Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
November 2025
The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics
Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Accept settingsHide notification onlyCookie settingsWe may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.
Privacy policy
Identification of EGFR mutations and prediction of lung cancer recurrence
, /in E-News /by 3wmediaThree manuscripts published recently explored the versatility of liquid biopsies by identifying EGFR mutations using circulatingu tumour DNA (ctDNA) in urine and plasma and examining circulating tumour cells (CTCs) in plasma to predict the risk of lung cancer recurrence after surgical resection. Collectively, these findings illustrate the potential and reach of liquid biopsies in both identifying patients suitable for targeted treatment as well as predicting cancer recurrence.
Lung cancer is the most common type of cancer with the highest cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) accounts for roughly 85% of lung cancer and most patients present with advanced disease at diagnosis. Surgical resection is the preferred treatment option for patients with medically operable tumours. However, disease recurrence occurs in approximately 50% of cases. Patients with advanced disease are often not candidates for surgical resection and commonly harbour driver mutations that can be targeted by drugs. A major challenge for assessing driver mutations, such as epidermal growth factor receptor (EGFR) mutations, in advanced disease is the scarcity of suitable biopsy tissue for molecular testing. A minimally invasive alternative to invasive tissue biopsy is the use of liquid biopsy, which analyses ctDNA or CTCs in a liquid biological sample (i.e. urine, blood, or serum).
The first manuscript entitled, Circulating Free Tumor-derived DNA (ctDNA) Determination of EGFR Mutation Status in Real-World European and Japanese Patients with Advanced NSCLC: the ASSESS Study, used samples from the large ASSESS study to evaluate EGFR mutation status by analysing ctDNA from blood plasma. The results of the study demonstrated that analysing ctDNA from plasma is feasible for the identification of EGFR mutations with mutation status concordance in 1,162 matched samples of 89% (sensitivity 46%; specificity 97%; positive predictive value [PPV] 78%; negative PV 90%). The authors comment that, “Accurate and accessible ctDNA mutation testing to address the unmet need in patients without an available/evaluable tumour sample will be important to enable more patients to receive therapies personalized to the mutation status of their tumor.”
The second manuscript entitled, A Highly Sensitive and Quantitative Test Platform for Detection of NSCLC EGFR Mutations in Urine and Plasma, analysed samples from patients enrolled in TIGER-X, a phase 1/2 clinical study of rociletinib in previously treated patients with EGFR mutant-positive advanced NSCLC, to interrogate EGFR activating mutations and the T790M resistance mutation by analysing ctDNA from urine or blood plasma. The results from the study show that ctDNA derived from NSCLC tumours can be detected with high sensitivity in urine and plasma, sensitivity 93% for T790M, 80% L858R, and 83% exon 19 deletions and sensitivity 93% for T790M, 100% L858R, and 87% exon 19 deletions, respectively. The authors comment that, “In conclusion, our data demonstrates that urine testing using mutation enrichment NGS method successfully identifies EGFR mutations in patients with metastatic NSCLC and has a high concordance with tumour and plasma, suggesting that EGFR mutation detection from urine or plasma should be considered as a viable approach for assessing EGFR mutation status.”
Finally, a third manuscript on liquid biopsies entitled, Circulating tumour cells detected in the tumour-draining pulmonary vein are associated with disease recurrence after surgical resection of non-small cell lung cancer, used blood and tumour-draining pulmonary vein samples from patients pre-surgical resection and intra-operatively to analyse CTCs and circulating tumour microemboli (CTM, clusters). The investigators reported that combining CTC/CTM enumeration in tumour-draining pulmonary veins and peripheral blood at the time of curative-intent surgical resection of NSCLC better identifies those patients at higher risk of lung cancer recurrence than peripheral CTC/CTM numbers alone. “In addition to the potential role of CTCs as a prognostic/predictive biomarker, isolation and genetic analysis of individual CTCs from liquid biopsies may shed light on tumour biology and the metastatic process,” said Phil AJ Crosbie, MD, PhD, first author of the article.
The International Association for the Study of Lung Cancer www.iaslc.org/news/liquid-biopsies-identification-egfr-mutations-and-prediction-lung-cancer-recurrence
Novel technique that can ‘taste’ DNA
, /in E-News /by 3wmediaScientists at The University of Nottingham have demonstrated for the first time that it is possible to selectively sequence fragments of DNA in real time, greatly reducing the time needed to analyse biological samples.
A paper describes a novel technique for highly selective DNA sequencing, called ‘Read Until’. The method, used with real-time nanopore sequencing, enables the user to analyse only DNA strands that contain pre-determined signatures of interest.
Dr Matt Loose, of the Cell and Developmental Biology Research Group in the University’s School of Life Sciences, has been working with the MinION, a new portable DNA sequencing technology produced by biotech company Oxford Nanopore Technologies. All sequencing was carried out at The University of Nottingham Next Generation Sequencing Facility, DeepSeq.
“This is the first time that direct selection of specific DNA molecules has been shown on any device,” said Dr Loose. “We hope that it will enable many future novel applications, especially for portable sequencing. This makes sequencing as efficient as possible and will provide a viable, informatics based alternative to traditional wet lab enrichment techniques. The application of this approach to a wide number of problems from pathogen detection to sequencing targeted regions of the human genome is now within reach.”
The pocket-sized MinION device – the same technology which NASA recently sent to the International Space Station in an effort to investigate whether DNA sequencing is possible in microgravity – employs tiny molecular pores in a membrane that ‘sense’ the sequence of DNA fragments passing through these nanopores, producing minute fluctuations in a current trace. These current traces, termed ‘squiggles’ then need to be converted to DNA bases using base caller software, often located in the cloud. The University of Nottingham team used signal processing techniques to map these squiggles to reference sequences, by passing this step.
In the paper, the Nottingham team go further, showing that this squiggle matching technique can be performed at a rate that enables decisions to be made about the fragment of DNA that is being sequenced before it has completely passed through the nanopore. Depending on the sequence, individual nanopores within the MinION can then be instructed to continue sequencing or to eject the current DNA fragment and start sequencing another. The Nottingham team show that this ‘real-time selective sequencing’, or as some have called it ‘DNA tasting’, can reduce the time needed to sequence key DNA fragments or enable the analysis of pathogen samples where there is host and other DNA present in the sample.
The Read Until method/technique was developed by applying dynamic time warping to match short query current traces to references, demonstrating selection of specific regions of small genomes, individual amplicons from a group of targets, or normalisation of amplicons in a set.
Nottingham University www.nottingham.ac.uk/news/pressreleases/2016/july/nottingham-researchers-show-novel-technique-that-can-‘taste’-dna.aspx
Similarities unite three distinct gene mutations of Treacher Collins Syndrome
, /in E-News /by 3wmediaScientists at the Stowers Institute for Medical Research have reported a detailed description of how function-impairing mutations in polr1c and polr1d genes cause Treacher Collins syndrome (TCS), a rare congenital craniofacial development disorder that affects an estimated 1 in 50,000 live births.
Collectively the results of the study reveal that a unifying cellular and biochemical mechanism underlies the etiology and pathogenesis of TCS and its possible prevention, irrespective of the causative gene mutation.
Loss-of-function mutations in three human genes, TCOF1, POLR1C and POLR1D, have been implicated in TCS and are thought to be responsible for about 90 percent of the diagnoses of this congenital craniofacial condition.
The clinical manifestations of TCS include facial anomalies such as small jaws and cleft palate, hearing loss, and respiratory problems. Patients with TCS typically undergo multiple surgeries, but rarely are they fully corrective. By uncovering a mechanism of action common to all three genes, Stowers scientists have advanced scientific understanding of TCS etiology and pathogenesis and identified possible new avenues for preventing or treating the birth defect. This latest study from the laboratory of Stowers Investigator Paul Trainor, Ph.D., focused on Polr1c and Polr1d, whose roles as a genetic cause of TCS were revealed in a 2011 study of a small group of patients who had been diagnosed with TCS but who did not have the TCOF1 mutation. Unlike POLR1C and POLR1D, TCOF1 has been long recognized as a causative gene in TCS and as a result has been more extensively investigated.
“Before we began the study, nothing was known about the role of Polr1c and Polr1d in craniofacial development,” said Kristin Watt, Ph.D., lead author of the PLoS Genetics paper and postdoctoral scientist in the Trainor Lab. “Using zebrafish as our animal model, we set out to explore the functional roles of polr1c and polr1d during embryogenesis and more specifically in craniofacial development.”
Trainor, Watt and their collaborators compared the results of their findings on polr1c and polr1d with their and other labs’ previous research results on Tcof1. In all three loss-of-function models, the researchers found that the chain of cellular events that led to the TCS phenotype of abnormal craniofacial development originated in ribosomes, the cellular components that translate messenger RNA into proteins. Like the Tcof1 gene, polr1c and polr1d mutations were found to perturb ribosome biogenesis, or production of ribosomes, which affects the generation and survival of progenitor neural crest cells, the precursors of craniofacial bone, cartilage and connective tissue.
In animal models of all three causative genes, the scientists determined that deficient ribosome biogenesis triggered a p53-dependent cell death mechanism in progenitor neural crest cells. As a result of the activation of the p53 gene, developing embryos no longer made the quantity of neural crest cells needed to properly form the craniofacial skeleton.
However, in the polr1c and polr1d models as in the Tcof1 models, Stowers scientists found that by experimentally blocking p53 activation, they could restore the neural crest cell population and thereby rescue the animal models’ cranioskeletal cartilage.
Despite the rescue effect, Trainor said that he does not view the “guardian of the genome,” as the p53 gene is often called due to its ability to suppress cancer, as the basis of a potential therapy to prevent or reduce TCS during embryonic development. The p53 gene’s association with cancer makes inhibiting its function too risky, he said.
A less risky and perhaps more effective target for the prevention or treatment of TCS could be enhancing ribosomes, Trainor said, because the loss-of-function mutations in all three causative genes involve ribosome RNA (rRNA) transcription. Polr1c and Polr1d, for example, are subunits of RNA polymerases I and III that are essential for ribosome biogenesis.
“Rather than blocking p53, a better approach may be to try to prevent TCS by treating the problem in ribosome biogenesis that triggers the activation of p53 and the loss of neural crest cells,” said Trainor.
In their research with zebrafish embryos, Trainor and collaborators also determined that polr1c and polr1d are spatiotemporally and dynamically expressed, particularly during craniofacial development. Furthermore, zebrafish embryos with the polr1c and polr1d loss-of-function mutations develop abnormalities in craniofacial cartilage development that mimic the clinical manifestations of TCS in patients. Trainor said that he and his fellow researchers were surprised that mutations in polr1c and polr1d as well as Tcof1 specifically affected craniofacial development, because ribosome biogenesis occurs in every cell of the body. The mutation of a gene that is part of the ribosome complex would be expected to be detrimental to each of these cells, he said. However, in the zebrafish models, the mutation appears to primarily affect progenitor neural crest cells. Trainor said that he and his team theorize that progenitor neural crest cells may be particularly sensitive to deficiencies in ribosome biogenesis during embryogenesis.
Thus, the study revealed new animal models for TCS: zebrafish with polr1c and polr1d loss-of-function mutations. Moreover, the existence of a common mechanism of action may simplify the research, particularly the search for a therapy to prevent or treat TCS. Because of the similarities among the three causative genes, “we may be able to develop creative ways of preventing TCS that will prove effective in at-risk individuals who have one of the gene mutations,” said Trainor, who has investigated the molecular origins and development of TCS and related craniofacial developmental disorders for 10 years.
Stowers Institute for Medical Research www.stowers.org/media/news/jul-22-2016
The Heart-Brain Connection: The link between LQTS and seizures
, /in E-News /by 3wmediaResearchers at the University of Rochester Medical Center recently discovered a genetic link between Long QT Syndrome (LQTS), a rare cardiac rhythm disease, and an increased risk for seizures. The study also found that people with LQTS who experience seizures are at greater risk of sudden cardiac death.
According to research, there is a clear association between the heart and the brain of LQTS patients. Patients carrying LQTS genetic mutations were three times more likely to have experienced seizures in their past, compared to their family members who did not carry those mutations. Interestingly, LQTS patients who had a history of seizures also tended to have worse cardiac symptoms.
David Auerbach, Ph.D., senior instructor of Medicine in the Aab Cardiovascular Research Institute of the University of Rochester Medical Center, and lead author of the study found seizure status to be the strongest predictor of cardiac arrhythmias – the abnormal heart rhythms characteristic of LQTS. In fact, about 20% of the LQTS patients in the study who had a history of seizures had survived at least one lethal cardiac arrhythmia.
You could begin applying these findings to patients today by telling physicians treating LQTS patients to look outside the heart.
Auerbach’s study set a new clinical precedence for the link between seizures and LQTS and provides a case for doctors to pay more attention to what is happening in LQTS patients’ brains or, more broadly, to “look outside the classic organ of interest” in any disease.
As a postdoctoral fellow, Auerbach studied the heart-brain connection in a severe genetic form of epilepsy, and found that cardiac arrhythmias were one cause of sudden unexplained death in people with epilepsy. Now, he investigates the converse – whether a genetic heart disorder is also associated with issues in the brain.
Auerbach tapped into the Rochester-based LQTS Patient Registry to answer this question. This unique resource was developed 40 years ago by the senior author of the study, Arthur Moss, M.D., the Bradford C. Berk, MD, PhD, Distinguished Professor of Medicine at URMC. The registry contains information about more than 18,000 people including LQTS patients and their affected and unaffected family members, who provide a nearly ideal group of controls. “In essence, they have the same genetic makeup, except theoretically, the LQTS-causing mutation,” says Auerbach.
To ensure that the seizures reported in the registry were not merely misdiagnosed cardiac arrhythmias, Auerbach investigated the effect of beta blockers, drugs often prescribed to LQTS patients to prevent cardiac arrhythmias. While the drugs effectively reduced patients’ arrhythmias, they had no effect on seizures, minimizing the chance that the seizures were simply misdiagnosed cardiac side effects.
Looking at the patients’ genetic information, Auerbach and his colleagues found that patients with the three different types of LQTS (LQTS1-3) showed similar heart rhythm symptoms, but vastly different prevalence of seizures. LQTS1 and LQTS2 patients had much higher prevalence of seizures than LQTS3 or no mutation – with LQTS2 at the greatest risk.
Further investigation of the LQTS-causing mutation showed that the specific location of the mutation greatly affected the risk of cardiac arrhythmias and seizures. In one location on the gene, the mutation protected against these symptoms, but in another location on the same gene, the mutation increased the risk of those symptoms. Understanding what each of these mutations does may shed new light on a basic mechanism of seizures and may provide viable therapeutic targets to treat LQTS.
The University of Rochester Medical Center www.urmc.rochester.edu/news/story/4612/the-heart-brain-connection-the-link-between-lqts-and-seizures.aspx
Method sheds light on how genetic mutations cause inherited Parkinson’s disease
, /in E-News /by 3wmediaResearchers led by the University of Dundee’s Professor Dario Alessi have developed a new method of measuring the activity of disease-causing mutations in the LRRK2 gene, a major cause of inherited Parkinson’s disease.
The team believes this research could help pave the way for future development of a clinical test that could facilitate evaluation of drugs to target this form of the condition.
Mutations in the LRRK2 gene are the most common cause of genetic Parkinson’s disease. The most common disease-causing mutation in this gene increases the activity of the LRRK2 protein three-fold, implying this may contribute towards the symptoms of the disease in patients. It also suggests that drugs that reduce the activity of the protein (LRRK2 inhibitors) may help treat patients with this form of inherited Parkinson’s disease.
“It is important to better understand how disruption in LRRK2 biology causes Parkinson’s disease and whether a drug that targeted the LRRK2 enzyme would offer therapeutic benefit,” said Professor Alessi, lead author on the study.
“Current drug treatments only deal with symptoms of the condition, such as tremors, but do not affect the progression of Parkinson’s disease. An important question is whether an LRRK2 therapy might have potential to slow progression of the condition, which no other current therapy is able to do.”
When the LRRK2 protein is active it stops another cellular protein called Rab10 from fulfilling its function in the body. There are many proteins in the Rab family, and a number of them have been shown to be low in number or deactivated in different forms of Parkinson’s disease.
The new method of measuring these was developed by a collaboration of researchers from Dundee, The Michael J. Fox Foundation for Parkinson’s Research, GSK and the University of Hong Kong. It analyses how much of the Rab10 protein has been deactivated – a process where phosphate groups are added to the Rab10 molecules by the LRRK2 protein – as a measure of heightened LRRK2 protein activity.
This new experimental assay is straightforward, requires only small amounts of sample material and is suitable for adapting to analyse large samples. This contrast with current mass spectrometry technology that is more complex and cumbersome and requires larger sample sizes.
While acknowledging that more work is needed, the researchers believe this breakthrough could help with future drug developments for patients with this form of Parkinson’s disease.
Professor Alessi continued, “The prediction is that elevation of LRRK2 activity leads to Parkinson’s disease, and this is now testable using our assay. The expectation is that if a sub-group of patients can be identified with elevated LRRK2 activity, these individuals might benefit most from LRRK2 inhibitors.
University of Dundee www.dundee.ac.uk/news/2016/lab-method-sheds-light-on-how-genetic-mutations-cause-inherited-parkinsons-disease.php
Acute kidney injury identifiable in preterm infants
, /in E-News /by 3wmediaResearchers at the University of Alabama at Birmingham have found that the amount of proteins excreted in the urine of preterm infants with acute kidney injury, or AKI, is different from that excreted by infants with healthy kidneys.
The study was led by principal investigator David Askenazi, M.D.
“The findings in this study could help physicians better diagnose kidney health in newborns,” said Askenazi, associate professor in the UAB Department of Pediatrics and director of UAB’s Pediatric and Infant Center for Acute Nephrology. “Having better diagnostic tests to diagnose kidney injury will have an important impact on how we care for infants and how we prognosticate outcomes, and will enable us to design studies to prevent and/or mitigate kidney damage in these very vulnerable babies.”
Improving the ability to diagnose AKI, a sudden decline in kidney function, is critical, as approximately 25 percent of preterm infants develop AKI. Compared to those without AKI, preterm infants with this common problem have a lower chance for survival, increased hospital stays and increased hospital expenditures.
Importantly, premature infants are at high risk for chronic kidney disease, and AKI may be an important cause for this.
Investigators took a single drop of urine from 113 preterm infants and measured 14 urine proteins. The concentrations of many of these proteins, including cystatin c, neutrophil gelatinase-associated lipocalin, osteopontin, clusterin and alpha glutathione S-transferase, were higher in preterm infants who later showed abnormal kidney function, compared to their counterparts with normal function.
“Additional studies to determine how AKI contributes to chronic kidney disease in these newborns are underway,” Askenazi said. “Improving our ability to diagnose AKI accurately is critical to improving our understanding of the natural course of disease and developing strategies to improve outcomes.”
University of Alabama at Birmingham www.uab.edu/news/innovation/item/7485-acute-kidney-injury-identifiable-in-preterm-infants
Sampling method used for new breast cancer tests may lead to underestimate of risk
, /in E-News /by 3wmediaNot only is breast cancer more than one disease, but a single breast cancer tumour can vary within itself, a finding that University of Pittsburgh Cancer Institute (UPCI) researchers discovered has the potential to lead to very different patient treatment plans depending on the tumour sample and diagnostic testing used.
The results demonstrate that tumour sampling techniques used with newly developed “personalized medicine” gene expression profile tests may need to be refined to ensure that the most appropriate tumour sections are selected for testing.
“These tests are a good thing—they’ve done an incredible job identifying women with breast cancers that have a low risk of recurrence who don’t need chemotherapy, saving them from the toxicity and discomfort of unnecessary treatment,” said Adrian V. Lee, Ph.D., professor of pharmacology and chemical biology at UPCI, partner with UPMC CancerCenter. “However, as with any new technology, we need to understand how these tests work, and we’re finding that the sampling process, which involves liquefying tumours, loses information that could be important in determining the best treatment plan for patients with more aggressive tumours.”
Gene expression profiling is an increasingly popular type of test that tells doctors what certain genes are doing in a tissue sample, such as causing the cells to actively divide and multiply. Several tests have been developed in recent years to aid oncologists in developing breast cancer treatment plans. They involve taking a small bit of the tumour—or multiple small bits mixed together—and testing it.
The tests can tell oncologists if the cancer has a low, intermediate or high risk of recurring. The level of risk can help doctors and patients decide whether an aggressive treatment plan involving chemotherapy is beneficial or likely to do more harm than good.
Dr. Lee and his team examined 71 cases of a type of breast cancer called “estrogen-receptor-positive” that was caught early and hadn’t yet spread to other parts of the body. In all cases, the tumour had been removed and samples taken for gene expression profiling. A total of 181 samples were taken from various parts of the tumours, and the researchers measured the expression of 141 different genes from five different types of gene expression profile tests commonly used for breast cancer tumours.
For 25 percent of the patients, their tumours received a different risk of recurrence score depending on which sample was processed.
“This indicates that one part of the tumour is more aggressive than another part. If an oncologist were to know this, he or she would likely recommend a treatment plan tailored to destroy the most aggressive section of the tumour,” said Dr. Lee.
Because the patients in this study were all caught early, their risk of recurrence was low to begin with, and there weren’t enough recurrences to make a meaningful determination on whether they would have done better if more samples were tested from their tumours.
“It would be valuable to repeat this study with a much larger group of breast cancer patients and follow them over time so that we could definitively determine if the way sampling is done with these tests is, indeed, resulting in patients getting cancer recurrences that wouldn’t have happened if the sampling process was changed,” said Dr. Lee.
University of Pittsburgh Cancer Institute
www.upmc.com/media/NewsReleases/2016/Pages/lee-tumorhetero-gep-cancerresearch.aspxProstate cancer study may lead to new diagnostic tests and treatments
, /in E-News /by 3wmediaProstate cancer patients have been offered hope after scientists at Newcastle University have identified a new group of molecules that could be targeted to slow tumour growth.
Our findings are very significant for future treatments as they identify a new group of molecules in prostate cancer which could be targeted therapeutically.
Experts used an advanced screening technique which found hundreds of genes were affected by the male hormone testosterone. It is believed this could lead to new diagnostic tests and treatments.
Among the 700 genes identified was an important set that add sugar groups – known as glycans – to the surface of prostate cancer cells. This group has never been investigated before.
Treatments targeting glycan sugar groups have been developed for other types of the illness, such as breast cancer. It is hoped these treatments could also be used for prostate cancer.
Results of the research suggest that testosterone changes glycans to make cancer cells more likely to survive, grow and spread to other parts of the body.
Scientists say there is the potential to target these glycans which could stop the growth and spread of tumours and save lives.
Dr Jennifer Munkley, Research Associate at the Institute of Genetic Medicine, Newcastle University, co-led the three-year research project with Professor David Elliott.
She said: “Our findings are very significant for future treatments as they identify a new group of molecules in prostate cancer which could be targeted therapeutically.
“Now we have identified these glycans we will be able to develop strategies to inhibit them and help patients with this condition.
Glycans have the potential to be used as part of a diagnostic test to help doctors decide which prostate cancers need treatment.
One in eight men will be diagnosed with the condition. It is the most common cancer in UK males, and there is a need to identify how the disease progresses and for treatment options to be established.
Researchers at Newcastle University used a technique, called RNA-sequencing, to identify the new set of genes that are important.
The genes identified may provide novel ways the disease can be monitored in patients to predict the most aggressive prostate cancers that need to be treated.
Simon Grieveson, Head of Research Funding at Prostate Cancer UK, said: “There’s a desperate need for more treatments for men with advanced prostate cancer, who currently have too few options available to them.
“However, in order to develop new, effective treatments, we need to understand more about the genetic makeup of aggressive prostate cancers and identify what makes them tick.
“This promising research has unearthed a new group of genes which could play a part in cancer cell survival and development, and could pave the way for new treatments in the future.
Newcastle University www.ncl.ac.uk/press/news/2016/07/prostatecancerstudy/
Discovery of infants’ airway microbiomes may help predict lung disease
, /in E-News /by 3wmediaIn contrast to the general belief that the airways of an infant are sterile until after birth, University of Alabama at Birmingham researchers and colleagues have found that the infant airway is already colonised with bacteria or bacterial DNA when a baby is born — and this is true for infants born as early as 24 weeks gestation.
How microbes get into the airways and the purpose of this pre-birth colonisation are still unclear, but the pattern of colonisation appears to have an important link to later severe neonatal lung disease.
An early microbial imbalance, or dysbiosis, is predictive for the development of bronchopulmonary dysplasia, or BPD, a chronic lung disease of prematurity. The extremely low birth-weight, or ELBW, infants in this study had an average birth weight of 1 pound, 8 ounces. Researchers found that the ELBW infants who went on to develop life-threatening BPD showed abnormal microbial colonisation patterns at birth, as compared to pre-term infants who did not get BPD.
“Right at birth, your respiratory microbiome can possibly predict your risk for BPD,” said Charitharth Vivek Lal, M.D., assistant professor in the UAB Pediatrics Division of Neonatology and the lead investigator of this study.
Extremely premature infants are at risk for BPD, which is the most common lung pathology of these tiny infants and a significant cause of morbidity, mortality and health care expenditures. Adults and children who had BPD as infants have lungs that failed to develop properly and are more prone to worse lung function, asthma, lung infections and pulmonary hypertension.
The researchers also looked at the airway microbiomes of 18 ELBW infants with established BPD and found that their microbiomes had a decreased diversity of types of microbes, and the pattern was very different from those of ELBW infants shortly after birth or full-term infants at birth.
As to specific groups of microbes, the phylum Proteobacteria, which includes bacteria like E. coli, appeared to be involved in BPD pathology, and the genus Lactobaccillus, part of the phylum Firmicutes, appeared to be involved in disease protection.
Lal and colleagues found decreased Lactobacillus abundance in the airway microbiomes of 10 infants born to mothers who had chorioamnionitis — an infection of the membranes of the placenta and an independent risk factor for BPD — as well as decreased Lactobacillus abundance at birth in the airways of the BPD-predisposed, ELBW infants, as compared to BPD-resistant infants. Research elsewhere has suggested a beneficial role for Lactobacillus against airway diseases and for lung development.
“I predict that researchers will study the use of respiratory probiotics, and the role of the gut-lung microbiome axis in the future,” Lal said.
For five ELBW infants who later developed BPD, the researchers collected periodic airway microbiome samples from birth through 9 weeks and saw extremely similar patterns of change in the microbiomes over time.
As for the source of the microbes, Lal and colleagues wrote, “As it is commonly believed that colonization of neonates originates in the birth canal, we were surprised to find that the airway microbiome of vaginally delivered and caesarean section-delivered neonates were similar, which suggests that the microbial DNA in the airways is probably transplacentally derived, consistent with reports that the placenta has a rich microbiome.”
The researchers speculate that this transmission of bacteria or bacterial DNA to the in-utero infant could be via blood or amniotic fluid.
University of Alabama at Birmingham www.uab.edu/news/innovation/item/7505-discovery-of-infants-airway-microbiomes-may-help-predict-lung-disease
Scientists identify marker for myeloid-derived suppressor cells
, /in E-News /by 3wmediaMyeloid-derived suppressor cells (MDSCs) are a population of immune cells that have been implicated in tumour resistance to various types of cancer treatment, including targeted therapies, chemotherapy and immunotherapy. Polymorphonuclear (PMN) cells represent the largest population of MDSCs. However, fully understanding the biology and clinical importance of these cells has been hampered by a lack of markers that set them apart from normal neutrophils.
Now, scientists at The Wistar Institute have identified a marker that distinguishes PMN-MDSCs from neutrophils in the blood of patients with a variety of cancers. Study results showed that higher numbers of cells positive for the marker were associated with larger tumour size.
‘Before we started this work, the only way to isolate PMN-MDSCs was by density centrifugation of blood because they could not be properly identified in tumour tissue,’ said Dmitry I. Gabrilovich, M.D., Ph.D., Christopher M. Davis Professor and professor and program leader of the Translational Tumor Immunology program at Wistar, and senior author of the study. ‘Identifying a marker for PMN-MDSCs will allow us to study these cells in much more depth. In addition, if our clinical results are verified in larger studies, the marker could also be used to help physicians and patients make informed treatment decisions and, ultimately, it could be exploited to target PMN-MDSCs for therapeutic benefit.’
MDSCs are potent suppressors of immune responses. They naturally regulate immune responses in healthy individuals, but the population rapidly expands in patients with cancer, and the presence of these cells has been associated with poor patient outcomes. One of the few ways to know for sure that cells are MDSCs is by showing that they suppress immune responses in vitro.
Gabrilovich and colleagues used whole-genome analysis to compare the genes expressed by PMN-MDSCs and neutrophils from the blood of patients with non-small cell lung cancer and head and neck cancer. The researchers focused on the genes expressed at higher levels in PMN-MDSCs compared with neutrophils, in particular those genes that encoded proteins detectable on the surface of cells. This led them to the protein LOX-1, which was almost undetectable on the surface of neutrophils but detectable on the surface of about one-third of PMN-MDSCs.
When they tested the ability of LOX-1-positive and LOX-1-negative cells to suppress immune responses in vitro only the LOX-1-positive cells had this function. The results showed that LOX-1 was a marker of PMN-MDSCs.
Gabrilovich and colleagues speculated that the number of LOX-1-positive PMN-MDSCs in blood and tumour samples from patients with cancer might help predict disease severity and outcome. They had samples from only a few patients with non-small cell lung cancer to study, but found that patients with larger tumours had higher numbers of these cells in both blood and tumour samples.
‘Now that we have a specific marker for MDSCs, we can begin to ask new questions about the biology of these cells and their clinical significance,’ added Gabrilovich.
EurekAlert www.eurekalert.org/pub_releases/2016-08/twi-wsi080316.php