Current mass-spectrometry-based strategies will allow us to understand the molecular phenotypes of disease, which will drastically improve the diagnostic power of new clinical tests. In this interview, Professor Cobbaert [head of the Department of Clinical Chemistry and Laboratory Medicine at the Leiden University Medical Center (LUMC), Leiden, The Netherlands] and Dr Van der Burgt (associate professor at the Center for Proteomics and Metabolomics, LUMC) give us their expert opinions on how a strong collaboration between biomarker researchers, clinicians and medical laboratory specialists is necessary to make the development process more efficient. Professor Cobbaert is driven to innovate the field of laboratory medicine: “The clinical lab will change from a care-relevant to a system-relevant cross-sectoral discipline which will greatly affect the development of the entire healthcare system”.
About us
The clinical chemistry lab at the Leiden University Medical Center (LUMC) works closely together with researchers at the Center for Metabolomics and Proteomics (CPM) to develop new bioanalytical tests. The goal is to contribute to Precision Medicine through improved, molecular characterization of health and disease, for the sake of better patient management and patient outcome.
Christa Cobbaert heads the Department of Clinical Chemistry and Laboratory Medicine at LUMC, which encompasses clinical chemistry, hematology, coagulation and blood transfusion.
“In addition to regular patient diagnostics, our department also has responsibility for the hospital-wide central receipt of patient and research specimens. Our department supports research and biobanking from a large variety of clinical groups that want to use our services. Another core task is training and education of lab specialists and medical technicians.
“Some current numbers? Our routine lab works 24/7, we do about 4000 specimens per day, and produce over 4 million tests per year. We have 180 employees, about 140 full time equivalents. The majority are phlebotomists, who collect blood, and medical technologists, who run the analyses. We have an academic staff encompassing multiple laboratory specialists, who are responsible for the lab policy, lab organization, for state-of-the-art test menus, clinical consulting and post-academic training of lab specialists. Head medical technicians, quality control officers, as well as information and communication technology specialists and administrative personnel are a coaching layer between the academics and the operational co-workers.
“Since we are an academic institute, we are responsible for the traineeship of new lab specialists. We also contribute to the education of medical doctors. Teaching future medical doctors about the targeted use of lab diagnostics is key because approximately 70% of medical decisions in hospitals are based on lab results. We further provide teaching contributions in new disciplines such as clinical technology, and contribute to different Masters programmes.”
Dr Yuri van der Burgt is an associate professor at the CPM. “Trained as a chemist, I did a PhD in bioorganic chemistry and moved to the clinical field. At the LUMC I joined pioneering ‘omics’ research for medical care and patient research. For 50% of my time I work for the clinical chemistry lab, and from that position I bridge to the CPM research aiming for improved biomarker translation. CPM has approximately 50 researchers (PhD students postdocs, senior scientists, assistants and associates) and is headed by Manfred Wuhrer. We explore promising biomarkers that are discovered in basic research and aim to verify their potential for translation to the clinic. Mass-spectrometry (MS)-based omics studies have reported a wide variety of biomarkers or signatures, but only a few of these have been translated into a laboratory test. This limited translation is partly due to the lack of standardized protocols, robustness and reproducibility, but more importantly ill-defined or flawed study designs.”
Cobbaert: “We are happy with the cooperation with CPM because it’s very important to have analytical chemists connected to our lab. Once that lab specialists and clinicians have identified unmet clinical needs, analytical chemists support us with the assay development for molecular phenotyping of disease and health using MS-based technology. Together we attempt to bring promising biomarkers from the research field into the clinical arena. We believe that this collaboration should lead to a more robust and effective pipeline for developing medical tests. We also support research from various clinical groups at the LUMC, especially in the domains of Cardiovascular Diseases, Cancer Diagnosis and Kidney Diseases.”
Improving effectiveness
Van der Burgt: “One of the main activities at CPM is the elucidation of modifications on existing protein biomarkers, with emphasis on glycosylation analysis. As we want to make sure that these biomarkers can be of use for the clinic, we do not only report discoveries, but rather aim for further development of our findings into something clinically useful. Therefore we first make an inventory of the unmet needs from the clinicians, and what is actually needed for improved patient care. Hence, the clinical need guides our -omics research. And it is my task to bring these two worlds together. My goal is not just to publish papers on new discoveries, but to contribute to finding more effective solutions: clinically effective, cost effective and safe tests for patient care.”
Cobbaert: “The current pipeline and the current process of financing research is in my perception a wasteful process because there is insufficient attention to the downstream consequences (utility) of the research findings for patient care. Currently the number of papers and citation indices are rewarded, rather than the impact for patient care. Subsidizers should stimulate the translation and implementation of newly discovered biomarkers by making the funding of translation and implementation research inclusive.
“To counteract this inefficient pipeline from discovery to application researchers, clinicians, biostatisticians and lab specialists should collaborate closely. The clinical needs should be the driver of the test development process, rather than the technological push. Once these needs are identified a more informed decision can be made with regard to priorities: ‘This is what we are setting up together and this is where we go for’. The European Federation of Laboratory Medicine (EFLM) Test Evaluation framework provides guidance and encompasses key elements for creating evidence regarding the clinical and cost-effectiveness of new medical tests.
“Our mantra is that our research efforts should lead to precision diagnostics and clinically effective medical tests. In our collaboration with CPM we aim to contribute to better patient management and patient outcome with a targeted approach. As it is essential to add value to clinical pathways and patient management, we need actionable results for better patient care.”
International initiatives
Cobbaert: “We try to educate stakeholders of the biomarkers-medical test pipeline about the usefulness of the Test Evaluation framework for guiding this development process.
“We have asked ourselves: Why is the process from research to application such a wasteful process? What should we do? Last November we organized a precision diagnostics symposium in which we shared our experiences on quantitative proteomics and proposed our solutions [‘Prime time for precision diagnostics driven by unmet clinical needs’ (LUMC, Leiden, The Netherlands, November 2019)]. We also shared our struggles: developing specific molecular tests for proteins is not an easy road. Several barriers had to be alleviated. And that’s difficult to do, sometimes we failed, sometimes we felt that it doesn’t go quick enough. But we all are dedicated to make it a success together.
“Once a medical test is available, and evidence regarding its clinical utility and value has been generated, medical tests have to be implemented in clinical practice, either as a Lab-Developed-Test (rare) or as a Conformité Européene in vitro diagnostic (CE-IVD) test (often). To be successful, clear guidance should be given to doctors regarding its intended use in the clinical care pathway of interest. As a rule of thumb, the average trajectory from promising biomarker to applied medical test in the clinic takes about 10 years.
“In the current curriculum of medical students limited education is given regarding medical test use, notwithstanding the 70% rule (medical decisions are to a large extent based on lab test results). Laboratory specialists have to demonstrate medical leadership by educating physicians on proper test use.
“Collaborations are necessary to innovate laboratory medicine. We all start to understand the need for cooperation between different areas of expertise. A smooth and fruitful interaction between different types of laboratory specialists (e.g. microbiology, pathology, geneticists, immunologists…), researchers and clinicians should help to overcome the old boundaries.”
Collaboration is key
Van der Burgt: “An example of such a collaboration between CPM and clinical chemistry is our work on glycoprotein markers that we recently presented at the symposium on precision diagnostics, ‘Prime time for precision diagnostics driven by unmet clinical needs’ (LUMC, Leiden, The Netherlands, November 2019).
“Structure refinement of the biomarker for prostate cancer, the prostate specific antigen (PSA) demonstrated the importance of glycosylation for further development. We have worked on PSA at the CPM together with the clinical chemistry lab and in that collaborative effort we have seen that we can add extra information on the PSA test readout. Additionally, we aim to discover novel biomarkers for early detection of cancers. We see an enormous worldwide effort there and the result is hundreds, if not thousands, of new markers without any clinical pre-knowledge or knowledge of urgent clinical needs, it was technology-driven.”
Cobbaert: “It should be the opposite, clinical needs and sustainable and affordable health care should be the drivers of the test menu. In that context, our quantitative proteomics based activities for precision diagnostics are becoming more and more appreciated. To make translational research more effective, the funding agencies should also be concerned that the research they support will be applied in the clinical lab and will improve patient care.”
Paradigm shift
Cobbaert: “In the 20th century, our technology did not enable molecular characterization of disease, at least not in the high-throughput manner that is needed in clinical practice. Now we live in the 21st century and technology and medical insights have evolved. I expect a paradigm shift whereby traditional diagnostic tests will be complemented with precision diagnostic tests which enable Predictive, Preventive, Personalized Medicine, with Participation of the patient.
“As we drill down to the molecular level of health and disease, we should be able to provide more refined diagnoses and treatments. In 10 or 20 years, we may expect to read out a patient’s complete molecular phenotype or ‘proteotype’ and we will be able to monitor changes from a personal baseline.
“To innovate lab medicine and to realize the ambitions for Precision Medicine, we also need to find interoperable information technology (IT)-solutions. To that end, we need strategically thinking people who align the different stakeholders of the test pipeline, strive to improve health and patient care and know how to find advanced technical ,IT and organizational solutions to disclose the billions of data. Standardization of IT and making databases interoperable will be key. Unfortunately, we seem to be very far away from standardized interoperable solutions owing to a very fragmented IT-landscape across and even within health institutions.”
GC-MS discovery of biomarkers will allow non-invasive early disease detection by breath biopsy
, /in E-News /by 3wmediaOwlstone Medical and Thermo Fisher Scientific recently announced a collaborative partnership to advance the early diagnosis of cancer and other diseases. This will involve the integration of Orbitrap gas chromatography mass spectrometry (GC-MS) instrumentation into Owlstone Medical’s Breath Biopsy platform, aiding metabolomics studies of breath samples for unique biomarkers that could translate into non-invasive, routine screening solutions for improved early diagnosis of cancer and other disease. CLI caught up with Dr Max Allsworth, Owlstone Medical, and Dominic Roberts, Thermo Fisher Scientific, to discuss how MS has benefited clinical lab diagnostics.
Mass spectrometry is an incredibly powerful technique, used increasingly in clinical lab diagnostics. How has it been of benefit in this application?
Clinical laboratories involved in both routine and research applications are under ever-increasing pressure to deliver fast results, while maintaining the highest levels of accuracy and confidence. The majority of these laboratories currently rely on targeted analytical approaches, using both gas chromatography (GC) and liquid chromatography coupled to triple quadrupole mass spectrometry (MS) instrumentation. These techniques cover the wide range of chemical classes to be monitored at the required levels of sensitivity and selectivity. However, they are limited to those compounds in the target list and they require careful optimization of acquisition parameters for each compound. High-resolution, full-scan MS using Orbitrap technology provides a solution to meet:
While MS adoption in clinical settings has been somewhat limited to date, that is rapidly changing. A small number of MS-based assays have received United States Food & Drug Administration (U.S. FDA) clearance over the past few years in areas including microbiology pathogen identification, vitamin D quantitation, newborn screening and genetic analyses. One of the key benefits of MS adoption in clinical settings is its flexibility. The same instrumentation platform can be deployed into a wide variety of applications, being able to detect and measure protein, lipid, genomic, and the area with perhaps most clinical promise, metabolites. As a result, a broad range of laboratorydeveloped tests now exist in Clinical Laboratory Improvement Amendments (CLIA)-facilities with more being developed all the time.
One of the areas of greatest promise of MS in clinical settings is through the deployment of Breath Biopsy®. Metabolites, being the furthest downstream in biological processes, represent the most phenotypically relevant biomarkers that take into account both endogenous and external drivers of disease. Breath represents an extremely exciting approach to capturing these chemicals at very low levels with powerful implications for the early detection of disease and the effective delivery of precision medicine.
What current work is underway for developing the use of MS in the clinical lab?
GC-MS is Owlstone Medical’s core discovery technology, enabling us to explore volatile organic compounds in breath, seeking to link specific chemicals, and the changes in their levels, to specific diseases. In many metabolomics studies samples have to undergo a complex sample preparation protocol that can lead to complexity and variation if not controlled adequately. This is particularly true of liquid samples. However, as Owlstone Medical is identifying breath-based volatile biomarkers directly, sample preparation is relatively simple. By using thermal desorption to release the chemicals found in breath, which we have captured on a sorbent matrix in cartridges as part of our ReCIVA® Breath Sampler, the outflow can be directly introduced into a GC-MS system.
Owlstone Medical is focused on developing diagnostic and screening solutions in oncology (for example through LuCID, the world’s largest breath-based clinical trial for the discovery of breath-based biomarkers of early-stage lung cancer), liver disease (with whom they have partnered with the Cleveland Clinic), respiratory disease (working with AstraZeneca and GSK on asthma and COPD), and environmental exposure. In the future, once tests have been developed and launched into the market, sample analysis for a substantial portion of these tests will also be via GC-MS.
DPD identification is key in avoiding serious reaction to 5-FU cancer drug
, /in E-News /by 3wmediaBefore starting cancer treatment with fluoropyrimidine-based chemotherapies, it is highly recommended to check for dihydropyrimidine dehydrogenase (DPD) deficiency by measuring uracilemia (or calculating the dihydrouracil:uracil ratio). This article discusses some of the ways of doing this.
Background
Approved for treatment of humans 60 years ago, fluoropyrimidinebased chemotherapies remain important antineoplastic agents. They are widely used in Europe, for example in France 100¦000 patients are medicated with this group of anticancer drugs.
Indeed, 5-fluorouracil (5-FU) and its oral pre-prodrug capecitabine are the backbone in the treatment of colorectal, pancreatic, gastric, breast, head and neck cancers. They work by interfering with enzymes (principally thymidylate synthase) involved in producing new DNA, thereby blocking the growth of cancer cells. They are administered by injection or by mouth. However, the use of fluoropyrimidines is associated with an important risk of toxicity, mainly due to deficiency of the enzyme involved in its catabolism, dihydropyrimidine dehydrogenase (DPD).
In France, health authorities recommend the determination of uracil concentration to guide dosing of fluoropyrimidines. Numerous liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods have been proposed but they include complex liquid–liquid or solid-phase extraction procedures.
Prescribers may be unaware that their patients lack functional DPD (encoded by the DPYD gene) and hence cannot break down fluorouracil, resulting in its build-up. This can lead to severe and life-threatening side effects such as neutropenia, neurotoxicity, severe diarrhea and stomatitis.
Up to 15% of patients exhibit a partial deficiency, whereas 0.1–0.5% may have a complete deficiency. Consequently, a 5-FU dose can lead to severe or lethal toxicity, and it is therefore highly recommended to screen for DPD status to determine a safe dose for the patient.
This deficiency may be detected either by genotyping (an approach that explores the polymorphisms of the DPYD gene) or by phenotyping, which consists of measuring uracilemia or calculating the 5,6-dihydrouracil:uracil (UH2:U) ratio.
Brief methodological overview
In genotyping, genes causing the deficiency are focused on, whereas with LC-MS/MS, the activity of DPD is estimated by measuring the ratio of the compounds UH2 and U. The first method looks only at the cause, whereas the second, safer method, looks at the result considering all deficiency cases while reducing toxic risks.
Need for accuracy, reliability and robustness
Proposed threshold values of 16 and 150 ng/mL for uracilemia characterize a partial or complete DPD deficiency, respectively. Inaccurate quantification of these threshold values may totally influence patient care and medical decisions. Analytical methods must therefore be accurate, reliable and robust. Automation is undoubtedly the best solution for reduction of errors while ensuring best reproducibility, robustness and reliability.
In this context, Shimadzu has developed a fully-automated procedure for the measurement of U and UH2 in human plasma. It is known as indirect phenotyping and provides faster testing as well as greater accuracy, safety and standardization. It is a method where the extraction is carried out by a programmable liquid handler directly coupled to a LC-MS/MS system.
The Centre Hospitalier Universitaire de Limoges (CHU Limoges), France, has been involved in proposing a method combining accuracy and time-efficiency. They suggested a new solution based on a novel sample preparation system, coupling an HPLC instrument and a triplequadrupole mass spectrometer.
Extraction is performed by an automated sample preparation system, the Clinical Laboratory Automation Module (CLAM)-2030 (Shimadzu Corporation) coupled to an LC-MS/MS system. Responding to the needs of clinical research sites, the CLAM-2030 provides stable data acquisition, lower running costs and improved work efficiency. It can be connected to four models of triple-quadrupole liquid chromatography mass spectrometers. Once the primary (or secondary) tube is loaded onto the automated system, no further human intervention is required as the CLAM-2030 resulting in high standardization.
The system was used in positive electrospray ionization mode. Acquisition method targeted multiple reaction monitoring (MRM) transitions for uracil, dihydrouracil, uracil-13C, 15N2 and dihydrouracil-13C, 15N2. The workflow procedure is summarized in Figure 1.
The CLAM-2030 targets pharmaceutical and medical departments as well as biological analysis labs. It is a technological key system applied in Shimadzu’s European Innovation Center (EuIC) programme. The EuIC merges the cutting-edge analytical technologies of Shimadzu with game-changing topics and expertise in markets and science covered by opinion leaders, strategic thinkers and scientific experts in order to create new solutions for tomorrow. In France, the CHU University Hospital is a cooperation partner of the EuIC.
The CLAM-2030 module automates everything from the preparation of urine, blood, and other biological samples to measurement via liquid chromatography mass spectrometry (LC-MS). Within a few minutes, the CLAM-2030 preparation module completes the blood-sample preparation process including the addition of reagents, mixing of the solution and the addition of a deproteinization liquid, compared to the 15–20 minutes that this process conventionally takes. Further, if the samples and reagents are placed and positioned in special containers for automatic conveyance to the LC-MS by an autosampler, the module can perform all of the processes automatically, on weekends and overnight.
Quick results
By overlapping sample treatment, a result is obtained every 14 minutes after the first sample. This method is fully validated according to ISO 15189 requirements. The result of the validation study are summarized in Table 1. A 5 ng/mL limit of quantification is obtained for both U and UH2 with good linearity (R² >0.995). At 16 ng/mL (threshold value) the inaccuracy and coefficients of variation were less than 5% for intra- and inter-assay tests, clearly sufficient to avoid misdiagnosing the level of DPD activity.
The method has been applied successfully in 64 consecutive patients tested at the CHU Limoges, and its results were similar to those of a classic LC-MS method (LLE for sample preparation) used routinely until then. For each patient, the same diagnosis (absence or presence of DPD deficiency) was given and the Bland–Altman plot (Fig. 2) shows good agreement between the two methods.
Conclusion
As DPD deficiency screening in patients given fluoropyrimidine-based chemotherapy is now highly recommended, most labs in charge of the measurement of U (and UH2) will or are already facing an increase in this activity. Shimadzu therefore proposes a fully-automated solution ensuring an accurate and robust measurement without requiring precious laboratory staff time. The simplicity of operation and the minimization of user involvement in the sample preparation process will help obtain high throughput for the monitoring of 5-FU and capecitabine treatments.
Translational mass spectrometry in clinical chemistry
, /in E-News /by 3wmediaCurrent mass-spectrometry-based strategies will allow us to understand the molecular phenotypes of disease, which will drastically improve the diagnostic power of new clinical tests. In this interview, Professor Cobbaert [head of the Department of Clinical Chemistry and Laboratory Medicine at the Leiden University Medical Center (LUMC), Leiden, The Netherlands] and Dr Van der Burgt (associate professor at the Center for Proteomics and Metabolomics, LUMC) give us their expert opinions on how a strong collaboration between biomarker researchers, clinicians and medical laboratory specialists is necessary to make the development process more efficient. Professor Cobbaert is driven to innovate the field of laboratory medicine: “The clinical lab will change from a care-relevant to a system-relevant cross-sectoral discipline which will greatly affect the development of the entire healthcare system”.
About us
The clinical chemistry lab at the Leiden University Medical Center (LUMC) works closely together with researchers at the Center for Metabolomics and Proteomics (CPM) to develop new bioanalytical tests. The goal is to contribute to Precision Medicine through improved, molecular characterization of health and disease, for the sake of better patient management and patient outcome.
Christa Cobbaert heads the Department of Clinical Chemistry and Laboratory Medicine at LUMC, which encompasses clinical chemistry, hematology, coagulation and blood transfusion.
“In addition to regular patient diagnostics, our department also has responsibility for the hospital-wide central receipt of patient and research specimens. Our department supports research and biobanking from a large variety of clinical groups that want to use our services. Another core task is training and education of lab specialists and medical technicians.
“Some current numbers? Our routine lab works 24/7, we do about 4000 specimens per day, and produce over 4 million tests per year. We have 180 employees, about 140 full time equivalents. The majority are phlebotomists, who collect blood, and medical technologists, who run the analyses. We have an academic staff encompassing multiple laboratory specialists, who are responsible for the lab policy, lab organization, for state-of-the-art test menus, clinical consulting and post-academic training of lab specialists. Head medical technicians, quality control officers, as well as information and communication technology specialists and administrative personnel are a coaching layer between the academics and the operational co-workers.
“Since we are an academic institute, we are responsible for the traineeship of new lab specialists. We also contribute to the education of medical doctors. Teaching future medical doctors about the targeted use of lab diagnostics is key because approximately 70% of medical decisions in hospitals are based on lab results. We further provide teaching contributions in new disciplines such as clinical technology, and contribute to different Masters programmes.”
Dr Yuri van der Burgt is an associate professor at the CPM. “Trained as a chemist, I did a PhD in bioorganic chemistry and moved to the clinical field. At the LUMC I joined pioneering ‘omics’ research for medical care and patient research. For 50% of my time I work for the clinical chemistry lab, and from that position I bridge to the CPM research aiming for improved biomarker translation. CPM has approximately 50 researchers (PhD students postdocs, senior scientists, assistants and associates) and is headed by Manfred Wuhrer. We explore promising biomarkers that are discovered in basic research and aim to verify their potential for translation to the clinic. Mass-spectrometry (MS)-based omics studies have reported a wide variety of biomarkers or signatures, but only a few of these have been translated into a laboratory test. This limited translation is partly due to the lack of standardized protocols, robustness and reproducibility, but more importantly ill-defined or flawed study designs.”
Cobbaert: “We are happy with the cooperation with CPM because it’s very important to have analytical chemists connected to our lab. Once that lab specialists and clinicians have identified unmet clinical needs, analytical chemists support us with the assay development for molecular phenotyping of disease and health using MS-based technology. Together we attempt to bring promising biomarkers from the research field into the clinical arena. We believe that this collaboration should lead to a more robust and effective pipeline for developing medical tests. We also support research from various clinical groups at the LUMC, especially in the domains of Cardiovascular Diseases, Cancer Diagnosis and Kidney Diseases.”
Improving effectiveness
Van der Burgt: “One of the main activities at CPM is the elucidation of modifications on existing protein biomarkers, with emphasis on glycosylation analysis. As we want to make sure that these biomarkers can be of use for the clinic, we do not only report discoveries, but rather aim for further development of our findings into something clinically useful. Therefore we first make an inventory of the unmet needs from the clinicians, and what is actually needed for improved patient care. Hence, the clinical need guides our -omics research. And it is my task to bring these two worlds together. My goal is not just to publish papers on new discoveries, but to contribute to finding more effective solutions: clinically effective, cost effective and safe tests for patient care.”
Cobbaert: “The current pipeline and the current process of financing research is in my perception a wasteful process because there is insufficient attention to the downstream consequences (utility) of the research findings for patient care. Currently the number of papers and citation indices are rewarded, rather than the impact for patient care. Subsidizers should stimulate the translation and implementation of newly discovered biomarkers by making the funding of translation and implementation research inclusive.
“To counteract this inefficient pipeline from discovery to application researchers, clinicians, biostatisticians and lab specialists should collaborate closely. The clinical needs should be the driver of the test development process, rather than the technological push. Once these needs are identified a more informed decision can be made with regard to priorities: ‘This is what we are setting up together and this is where we go for’. The European Federation of Laboratory Medicine (EFLM) Test Evaluation framework provides guidance and encompasses key elements for creating evidence regarding the clinical and cost-effectiveness of new medical tests.
“Our mantra is that our research efforts should lead to precision diagnostics and clinically effective medical tests. In our collaboration with CPM we aim to contribute to better patient management and patient outcome with a targeted approach. As it is essential to add value to clinical pathways and patient management, we need actionable results for better patient care.”
International initiatives
Cobbaert: “We try to educate stakeholders of the biomarkers-medical test pipeline about the usefulness of the Test Evaluation framework for guiding this development process.
“We have asked ourselves: Why is the process from research to application such a wasteful process? What should we do? Last November we organized a precision diagnostics symposium in which we shared our experiences on quantitative proteomics and proposed our solutions [‘Prime time for precision diagnostics driven by unmet clinical needs’ (LUMC, Leiden, The Netherlands, November 2019)]. We also shared our struggles: developing specific molecular tests for proteins is not an easy road. Several barriers had to be alleviated. And that’s difficult to do, sometimes we failed, sometimes we felt that it doesn’t go quick enough. But we all are dedicated to make it a success together.
“Once a medical test is available, and evidence regarding its clinical utility and value has been generated, medical tests have to be implemented in clinical practice, either as a Lab-Developed-Test (rare) or as a Conformité Européene in vitro diagnostic (CE-IVD) test (often). To be successful, clear guidance should be given to doctors regarding its intended use in the clinical care pathway of interest. As a rule of thumb, the average trajectory from promising biomarker to applied medical test in the clinic takes about 10 years.
“In the current curriculum of medical students limited education is given regarding medical test use, notwithstanding the 70% rule (medical decisions are to a large extent based on lab test results). Laboratory specialists have to demonstrate medical leadership by educating physicians on proper test use.
“Collaborations are necessary to innovate laboratory medicine. We all start to understand the need for cooperation between different areas of expertise. A smooth and fruitful interaction between different types of laboratory specialists (e.g. microbiology, pathology, geneticists, immunologists…), researchers and clinicians should help to overcome the old boundaries.”
Collaboration is key
Van der Burgt: “An example of such a collaboration between CPM and clinical chemistry is our work on glycoprotein markers that we recently presented at the symposium on precision diagnostics, ‘Prime time for precision diagnostics driven by unmet clinical needs’ (LUMC, Leiden, The Netherlands, November 2019).
“Structure refinement of the biomarker for prostate cancer, the prostate specific antigen (PSA) demonstrated the importance of glycosylation for further development. We have worked on PSA at the CPM together with the clinical chemistry lab and in that collaborative effort we have seen that we can add extra information on the PSA test readout. Additionally, we aim to discover novel biomarkers for early detection of cancers. We see an enormous worldwide effort there and the result is hundreds, if not thousands, of new markers without any clinical pre-knowledge or knowledge of urgent clinical needs, it was technology-driven.”
Cobbaert: “It should be the opposite, clinical needs and sustainable and affordable health care should be the drivers of the test menu. In that context, our quantitative proteomics based activities for precision diagnostics are becoming more and more appreciated. To make translational research more effective, the funding agencies should also be concerned that the research they support will be applied in the clinical lab and will improve patient care.”
Paradigm shift
Cobbaert: “In the 20th century, our technology did not enable molecular characterization of disease, at least not in the high-throughput manner that is needed in clinical practice. Now we live in the 21st century and technology and medical insights have evolved. I expect a paradigm shift whereby traditional diagnostic tests will be complemented with precision diagnostic tests which enable Predictive, Preventive, Personalized Medicine, with Participation of the patient.
“As we drill down to the molecular level of health and disease, we should be able to provide more refined diagnoses and treatments. In 10 or 20 years, we may expect to read out a patient’s complete molecular phenotype or ‘proteotype’ and we will be able to monitor changes from a personal baseline.
“To innovate lab medicine and to realize the ambitions for Precision Medicine, we also need to find interoperable information technology (IT)-solutions. To that end, we need strategically thinking people who align the different stakeholders of the test pipeline, strive to improve health and patient care and know how to find advanced technical ,IT and organizational solutions to disclose the billions of data. Standardization of IT and making databases interoperable will be key. Unfortunately, we seem to be very far away from standardized interoperable solutions owing to a very fragmented IT-landscape across and even within health institutions.”
High-sensitive cardiac troponin T: the issue of hemolysis interference
, /in E-News /by 3wmediaCardiac troponin is the gold standard biomarker for diagnosis of acute myocardial infarction. The introduction of high-sensitive cardiac troponin assays has further strengthened its power in early rule-in/rule-out testing. However, since these assays are susceptible to hemolysis interference, sample rejection due to hemolysis (commonly seen in samples from the Emergency Department) remains one of the biggest challenges.
COVID-19: a global pandemic
, /in Corona News, E-News /by 3wmediaThe new coronavirus, SARS-CoV-2, causing a disease that has been called COVID-19, was first identified in Wuhan, China in December 2019, and has been transmitted widely across the globe. This article gives a general overview of what is currently known in a fast developing situation.
Highlights and hurdles of molecular point-of-care systems for infectious disease diagnosis
, /in E-News, Editors' Picks /by 3wmediaPoint-of-care (POC) testing has the potential to provide results in a much shorter time than centralized lab testing, allowing faster implementation of appropriate treatment. This article discusses the technological developments in POC tests, considerations for the implementation of a POC system, as well as how to ensure accurate and reliable results.
Beckman Coulter to produce antibody assays for Covid-19
, /in Corona News, E-News /by 3wmediaIn response to the global COVID-19 pandemic, Beckman Coulter, a global leader in clinical diagnostics, announced 31 March that it is developing assays to identify IgM and IgG antibodies to SARS-CoV-2. Research has shown that after infection with SARS-CoV-2, viral antigens stimulate the body’s immune system to produce antibodies that can be detected with IgM and IgG tests.
The assays will be designed for use on any of Beckman Coulter’s high-throughput Access family of immunoassay systems, including the Access 2 and DxI series, which can be found worldwide.
“Antibody assays play a critical role in understanding the level of immunity an individual has developed against SARS-CoV-2,” said Kathleen Orland, Senior Vice President and General Manager for Beckman Coulter’s Chemistry and Immunoassay Business. “This type of understanding could help identify those who would require a vaccine, once available, or when an infected individual could safely return to work.”
Shamiram R. Feinglass, MD, MPH, Chief Medical Officer, Beckman Coulter, added: “With the ability to assess a patient’s immunity to SARS-CoV-2, this testing modality may enable clinicians to clear hospital staff, emergency responders, and others to get back to work with an indication that they have had prior exposure and therefore have built an immunity to the disease. This test could allow those without immunity to be identified and kept safe until the pandemic subsides.”
Beckman Coulter operates within the Danaher Corporation, together with a collection of the world’s leading diagnostic companies, all on the front line in the fight against coronavirus.
Once the assays are finalized, Beckman Coulter intends to achieve CE mark certification and to follow FDA’s Emergency Use Notification process.
For the latest information on the new assays, visit www.beckmancoulter.com/coronavirus
Sartorius supports development of vaccine candidate against SARS-COV-2 to enter clinical trials
, /in E-News /by 3wmediaSartorius, a leading international partner of life science research and the biopharmaceutical industry, has supported CanSino Biologics Inc. (“CanSinoBIO”) and Maj. Gen. Chen Wei’s team at the Institute of Bioengineering at the Academy of Military Medical Sciences (“Institute of Bioengineering”) in China in their development of the first vaccine candidate against the novel coronavirus SARS-CoV-2 to enter clinical trials. CanSinoBIO and the Institute of Bioengineering used Sartorius’ BIOSTAT® STR single-use bioreactor system for the upstream preparation of the recombinant vaccine, thus ensuring the rapid linear amplification of the adenovirus vector (Ad5-nCoV) and ultimately saving time during development.
The BIOSTAT® STR single-use bioreactor system comes with updated BioPAT® toolbox for process monitoring, as well as Flexsafe® STR integrated, single-use bioprocess bags. It has been proven to be used for vaccine manufacturing because it offers rapid scalability and flexibility to adapt to fluctuating demand. The single use bags prevent cross-contamination, and reduce the time needed for washing and sanitation typical in stainless steel bioreactors. As such, the amount of time needed to prepare a vector for a vaccine is shortened from several months to (several) weeks.
“We are pleased that we can help our clients and partners accelerate vaccine development while maintaining compliance with safety protocols, thereby allowing us to contribute to better health for more people,” said Huang Xian, Head of Marketing at Sartorius BPS China.
This is the second collaboration from Sartorius, CanSinoBIO, and the Institute of Bioengineering to accelerate vaccine development. In October 2017, Sartorius’ BIOSTAT® STR50 bioreactor system was used during CanSinoBIO’s and the Institute of Bioengineering’s joint development of a recombinant vaccine against Ebola virus disease. This was the first registered Ebola vaccine in the world.
Cobra Biologics and the Karolinska Institutet collaborate to develop COVID-19 vaccine
, /in Corona News, E-News /by 3wmediaCobra Biologics (Cobra), an international contract development and manufacturing organization (CDMO) for biologics and pharmaceuticals, and the Karolinska Institutet (KI), one of the world’s leading medical universities, announced 30 March they have been awarded €3 million emergency funding by Horizon 2020 for research and development, and phase I clinical trial testing of a DNA vaccine against COVID-19, as part of the OPENCORONA consortium to support global efforts tackling the pandemic. Partners in the consortium also include Karolinska University Hospital, Public Health Authority (FoHM), IGEA, Adlego AB and Giessen University.
The project is called OPENCORONA and the application, ‘Rapid therapy development through Open Coronavirus Vaccine Platform’, was one of the first two to be successfully selected by the European Commission, with 17 applications chosen out of 91, receiving €47.5 million in total. The aim of the project is to manufacture a DNA vaccine, which will be delivered to patient muscle to generate a viral antigen on which the immune system then reacts. The ‘open’ project will utilise Cobra’s 50L DNA suite in Sweden to produce the plasmid DNA. The plasmid production will support the vaccine development process in accordance with GMP and with a new kind of ‘open’-ness that will help to speed the fight against COVID-19 by making relevant data and research results available to the wider scientific community.
KI notes that “genetic analysis shows that the SARS-CoV-2 envelope and receptor binding domain only has a 75% homology with other human coronaviruses. Thus, existing immunotherapies and vaccine candidates against other coronaviruses, such as SARS, will not be useful against SARS-CoV-2. We will use the DNA vaccine platform as this is currently the most rapid and robust vaccine platform. We have generated several chimeric SARS-CoV-2 genes and will select for the most potent DNA vaccine/immunotherapy candidate delivered by in vivo electroporation that protects against SARS-CoV-2 infection and/or disease in animal models and take this to phase I clinical testing.”
To date, no approved human COVID-19 immunotherapy or vaccine exists, and in response to the outbreak, speed in therapy and vaccine R&D is critical. Harnessing each partner’s expertise and experience in reliable development manufacturing, the OPENCORONA consortium is using the DNA vaccine platform as it is currently one of the most rapid and robust vaccine platforms available. First trials in humans will begin in 2021, and will take place at the Karolinska University Hospital.
Commenting on the funding, Matti Sällberg, Head of Department of Laboratory Medicine, Karolinska Institutet, commented: “The need to find an effective vaccine is urgent and we are working as quickly as possible to find one. With this funding from the EU we will have secured a significant part of the financing going forward, which means that we can focus entirely on the research. It is a relief to know that we are now financed all the way to studies in humans.”
Nova Biomedical to Host Webinar on COVID-19 Bedside Glucose Management
, /in Corona News, E-News /by 3wmediaWaltham, MA–Nova Biomedical to host “COVID-19 Bedside Glucose Management: Risk of Ascorbic Acid and Hematocrit Interference,” a webinar led by Charbel Abou-Diwan, PhD, Director of Medical and Scientific Affairs, to help inform and support healthcare workers treating COVID-19 patients.
Interest in the antioxidant properties of ascorbic acid use in critically ill patients is growing especially during the in the COVID-19 pandemic. As clinicians search for effective treatments for COVID-19, sepsis, and other critical illness, high dose ascorbic acid is widely considered. These patients are admitted to the ICU where routine POC glucose monitoring becomes part of their care path. Unfortunately, two widely used hospital glucose meters have a substantial interference from ascorbic acid that radically elevates glucose meter results, leading to potential adverse events. This webinar examines the risk of inaccurate glucose meter results due to ascorbic acid interference and how hospitals can protect their patients and protect themselves against this threat.
The webinar will be delivered on three dates: Thursday, April 30th at 2:00 PM EST, Thursday, May 28th at 1:00 PM EST, and Thursday, June 18th at 4:00 PM EST. Attendees can earn educational credits for attending and can register online at novabiomedical.com/poc/glu/covid About Nova Biomedical
Incorporated in 1976 and based in Waltham, MA, Nova Biomedical is a world leader in the development and manufacturing of state-of-the-art, whole blood, point-of-care and critical care analyzers, as well as providing the biotechnology industry with the most advanced instruments for cell culture monitoring. Nova is one of the fastest growing in vitro diagnostic companies in the world. Nova’s biosensor technology is incorporated in products ranging from handheld meters for glucose self- and point-of-care testing to critical care whole blood analyzers designed for rapid measurement of over 20 analytes. Nova’s biotechnology-specific BioProfile line has pioneered comprehensive cell culture testing, providing over 20 critical cell culture tests with over 12 unique instrument offerings for broad range of cell culture applications. Nova employs over 1,300 people worldwide and has wholly owned subsidiaries located in Brazil, Canada, Great Britain, France, Spain, Italy, Germany, Switzerland, and Japan. www.novabiomedical.com