Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
November 2025
The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics
Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com
PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Accept settingsHide notification onlyCookie settingsWe may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.
Privacy policy
Siemens Healthineers to build diagnostics manufacturing facility in China
, /in E-News /by 3wmediaSiemens Healthineers will expand the company’s existing manufacturing operations in Shanghai, China to include a new in vitro diagnostics facility. The China manufacturing facility will enable in-country manufacturing capabilities for clinical chemistry and immunoassay reagents. “This investment demonstrates the company’s continued commitment to address the evolving needs in the Chinese market and in healthcare markets across the globe,” said Franz Walt, President, Laboratory Diagnostics, Siemens Healthineers. China is the second largest market for Siemens Healthineers. According to George Chan, President, Greater China, Siemens Healthineers, “The opening of this facility strengthens our ability to support Chinese healthcare reform as we deliver better outcomes at a lower cost to our customers.” The company expects to employ hundreds of additional employees once the project is completed.
www.healthcare.siemens.com
Nova Biomedical opens new subsidiary in Brazil
, /in E-News /by 3wmediaNova Biomedical recently announced the opening of a new sales, service, manufacturing, and distribution subsidiary in Brazil. The new facility demonstrates Nova’s commitment to the Brazilian market and to supporting the strong growth of in vitro diagnostic testing in Brazil and Mercosur countries. Located in the town of Nova Lima, a suburb of the city of Belo Horizonte in the state of Minas Gerais, Nova’s new subsidiary is designed to fully support current business and to allow for anticipated future growth. The new subsidiary provides full sales and service support, inventory warehousing and distribution, and manufacturing for Nova customers in Brazil. With the new subsidiary, Nova brings the most advanced technology whole blood analysers for hospital and point-of-care (POC) use to Brazil. The Stat Profile Prime line of hospital analysers includes the Critical Care System (CCS), Electrolyte System (ES), and Prime Plus, which all feature Prime’s innovative, no-maintenance cartridge and reagent technology that saves time and space, and reduces costs. Prime CCS offers a comprehensive testing menu of pH, PCO2, PO2, Hct, Na, K, Cl, iCa, Glu, and Lac. Prime ES provides comprehensive electrolyte testing with Na, K, Cl, iCa, and iMg. Results are ready for both devices in only 60 seconds from 100 microliters of whole blood. Prime Plus combines blood gas, electrolyte, and metabolite testing with co-oximetry, for an extensive, 22-test menu that’s ready in only 60 seconds. The Stat Profile pHOx Ultra analyser provides up to 20 critical care tests from 210 microliters in only two minutes, with other partial test panels available in less than one minute. The StatStrip and StatSensor line of handheld, POC meter and test strip analysers provide rapid glucose/ketone, lactate, and creatinine results at the bedside to support clinical decision making. “We, at Nova Biomedical, are excited to welcome our new Brazilian subsidiary to our international team and for the opportunity to continue to bring Nova’s in vitro diagnostic testing technology to this important global market,” said Ken Lumm, Senior Director, International Sales at Nova.
http://www.novabio.us/
Two key proteins preserve vital genetic information
, /in E-News /by 3wmediaCancer is often driven by various genetic mutations that are acquired through changes to a person’s DNA over time. These alterations can occur at the chromosome level if the proteins are not properly organized and segregated as our cells divide and multiply.
Now, new research from The Wistar Institute demonstrates how two key proteins mediate the organization of chromosomes and our genome, shedding light on one of the key genetic processes for every person. With this key basic information in hand, scientists may now be able to pinpoint the origins of cancer due to genetic mutations.
“Understanding the three-dimensional structure of our genome is critical if we are to properly understand key functions like transcription, DNA replication and repair,” said Ken-ichi Noma, Ph.D., associate professor in the Gene Expression and Regulation program at Wistar and lead author of the study.
Each of our cells contains enough DNA that, if stretched out in a line, would total about six feet in length. Condensin and cohesin are two key protein complexes that properly preserve our DNA in our chromosomes. Condensin helps to compact the essential genetic information into our cells and facilitates chromosome formation. Cohesin helps regulate the chromatids – the two strands along which a chromosome divides – during cell division.
Noma has extensively studied the importance of the three-dimensional structure of our genomes, and while researchers know the roles of condensin and cohesin, their exact roles in how they are able to properly organize chromosomes has remained unclear. Noma and his colleagues studied fission yeast because it undergoes cell division very similar to that of humans. They were able to show that although condensin and cohesin bind to the exact same position on chromosomes, but the domains of chromatins – complexes of DNA and proteins that make up our chromosomes – vary in size and function depending on which protein complex is responsible for the organization.
Cohesin helps mediate associations between chromatins located close to one another whereas condensin mediates larger associations. These domains play critical roles in making sure each cell performs its key function, and if either cohesin or condensin does not organize these key genetic components properly, the consequences could be a host of genetic diseases, including cancer.
Specifically, the researchers pinpointed a mutation in the ace2Δ gene, which is responsible for encoding a transcription factor that is important for condensing, that can disrupt these key gene association domains. If this happens, it can lead to chromosomal segregation defects. This mutation revealed more information about the specific role of condensin as well. They proposed that condensin is recruited to chromosomes by transcription factors that regulate mitosis, or cell division. When condensin is recruited in this manner, chromosomes can be properly segregated.
“The more we know about the role of condensin and cohesin, the more we can learn about key processes involved in the cell cycle and how cancer can be controlled through processes like cellular senescence,” Noma said.
The Wistar Institute www.wistar.org/news-and-media/press-releases/two-key-proteins-preserve-vital-genetic-information
Rap1, a potential new target to treat obesity
, /in E-News /by 3wmediaScientists at Baylor College of Medicine, the National Institutes of Health and Virginia Tech Carilion Research Institute have discovered a new mechanism in the mouse brain that regulates obesity. The study shows that this new mechanism can potentially be targeted to treat obesity.
“It’s well known that the brain is involved in the development of obesity, but how a high-fat diet changes the brain so it triggers the accumulation of body fat is still unclear,” said senior author Dr. Makoto Fukuda, assistant professor of paediatrics at Baylor and the USDA/ARS Children’s Nutrition Research Center at Baylor and Texas Children’s Hospital.
Fukuda and colleagues studied the mouse Rap1 gene, which is expressed in a variety of tissues, including the brain where it is involved in functions such as memory and learning. Little was known, however, of the role brain Rap1 plays in energy balance.
To explore the role Rap1 plays in a mouse model, the scientists selectively deleted the Rap1 gene in a group of neurons in the hypothalamus, a region of the brain that is involved in regulating whole-body metabolism.
The scientists had two groups of mice. In one group, the mice were genetically engineered to lack the Rap1 gene, while the control group had a functional Rap 1 gene. Then, the scientists fed the mice in both groups a high-fat diet in which 60 percent of the calories came from fat. As expected, the control mice with a working Rap1 gene gained weight, but, in comparison, the mice that lacked Rap 1 had markedly reduced body weight and less body fat. Interestingly, when both groups of mice were fed a normal diet, both showed similar weights and body fat.
The scientists then looked closer at why the mice lacking the Rap1 gene had not gained weight despite eating a high-fat diet.
“We observed that the mice lacking Rap1 were not more physically active. However, they ate less and burned more body fat than mice with Rap1,” said Fukuda. “These observations were associated with the hypothalamus producing more of a hormone that reduces appetite, called POMC, and less of hormones that stimulate appetite, called NPY and AgRP.” These mice also had lower levels of blood glucose and insulin than controls.
The scientists also were interested in studying whether leptin changed in mice lacking Rap1. Leptin, the ‘satiety hormone’ produced by fatty tissue, helps regulate body weight by inhibiting appetite. Obese people, however, do not respond to leptin’s signals of satiety, and the blood levels of leptin are higher than those in non-obese people. Leptin resistance is a hallmark of human obesity.
Mice that lacked Rap1 and ate a high-fat diet, on the other hand, did not develop leptin resistance; they were able to respond to leptin, and this was reflected in the hormone’s lower blood levels.
Fukuda and colleagues also tested the effect of inhibiting Rap1 with drugs instead of deleting the gene on mice on a high-fat diet. The scientists inhibited RAP1 action with inhibitor ESI-05.
“When we administered ESI-05 to obese mice, we restored their sensitivity to leptin to a level similar to that in mice eating a normal diet. The mice ate less and lost weight,” said Fukuda.
The scientists have shown a new mechanism by which the brain can affect the development of obesity triggered by consuming a high-fat diet. Consuming a high-fat diet results in changes in the brain that increase Rap1 activity, which in turn leads to a decreased sensitivity to leptin, and this sets the body on a path to obesity.
“This new mechanism involving Rap1 in the brain may represent a potential therapeutic target for treating human obesity in the future,” said Fukuda.
Baylor College of Medicine www.bcm.edu/news/nutrition/rap1-potential-new-target-to-treat-obesity
Discovery of a novel gene for hereditary colon cancer
, /in E-News /by 3wmediaThe formation of large numbers of polyps in the colon has a high probability of developing into colon cancer, if left untreated. The large-scale appearance of polyps is often due to a hereditary cause; in this case the disease can occur in multiple family members. Under the leadership of human geneticists of the University Hospital Bonn, a team of researchers discovered genetic changes in the MSH3 gene in patients and identified a new rare form of hereditary colon cancer.
Colon polyps form like mushroom-shaped growths from the mucosa and are several millimetres to several centimetres in size. They are benign and generally do not cause any symptoms – however, they can turn into malignant tumours (colon cancer). Physicians refer to the development of a large number of polyps in the colon as ‘polyposis.’ Scientists have already discovered several genes associated with a polyposis. ‘However, about one-third of families affected by the disease do not have any abnormalities in these genes,’ says Prof. Dr. Stefan Aretz, head of the working group at the Institute of Human Genetics at the University of Bonn Hospital. Therefore, there would have to be even more genes involved in the formation of polyps in the colon.
Together with pathologists from the University Hospital Bonn, scientists from the Yale University School of Medicine in New Haven (USA), and the Frankfurt University Hospital, the team working with Prof. Aretz investigated the genetic material (DNA) of more than 100 polyposis patients using blood samples. In each patient, all of the about 20,000 protein-coding genes known were simultaneously examined. In this process, the scientists filtered the rare, possibly relevant genetic changes out of the gigantic quantity of data, like the proverbial needle in a haystack. In two patients, genetic changes (mutations) were discovered in the MSH3 gene on chromosome 5.
Proof of causes is like a trial based on circumstantial evidence
‘The challenge is proving the causal connection between the mutations in this gene and the disease,’ says Prof. Aretz. The process is similar to that of a trial based on circumstantial evidence. Family members also play a role here: The siblings with the disease have to have these same MSH3 mutations as the patient who was first examined, but not the healthy relatives. That was the case. In addition, the scientists investigated the consequences for patients resulting from the loss of function of the MSH3 gene. ‘It involves a gene for the repair of the genetic material,’ reports Dr. Ronja Adam, one of the two lead authors from Prof. Aretz’s team. ‘The mutations cause the MSH3 protein to not be formed.’ Since the protein is missing in the cell nucleus of the patient´s tissues, there is an accumulation of genetic defects. The mutations which are not repaired then predispose to the more frequent occurrence of polyps in the colon.
The newly discovered type of polyposis, in contrast to many other forms of hereditary colon cancer, is not inherited dominantly, but instead recessively. ‘This means that siblings have a 25 percent chance of developing the disease; however, the parents and children of affected persons only have a very low risk of developing the disease,’ explains Dr. Isabel Spier from the Institute of Human Genetics, who was also very involved in the study.
The annual colonoscopy is the most effective cancer screening method for polyposis patients. As a result, the development of colon cancer can be effectively prevented. By investigating the MSH3 gene, a clear diagnosis can be made prospectively in some other, previously unexplained polyposis cases. Afterwards, healthy persons at risk in the family can be tested for the mutations. ‘Only proven carriers would need to take part in the intensive surveillance program,’ says the human geneticist. In addition, science would gain new insights into the development and biological foundations of tumours through the identification of mutations in the MSH3 gene. Prof. Aretz: ‘The knowledge about molecular mechanisms which lead to cancer is also a precondition for the development of new targeted drugs.’
University of Bonn www.uni-bonn.de/Press-releases/discovery-of-a-novel-gene-for-hereditary-colon-cancer
Major global study reveals new hypertension and blood pressure genes
, /in E-News /by 3wmediaThirty-one new gene regions linked with blood pressure have been identified in one of the largest genetic studies of blood pressure to date, involving over 347,000 people, and jointly led by Queen Mary University of London (QMUL) and the University of Cambridge.
The discoveries include DNA changes in three genes that have much larger effects on blood pressure in the population than previously seen, providing new insights into the physiology of hypertension and suggesting new targets for treatment.
High blood pressure or hypertension is a major risk factor for cardiovascular disease and premature death. It is estimated to be responsible for a larger proportion of global disease burden and premature mortality than any other disease risk factor. However, there is limited knowledge on the genetics of blood pressure.
The teams investigated the genotypes of around 347,000 people and their health records to find links between their genetic make-up and cardiovascular health. The participants included healthy individuals and those with diabetes, coronary artery disease and hypertension, from across Europe (including the UK, Denmark, Sweden, Norway, Finland and Estonia), the USA, Pakistan and Bangladesh. The study brought together around 200 investigators from across 15 countries.
Study author Professor Patricia Munroe from QMUL said:
“We already know from earlier studies that high blood pressure is a major risk factor for cardiovascular disease. Finding more genetic regions associated with the condition allows us to map and understand new biological pathways through which the disease develops, and also highlight potential new therapeutic targets. This could even reveal drugs that are already out there but may now potentially be used to treat hypertension.”
Most genetic blood pressure discoveries until now have been of common genetic variants that have small effects on blood pressure. The study, published in Nature Genetics, has found variants in three genes that appear to be rare in the population, but have up to twice the effect on blood pressure.
Study author, Dr Joanna Howson from the University of Cambridge said:
“The sheer scale of our study has enabled us to identify genetic variants carried by less than one in a hundred people that affect blood pressure regulation. While we have known for a long time that blood pressure is a risk factor for coronary heart disease and stroke, our study has shown that there are common genetic risk factors underlying these conditions.”
Queen Mary University of London www.whri.qmul.ac.uk/about-us/whri-news/94-news/627-major-global-study-reveals-new-hypertension-and-blood-pressure-genes
Genetic causes of small head size share common mechanism
, /in E-News /by 3wmediaMicrocephaly is a rare disorder that stunts brain development in utero, resulting in an abnormally small head. The Zika virus is one environmental cause of this devastating condition, but genetic defects can cause microcephaly, too. A new Duke University study examining three genetic causes of microcephaly in mice suggests one common mechanism through which the disorder could arise.
The study offers a new window into early, critical stages of brain development, and may improve understanding of the diverse causes of microcephaly and other neurodevelopmental disorders, including autism.
“We’re excited about this study because, by stepping back and looking at the basic mechanistic routes to microcephaly, we hope to understand how Zika infection causes microcephaly,” said the study’s senior investigator Debra Silver, an assistant professor of molecular genetics and microbiology at the Duke University School of Medicine.
In the new study, Hanqian Mao, a graduate student in Silver’s lab, created three mouse models of microcephaly by cutting the levels of each of three genes — Magoh, Rbm8a and Eif4a3 — by half during a critical time in brain development. All three types of mice developed a smaller cerebral cortex, the part of the brain responsible for memory and thought.
Then, Mao screened for any changes in mRNA and protein levels that could also contribute to the underdeveloped brains. One change that stood out involved a protein called p53, which accumulated in each of the mutant brains. The group hypothesized that too much p53 could cause developing cells to die.
To test the involvement of p53 in microcephaly, Duke postdoctoral fellow John McMahon suppressed it in each of the three types of mice. By blocking p53 at a crucial point in development, the team was able to trigger the brains to partially or fully recover to normal size, suggesting that p53 or its signalling partners might be considered as new therapeutic targets for microcephaly.
“What we don’t know yet is exactly how our microcephaly-causing genes are regulating p53 and other changes in the brain, and that’s going to be the next big question,” Silver said.
The genes Magoh, Rbm8a and Eif4a3 are related to one another in that they bind together on specific spots on RNA and affect its processing to become protein. Although the triad is expressed in every cell of the body, it is more abundant in brain tissue.
“Our results suggest that the molecular complex is a master regulator of cortical development, because it’s regulating critical genes in stem cells, which must divide and then start making neurons,” said Silver, who is also a member of the Duke Institute for Brain Sciences.
“If you have problems at this early stage, you don’t get enough stem cells. And then the stem cells themselves can’t go on to make neurons. That’s where you get microcephaly,” Silver added.
Importantly, disruptions in the genes Rbm8a and Eif43 have already been linked to human cases of intellectual disability, and Rbm8a has been associated with microcephaly and autism in people.
“That’s another reason that identifying the downstream molecules of these genes is really important,” Silver said, adding that her team has some of the only mouse models in which it is possible explore those questions.
Duke University today.duke.edu/2016/09/genetic-causes-small-head-size-share-common-mechanism
Gene regulation in brain may explain repetitive behaviours in Rett syndrome patients
, /in E-News /by 3wmediaThree-year-old Naomi slaps her forehead a few times, bites her fingers and toddles across the doctor’s office in her white and pink pyjamas before turning her head into a door with a dull thud. Her mother quickly straps on a helmet and adjusts the rainbow chinstrap, then watches as Naomi puts a hand back in her mouth and continues exploring the room.
“She keeps me busy,” acknowledges her mother, Laura Elguea.
Naomi was diagnosed at age 2 with Rett syndrome, a rare, debilitating disease in which patients progressively lose brain function and the ability to walk. While she laughs, smiles and toddles around like most 3-year-olds, Naomi’s repetitive hand behaviours offer clues to her condition.
Relatively little is known about the neuronal causes of Rett syndrome, but UT Southwestern Medical Center scientists have now identified a process in the brains of mice that might explain the repetitive actions – research that could be a key step in developing treatments to eliminate symptoms that drastically impair the quality of life in Rett patients.
The finding from UT Southwestern’s Peter O’Donnell Jr. Brain Institute could also potentially benefit people with autism spectrum disorder, though more research is needed to evaluate the link to this disease in humans.
“We are exploring the processes that contribute to Rett syndrome in an effort to develop treatments that may prove useful in the disease,” said Dr. Lisa Monteggia, Professor of Neuroscience with the O’Donnell Jr. Brain Institute, who led the research.
The study demonstrated that MeCP2 – the protein that does not work properly in Rett syndrome – is among a group of three proteins that affect the function of a gene previously linked to obsessive compulsive disorder. Researchers were able to induce and then suppress repetitive behaviours in mice by changing the levels of these three proteins at the synapse – the communication junction between nerve cells.
The research is a significant advancement in the understanding of how dysfunction in MeCP2 leads to key symptoms associated with Rett syndrome. Although MeCP2 was identified less than two decades ago as the cause of the postnatal neurological disorder, the link between the protein’s dysfunction and the specific neurological symptoms characteristic of the disease remains elusive.
Rett syndrome affects girls almost exclusively, occurring in 1 of every 10,000 to 15,000 births and usually diagnosed by age 2. It is characterized by developmental regression, autistic traits, slow brain development, lack of speech, repetitive hand movements, seizures, and problems with walking. Many patients live beyond middle age, though not enough data exist to reliably estimate life expectancy beyond age 40.
While current medications and behavioural therapy can sometimes diminish symptoms such as seizures and hand behaviours, no treatment exists to eradicate or reverse the disorder and the repetitive stereotyped behaviours, due in large part to a lack of knowledge about how MeCP2 dysfunction gives rise to these and other symptoms.
UT Southwestern Medical Center www.utsouthwestern.edu/newsroom/news-releases/year-2016/september/rett-syndrome-monteggia.html
Cancer stem cells: New method analyses 10,000 cells at once
, /in E-News /by 3wmediaA new device for studying tumour cells can trap 10,000 individual cells in a single chip.
The technique, developed at the University of Michigan, could one day help screen potential cancer treatments based on an individual patient’s tumour and help researchers better understand so-called cancer stem cells. It also sheds light on a controversy: are large cells or small cells more likely to be cancer stem cells?
Cancer cells are not all the same, and one theory holds that no more than 5 percent of the cells in a tumour are cancer stem cells. These few may be the only cells capable of causing a relapse or metastasis.
‘Most normal cells will die if they are not anchored to something, but cancer stem cells can survive. They can become circulating tumour cells and come to another area of the body,’ said Euisik Yoon, professor of electrical engineering and computer science, and biomedical engineering.
The team led by Yoon designed and made a device that takes advantage of this ability in hopes of understanding cancer stem cells better: how to identify them, what causes them to grow or die, and how to target them with cancer treatments. Their chip contains up to 12,800 wells for catching individual cancer cells. The team tested the chip with breast cancer cells, donated by researchers in the U-M Comprehensive Cancer Center.
They mixed the cells into a solution and ran the liquid through tiny channels in a plastic chip. Each channel was lined with chambers for trapping single cells.
The chambers have small openings to a parallel channel, which creates a draft that draws cells in — sort of like the drain in a sink. Once a cell is trapped, it blocks that opening and stops the draft. This ensures that, most of the time, only one cell is pulled into each chamber.
The walls of the chamber are coated so that the cell can’t latch on. As a result, normal cells that can’t cause metastases die over the course of a few days, leaving behind just the cancer stem cells. These cells reproduce in their chambers, forming tiny floating colonies, or tumorspheres.
While the ability to isolate 10,000 individual cells is impressive, it wouldn’t be useful if the team had to manually record every one, as required by most devices that capture cancer cells. The key is their computer algorithm, capable of combing through the microscope images and assessing the size and number of cells in each well. The algorithm’s particular talent is identifying cells no matter whether they show up dimly or brightly in the microscope image.
‘Our method is special because we really want to enable the study of many cells at once,’ said Yu-Heng Cheng, a doctoral student in electrical engineering and computer science. ‘Cancer cells have many different appearances, and our algorithm recognizes them.’
University of Michigan www.mcancer.org/news/archive/cancer-stem-cells-new-method-analyzes-10000-cells-once
Blood biomarkers in drug-resistant cancer tumour cells
, /in E-News /by 3wmediaWhile searching for a non-invasive way to detect prostate cancer cells circulating in blood, Duke Cancer Institute researchers have identified some blood markers associated with tumour resistance to two common hormone therapies.
In a study, the Duke-led team reported that they isolated multiple key gene alterations in the circulating prostate tumour cells of patients who had developed resistance to abiraterone or enzalutamide.
Enzalutamide is a drug that blocks the male androgen receptor, and abiraterone is a drug that lowers testosterone levels. Both drugs are approved to treat hormone-resistant prostate cancer, but the tumours typically develop resistance within a few years.
The study, focusing on a small number of patients and using sophisticated blood analysis technology, demonstrated that circulating tumour cells detected in blood have the potential to reveal important genetic information that could guide treatments selection in the future, and suggest targets for new therapies.
“We have developed a method that allows us to examine the whole genome of rare circulating cancer cells in the blood, which is unique in each patient, and which can change over time during treatment,” said senior author Andrew Armstrong, M.D., a medical oncologist and co-director of Genitourinary Clinical-Translational Research at the Duke Cancer Institute (DCI).
“Among the genomic changes in the patients’ individual cancers, we were able to find key similarities between the cancer cells of men who have hormone-resistant prostate cancer,” Armstrong said. “Our goal is to develop a ‘liquid biopsy’ that would be non-invasive, yet provide information that could guide clinical decisions.”
Armstrong and colleagues from the DCI and the Duke Molecular Physiology Institute used a process called array-based comparative genomic hybridization to analyse the genome of the circulating tumour cells of 16 men with advanced, treatment-resistant prostate cancer. The technique enabled them to determine which genes had extra copies and which regions were deleted.
Focusing both on genes that have previously been implicated in tumour progression, plus other genes important to cancer biology, the researchers found changes in multiple genetic pathways that appear to be in common among the men’s circulating tumour cells.
“Our research provides evidence supporting the ability to measure gains and losses of large scale sections of the circulating tumour cells genome in men with prostate cancer,” said co-author Simon Gregory, Ph.D., director of the Section of Genomics and Epigenetics in the Duke Molecular Physiology Institute. “We are now evaluating this method combined with higher resolution DNA mutational studies and measurements of RNA splice variants in CTCs to determine their clinical relevance to patients and treatment resistance.”
Should these common alterations be similarly identified in larger studies, they could be used as biomarkers as part of a blood-based liquid biopsy to help determine what treatments would be most effective. The findings could also point to new targets for drug development.
One such large prospective clinical validation study is underway now at the Duke Cancer Institute, which is examining how the mutations develop in the context of enzalutamide or abiraterone therapy, and how the mutations relate to other key genetic events.
Duke University corporate.dukehealth.org/news-listing/duke-team-identifies-blood-biomarkers-drug-resistant-cancer-tumor-cells?h=nl