells, confirming that ABHD2 is the molecular target for progesterone. Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)

Lupus study shows precision medicine’s potential to define the genetics of autoimmune disease

Demonstrating the potential of precision medicine, an international study based at UT Southwestern Medical Center used next-generation DNA sequencing technology to identify more than 1,000 gene variants that affect susceptibility to systemic lupus erythematosus (SLE).

Precision medicine is an emerging field that aims to deliver highly personalized health care by understanding how individual differences in genetics, environment, and lifestyle impact health and disease.

SLE, commonly called lupus, is a serious, potentially fatal autoimmune disease that the National Institutes of Health reports affects nine times more women than men, and is more likely to strike young African-American, Hispanic, Asian, and Native American women. The disease often begins between the ages of 15 and 44.

“SLE starts when the immune system attacks multiple organ systems in the body, which can result in a complex array of symptoms that are difficult to manage clinically and can lead to organ damage,” said Dr. Edward Wakeland, Chair of Immunology at UT Southwestern and co-senior author of the study posted online recently in the journal eLife. “Our findings support the potential of precision medicine to provide clinically relevant information about genetic susceptibility that may ultimately improve diagnosis and treatment.”

The study also may have implications for other systemic autoimmune diseases, a category of diseases that affect multiple body systems and includes Type 1 diabetes, rheumatoid arthritis, and multiple sclerosis, he said.

Dr. Wakeland and colleagues sequenced millions of DNA base pairs from more than 1,700 people, which allowed precise identification of the genetic variations contributing to SLE, he said. Specifically, the researchers identified 1,206 DNA variations located in 16 different regions of the human genome associated with increased susceptibility to SLE. They then showed that almost all of them (1,199) modify the level of expression of specific molecules that regulate immune responses, he said.

In addition, the two-year study identified many of the specific regulatory variations that were changed in SLE patients and demonstrated that accurately identifying such so-called causal variants increased the accuracy of the genetic association of individual SLE risk genes with susceptibility to SLE.

“Prior to our study, such a comprehensive sequence analysis had not been done and little was known about the exact genetic variations that modify the functions of the genes that cause SLE,” added Dr. Wakeland, who holds the Edwin L. Cox Distinguished Chair in Immunology and Genetics.

The scientists began their comprehensive sequence analysis using the DNA samples of 1,349 American Europeans (773 with SLE disease and 576 without) from sample collections at UT Southwestern, the University of Southern California, UCLA, Oklahoma Medical Research Foundation, and the Université Catholique de Louvain in Belgium.

They then determined the precise DNA sequences at SLE-associated genetic regions scattered throughout the genome. They found that SLE risk is associated with specific clusters of DNA variations, commonly called haplotypes, and that some haplotypes increased the risk for SLE while others provided protection from SLE.

After identifying the sets of DNA variants that increased SLE susceptibility in Caucasians, they used multiple public databases, including the international 1000 Genomes Project (2,504 genomic samples from the global human population) to determine whether these haplotypes also were found in South American, South Asian, African, and East Asian populations.

They discovered that the variants and haplotypes were distributed across subpopulations worldwide. Their findings indicate that many common haplotypes in the immune system are shared at different frequencies throughout the global population, suggesting that these variations in the immune system have ancient origins and persist in populations for long periods, Dr. Wakeland said.

“We thank the many SLE patients and control participants whose sample contributions were essential for these studies,” the researchers wrote. UT Southwestern Medical Center

Autism genes are in all of us, new research reveals

New light has been shed on the genetic relationship between autistic spectrum disorders (ASD) and ASD-related traits in the wider population, by a team of international researchers including academics from the University of Bristol, the Broad Institute of Harvard and MIT, and Massachusetts General Hospital (MGH).

The researchers studied whether there is a genetic relationship between ASD and the expression of ASD-related traits in populations not considered to have ASD. Their findings suggest that genetic risk underlying ASD, including both inherited variants and de novo influences (not seen in an individual’s parents), affects a range of behavioural and developmental traits across the population, with those diagnosed with ASD representing a severe presentation of those traits.

Autism spectrum disorders (ASD) are a class of neurodevelopmental conditions affecting about 1 in 100 children. They are characterised by social interaction difficulties, communication and language impairments, as well as stereotyped and repetitive behaviour. These core symptoms are central to the definition of an ASD diagnosis but also occur, to varying degrees, in unaffected individuals and form an underlying behavioural continuum.

With recent advances in genome sequencing and analysis, a picture of ASD’s genetic landscape has started to take shape. Research has shown that most ASD risk is polygenic (stemming from the combined small effects of thousands of genetic differences, distributed across the genome). Some cases are also associated with rare genetic variants of large effect, which are usually de novo.

 “There has been a lot of strong but indirect evidence that has suggested these findings,” said Dr Mark Daly, co-director of the Broad Institute’s Medical and Population Genetics (MPG) Program and senior author of the study.

“Once we had measurable genetic signals in hand – both polygenic risk and specific de novo mutations known to contribute to ASD – we were able to make an incontrovertible case that the genetic risk contributing to autism is genetic risk that exists in all of us, and influences our behaviour and social communication.”

Study co-first author Dr Elise Robinson, from MGH, said: “We can use behavioural and cognitive data in the general population to untangle the mechanisms through which different types of genetic risk are operating. We now have a better path forward in terms of expecting what types of disorders and traits are going to be associated with certain types of genetic risk.”

“Our study shows that collecting and using phenotypic and genetic data in typically developing children can be useful in terms of the design and interpretation of studies targeting complex neurodevelopmental and psychiatric disorders,’ said study co-first author Dr Beate St Pourcain, from the Medical Research Council Integrative Epidemiology Unit at the University of Bristol and the Max Planck Institute for Psycholinguistics.

“Based on the genetic link between population-based social-communication difficulties and clinical ASD, we may now gain further phenotypic insight into a defined set of genetically-influenced ASD symptoms. This may help us to identify and investigate biological processes in typically-developing children, which are disturbed in children with ASD.” University of Bristol

Global study reveals genes as major cause of inflammatory diseases

A global study involving 50 different research centres has found hundreds of genes which cause five common, hard-to-treat and debilitating inflammatory diseases, paving the way to new treatments for these conditions.
Led by Brisbane’s QUT and Christian-Albrechts-University, Kiel, Germany, the results of the world-first study have been published.

Co-senior author Professor Matthew Brown, from QUT’s Institute of Health and Biomedical Innovation, said they investigated ankylosing spondylitis, Crohn’s Disease and ulcerative colitis (collectively known as inflammatory bowel disease), psoriasis, and primary sclerosing cholangitis.
“These diseases affect about three per cent of the world’s population, and commonly occur together in families and in individuals. The big question has been whether this is due to shared environmental risk factors, or due to shared genes and now we believe we have the answer,” Professor Brown said.
“The research has conclusively demonstrated these conditions occur together mostly because they share similar genetic backgrounds.

“Studying nearly 86,000 subjects from 26 countries, our researchers identified 244 genetic variants which control whether or not people develop these conditions, a large proportion of which were completely new findings.
“They found that for nearly all of these diseases the reason they frequently occur together in individuals is due to the different diseases sharing genetic risk factors, rather than one disease causing the other.

“For some diseases such as the common form of spinal arthritis, ankylosing spondylitis, the study roughly trebled the number of genes known to be involved.”

Professor Brown said the new gene discoveries pointed to some potential new therapies, including agents already in use for other diseases which can now be trialled in these conditions very promptly.
“The discoveries have shed new light onto the causes of these diseases, such as identifying genetic risk variants which most likely work by affecting the bacteria present in the gut, in turn causing inflammation in joints, the liver or the gut itself,” Professor Brown said. Queensland University of Technology