Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

Mast cells give clues in diagnosis, treatment of dengue

, 26 August 2020/in E-News /by 3wmedia

A protein produced by mast cells in the immune system may predict which people infected with dengue virus will develop life-threatening complications, according to researchers at Duke Medicine and Duke-National University of Singapore (Duke-NUS).
Their study also found that in experiments in mice, a class of drugs commonly used to treat asthma by targeting the mast cells could help treat vascular symptoms associated with dengue infections.
Dengue virus is spread by mosquitoes and infects as many as 390 million people worldwide each year, according to new estimates. It is a significant health issue in tropical areas of the world including parts of Latin America and Asia, but Florida residents have reported cases in recent years.
No treatments are available for dengue virus, and serious cases can result in widespread vascular leakage and haemorrhaging.
In 2011, Duke researchers reported that mast cells, which help the body respond to bacteria and other pathogens, play a role in attacking dengue virus and halting its spread. This finding presented new avenues for research, given the existing classes of drugs that target mast cells or the products of mast cells once they are activated.
In one experiment in the current study of dengue virus in mice, the researchers found that certain classes of drugs commonly used to treat asthma are effective in limiting vascular leakage associated with dengue.
‘It may not seem intuitive how asthma and dengue infection would be related and would respond to the same types of drugs, but because both diseases are promoted by mast cells, the cellular targets of the class of drugs is quite effective,’ said lead author Ashley L. St. John, PhD, assistant professor of emerging infectious diseases at Duke-NUS.
The researchers continued to investigate the role of mast cells in attacking dengue virus in humans, and identified a biomarker – a mast cell-derived product – that appeared to predict the illness’ most severe cases in human patients.
Most patients infected by a dengue virus develop a high fever, dubbed dengue fever, and recover on their own. However, a small number of these cases develop into dengue haemorrhage fever, a dangerous condition marked by serious complications, including bleeding, respiratory distress and severe abdominal pain.
Until now, doctors have not been able to predict who will develop dengue haemorrhage fever. When the researchers studied blood serum samples from patients with dengue infection, they found that the levels of a protein produced by mast cells, chymase, were significantly higher in the patients who developed dengue haemorrhagic fever compared to those who recovered after dengue fever.
‘In addition to revealing a potential new way to diagnose and treat dengue infections, these finding may have much broader applicability for other infectious diseases where vascular leakage is a major pathologic outcome,’ said senior study author Soman N. Abraham, PhD, professor of pathology, immunology, and molecular genetics and microbiology at Duke Medicine and professor of emerging infectious diseases at Duke-NUS. Duke Medicine

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:12:58Mast cells give clues in diagnosis, treatment of dengue

Study suggests Plasma NGAL improves clinical ciagnosis of AKI

, 26 August 2020/in E-News /by 3wmedia

The results of a study published early March in Critical Care demonstrate that plasma neutrophil gelatinase-associated lipocalin (pNGAL), a biomarker that aids in the early detection of acute kidney injury (AKI), improved the diagnosis of AKI when added to clinical judgment.
Patients presenting to the emergency department (ED) may suffer from AKI that is not yet clinically apparent.  A significant number of these patients go on to develop severe AKI that leaves them dependent upon dialysis or renal replacement therapy (RRT), compromising the quality of their long-term health and increasing the risk of death. Previous studies have independently demonstrated pNGAL’s utility in the early detection of AKI, yet little research exists on the additive value of pNGAL in the ED to help reduce clinical uncertainty faced by physicians when assessing the risk of patients suffering from AKI.    
A group of investigators led by Dr. Salvatore di Somma, M.D., at the San Andrea Hospital, Rome, Italy, studied whether pNGAL levels could provide information that enhanced the initial clinical judgment of ED physicians when used with all other standard- of-care parameters for assessing AKI.  The study included 665 patients from three clinical centres who were admitted to the hospital after presenting to the ED with various acute conditions.
Upon initial examination, each patient received a medical history review, demographics were gathered, and admission serum creatinine (sCr) was noted.  SCr, while the current gold standard for detection of AKI, typically indicates AKI many hours after injury, which may delay appropriate therapy.  The treating ED physicians then assigned patients to one of two categories, “AKI” or “No AKI,” and noted their levels of diagnostic confidence as a value ranging from 0% to 100%.  
pNGAL concentrations were also measured at ED presentation and several other times during the patient’s hospitalization using the Alere Triage® NGAL point-of-care test.  Following discharge, expert nephrologists, who were blind to any NGAL values, reviewed each patient case and made a final adjudicated diagnosis of “AKI” or “No AKI.”
Based on the ED physician’s initial clinical judgment, 218 patients (33%) were considered to have AKI, while only 49 cases (7%) were ultimately adjudicated to be true cases of AKI.  AKI was over-predicted in nearly 78% of cases which were initially judged by the ED physicians to have AKI ((218-49)/218=77.5%), suggesting that unnecessary therapies may have been administered in these instances.  Additionally, the physician’s initial clinical assessment missed AKI in 20% of cases that were ultimately adjudicated to be AKI.
The addition of pNGAL level at presentation was shown to improve the classification of patients into the “AKI” or “No AKI” categories by 32.4%.  Moreover, pNGAL measured on arrival was found to be the most powerful predictor of death in these patients. When used at the point of care, the Alere Triage® NGAL test provides critical data that may help ED clinicians not only detect, but also rule out AKI early, informing appropriate treatment decisions.

http://ccforum.com/content/17/1/R29/abstractwww.alere.com

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:13:06Study suggests Plasma NGAL improves clinical ciagnosis of AKI

UNC researchers use luminescent mice to track cancer and ageing in real-time

, 26 August 2020/in E-News /by 3wmedia

 In a study researchers from the University of North Carolina Lineberger Comprehensive Cancer Center have developed a new method to visualise ageing and tumour growth in mice using a gene closely linked to these processes.
Researchers have long known that the gene, p16INK4a (p16), plays a role in ageing and cancer suppression by activating an important tumour defence mechanism called ‘cellular senescence’. The UNC team led by Norman Sharpless, MD, Wellcome Distinguished Professor of Cancer Research and Deputy Cancer Center Director, has developed a strain of mice that turns on a gene from fireflies when the normal p16 gene is activated. In cells undergoing senescence, the p16 gene is switched on, activating the firefly gene and causing the affected tissue to glow.
Throughout the entire lifespan of these mice, the researchers followed p16 activation by simply tracking the brightness of each animal. They found that old mice are brighter than young mice, and that sites of cancer formation become extremely bright, allowing for the early identification of developing cancers.
‘With these mice, we can visualise in real-time the activation of cellular senescence, which prevents cancer but causes ageing. We can literally see the earliest molecular stages of cancer and ageing in living mice.’ said Sharpless.
The researchers envision immediate practical uses for these mice. By providing a visual indication of the activation cellular senescence, the mice will allow researchers to test substances and exposures that promote cellular ageing (‘gerontogen testing’) in the same way that other mouse models currently allow toxicologists to identify cancer-causing substances (‘carcinogen testing’). Moreover, these mice are already being used by scientists at UNC and other institutions to identify early cancer development and the response of tumours to anti-cancer treatments.
‘This work builds on previous work by the same group, as well as others, showing intriguing relationships among aging, cancer and cell senescence. It provides a valuable new tool to probe these relationships,’ said Felipe Sierra, Ph.D., director of the Division of Aging Biology, National Institute on Aging, NIH.
The researchers used these mice to make several unexpected discoveries. First, the group was able to track the accumulation of senescent cells in ageing mice by assessing how brightly each mouse glowed. Surprisingly, the brightest animals were no more likely to die from spontaneous cancer than dimmer animals of the same age. That is, the number of senescent cells in the mouse did not predict its risk of dying.
‘The result we, and I think others, predicted is that the animals with the highest number of senescent cells would get more cancers and die sooner, but this was not the case’ said Sharpless.
Another surprise came from the disparities in p16 levels among the mice. The authors studied a large group of genetically identical animals that were all housed in the same way and fed the same diet. However, despite identical genetic and environmental conditions, the brightness of individual mice at any given age was highly variable, suggesting that factors beyond genetics and diet influence ageing.
The glowing mice also provide a window into the formation of cancers. Expression of p16 is activated in the earliest stages of cancer formation to suppress cancer. Usually activation of p16 prevents cancer, but rarely this tumour suppressor mechanism fails and tumours develop, while still activating the p16 gene. As such, all tumours forming in these mice strongly glowed, allowing researchers to monitor early tumour formation in a wide variety of cancer types. In contrast to expectations, the researchers also found that p16 was activated not only in the tumour cells themselves, but also in normal, neighbouring cells.
‘This finding suggests that activation of senescence results from an abnormal milieu within a developing cancer. Somehow, many or all the cells in a would-be tumour know they are in a bad place, and activate this tumour suppressor gene as a defence mechanism, even if they are not the would-be cancer cells themselves. This occurs really early in the cancer; we’re talking about the earliest events of neoplasia that have ever been measured in living animals,’ said Sharpless.
The Sharpless group believes similar approaches to monitoring senescence can be developed in order to study ageing and tumour development in humans. The group is particularly interested in how cancer therapies influence human ageing and patient outcome. Working with UNC oncologists, the Sharpless group has already measured p16 expression in several hundred patients undergoing cancer therapy. These studies, along with efforts employing the glowing mouse, aims to develop more effective and tolerable patient treatment schemes based upon ‘molecular’, as opposed to ‘chronologic’, age. EurekAlert

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:13:16UNC researchers use luminescent mice to track cancer and ageing in real-time

Advanced paper could be foundation for inexpensive biomedical and diagnostic devices

, 26 August 2020/in E-News /by 3wmedia

Paper is known for its ability to absorb liquids, making it ideal for products such as paper towels. But by modifying the underlying network of cellulose fibres, etching off surface ‘fluff’ and applying a thin chemical coating, researchers have created a new type of paper that repels a wide variety of liquids – including water and oil.
The paper takes advantage of the so-called ‘lotus effect’ – used by leaves of the lotus plant – to repel liquids through the creation of surface patterns at two different size scales and the application of a chemical coating. The material, developed at the Georgia Institute of Technology, uses nanometer- and micron-scale structures, plus a surface fluorocarbon, to turn old-fashioned paper into an advanced material.
The modified paper could be used as the foundation for a new generation of inexpensive biomedical diagnostics in which liquid samples would flow along patterns printed on the paper using special hydrophobic ink and an ordinary desktop printer. This paper could also provide an improved packaging material that would be less expensive than other oil- and water-repelling materials, while being both recyclable and sustainable.
‘Paper is a very heterogeneous material composed of fibres with different sizes, different lengths and a non-circular cross-section,’ said Dennis Hess, a professor in the Georgia Tech School of Chemical and Biomolecular Engineering. ‘We believe this is the first time that a superamphiphobic surface – one that repels all fluids – has been created on a flexible, traditional and heterogeneous material like paper.’
The new paper, which is both superhydrophobic (water-repelling) and super oleophobic (oil-repelling), can be made from standard softwood and hardwood fibres using a modified paper process. In addition to Hess, the research team included Lester Li, a graduate research assistant, and Victor Breedveld, an associate professor in the School of Chemical and Biomolecular Engineering
Producing the new paper begins with breaking up cellulose fibres into smaller structures using a mechanical grinding process. As in traditional paper processing, the fibres are then pressed in the presence of water – but then the water is removed and additional processing is done with the chemical butanol. Use of butanol inhibits the hydrogen bonding that normally takes place between cellulose fibres, allowing better control of their spacing.
‘The desirable properties we are seeking are mainly controlled by the geometry of the fibres,’ Hess explained.
The second step involves using an oxygen plasma etching process – a technique commonly used in the microelectronics industry – to remove the layer of amorphous ‘fluffy’ cellulose surface material, exposing the crystalline cellulose nanofibrils. The process thereby uncovers smaller cellulose structures and provides a second level of ‘roughness’ with the proper geometry needed to repel liquids.
Finally, a thin coating of a fluoropolymer is applied over the network of cellulose fibers. In testing, the paper was able to repel water, motor oil, ethylene glycol and n-hexadecane solvent.
The researchers have printed patterns onto their paper using a hydrophobic ink and a desktop printer. Droplets applied to the pattern remain on the ink pattern, repelled by the adjacent superamphiphobic surface.
That capability could facilitate development of inexpensive biomedical diagnostic tests in which a droplet containing antigens could be rolled along a printed surface where it would encounter diagnostic chemicals. If appropriate reagents are used, the specific colour or colour intensity of the patterns could indicate the presence of a disease. Because the droplets adhere tightly to the printed lines or dots, the samples can be sent to a laboratory for additional testing.
‘We have shown that we can do the operations necessary for a microfluidic device,’ Hess said. ‘We can move the droplet along a pattern, split the droplet and transfer the droplet from one piece of paper to another. We can do all of these operations on a two-dimensional surface.’
For Hess, Li and Breedveld, creating a superhydrophobic suface was relatively straightforward because water has a high surface tension. For oils, which have a low surface tension, the key to creating the repellent surface is to create re-entrant – or undercut – angles between the droplets and the surface.
Previous examples of superamphiphobic surfaces have been made on rigid surfaces through lithographic techniques. Such processes tend to produce fragile surfaces that are prone to damage, Hess said.
The principal challenge has been to create high-performance in a material that is anything but geometrically regular and consistent.
‘Working with heterogeneous materials is fascinating, but it’s very difficult not just to control them, because there is no inherent consistent structure, but also to change the processing conditions so you can get something that, on average, is what you need,’ he said. ‘It’s been a real learning experience for us.’
The new paper has so far been made in samples about four inches on a side, but Hess sees no reason why the process couldn’t be scaled up. Though long-term testing of the new paper hasn’t been done, Hess is encouraged by what he’s seen so far. Georgia Institute of Technology

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:12:54Advanced paper could be foundation for inexpensive biomedical and diagnostic devices

Gene-expression signature may signify risk for recurrence, metastasis in prostate cancer

, 26 August 2020/in E-News /by 3wmedia

A team led by Massachusetts General Hospital (MGH) researchers has identified a genetic signature that appears to reflect the risk of tumour recurrence or spread in men surgically treated for prostate cancer. If confirmed in future studies, this finding not only may help determine which patients require additional treatment after the cancerous gland has been removed, it also may help address the most challenging problem in prostate cancer treatment – distinguishing tumours that require aggressive treatment from those that can safely be monitored.
‘Radical prostatectomy is the standard of care for men whose cancer is advanced but confined to the prostate gland, but we know that the factors we use to determine which patients need radiation therapy after surgery are inadequate,’ says W. Scott McDougal, MD, of the MGH Department of Urology, corresponding author of the report. ‘The treatments available to our patients can have significant impact on their quality of life, so a better way to know which patients with localised cancer need additional therapy after surgery and which require no additional treatment is a significant unmet need.’
Gene expression signatures indicating patient prognosis and sometimes the most appropriate treatment have been incorporated into care for breast cancer and other tumours. Studies looking for such markers in prostate cancer have had variable results, and their potential usefulness to guide treatment has not been determined. For the current study the research team – led by Chin-Lee Wu, MD, PhD, of the MGH Department of Pathology – examined samples of malignant tissue from around 200 prostate cancer patients who had radical prostatectomies at the MGH between 1993 and 1995, analyzing the expression patterns of more than 1,500 genes associated with prostate cancer in earlier studies. With the results of that analysis, they developed a 32-gene index to reflect the likelihood that a patient’s tumour would recur, signified by detectable levels of prostate-specific antigen (PSA) after the gland had been remove, or spread.
To validate the usefulness of the index, they used it to analyse tissue samples from a different group of almost 300 patients who had their prostates removed in 1996 and 1997, comparing the index with currently used prognostic factors – such as PSA levels, physical examination, and a tumour’s microscopic appearance – to see how accurately each predicted the actual incidence of tumour recurrence or metastasis during the 10 years after surgery. The expression-based index proved to be the most accurate method. Among those it designated as high-risk, the actual incidence of tumor recurrence was 47 percent and of metastasis, 14 percent. Among those classified as intermediate risk, actual recurrence was 22 percent, and metastasis occurred in 2 percent. No recurrence or metastasis were seen in patients classified as low-risk by the gene-expression index.
To get a sense of whether the index could help determine risk at the time of diagnosis, the researchers used it to assess pre-surgical needle biopsy samples from 79 patients in the validation group. The risk assignment based on biopsy results closely matched the assessment based on surgically removed tissue, and the prognostic ability of the index was better than that of other pathological information available at the time a biopsy was taken. Because the current report is based on study of patients treated at a single institution, the authors note, it requires confirmation in larger, multi-institutional studies.
‘A more accurate prognosis at the time of diagnosis could give patients and their physicians much more confidence in choosing a definitive therapy or pursuing active surveillance for those at low risk, which could reduce over-treatment, a critical issue in disease management,’ says lead author Wu, an associate professor of Pathology at Harvard Medical School. McDougal is the the Kerr Professor of Urology, at HMS. Massachusetts General Hospital

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:13:01Gene-expression signature may signify risk for recurrence, metastasis in prostate cancer

Seven genetic risk factors found to be associated with macular degeneration

, 26 August 2020/in E-News /by 3wmedia

A professor from Case Western Reserve University School of Medicine is one of the lead authors of a study identifying seven new regions of the human genome that are associated with increased risk of age-related macular degeneration (AMD), a leading cause of blindness among older adults.

The AMD Gene Consortium, a network of international investigators representing 18 research groups, also confirmed the existence of 12 other regions—called loci—that had been identified in previous studies..

‘This work represents a big step forward toward solving why some people get AMD, while others do not,’ said Sudha Iyengar, professor of epidemiology and biostatistics at Case Western Reserve School of Medicine and a member of the consortium’s senior executive committee. ‘This disease is not caused by a single change in the DNA, but represents many events that accumulate over the lifetime of a patient. Identification of these genes provides molecular windows into the AMD disease process.’

AMD affects the macula, a region of the retina responsible for central vision. The retina is the layer of light-sensitive tissue in the back of the eye that houses rod and cone photoreceptor cells. Compared with the rest of the retina, the macula is especially dense with cone photoreceptors; humans rely on the macula for tasks that require sharp vision, such as reading, driving, and recognising faces. As AMD progresses, such tasks become more difficult and eventually impossible. Some kinds of AMD are treatable, but no cure exists

Since the 2005 discovery that certain variations in the gene for complement factor H—a component of the immune system—are associated with major risk for AMD, research groups around the world have conducted genome-wide association studies to identify other loci that affect AMD risk. These studies were made possible by tools developed through the Human Genome Project, which mapped human genes, and related projects, such as the International HapMap Project, which identified common patterns of genetic variation within the human genome.

The consortium’s analysis included data from more than 17,100 people with the most advanced and severe forms of AMD, which were compared to data from more than 60,000 people without AMD. The 19 loci that were found to be associated with AMD implicate a variety of biological functions, including regulation of the immune system, maintenance of cellular structure, growth and permeability of blood vessels, lipid metabolism, and atherosclerosis.

As with other common diseases, such as Type 2 diabetes, an individual person’s risk for getting AMD is likely determined not by one but many genes. Further comprehensive DNA analysis of the areas around the 19 loci identified by the AMD Gene Consortium could turn up undiscovered rare genetic variants with a disproportionately large effect on AMD risk. Discovery of such genes could greatly advance scientists’ understanding of AMD pathogenesis and their quest for more effective treatments.

‘This compelling analysis by the AMD Gene Consortium demonstrates the enormous value of effective collaboration,’ said NEI director Paul A. Sieving, MD, PhD. ‘Combining data from multiple studies, this international effort provides insight into the molecular basis of AMD, which will help researchers search for causes of the disease and will inform future development of new diagnostic and treatment strategies.’ Case Western Reserve University

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:13:09Seven genetic risk factors found to be associated with macular degeneration

The search for an early biomarker to fight atherosclerosis

, 26 August 2020/in E-News /by 3wmedia

The Journal of the American Heart Association published results from a study directed by Dr. Éric Thorin of the Montreal Heart Institute (MHI), which suggests for the first time that a blood protein contributes to the early development of atherosclerosis.
Dr. Thorin, his team and his collaborators discovered that the blood levels of angiopoietin-like protein 2 (angptl2) are six times higher in subjects with coronary heart disease than in healthy subjects of the same age. Their basic research study also revealed that angptl2, which is undetectable in young mice, increases with age in healthy subjects and increases prematurely in subjects who have high cholesterol and pre-atherosclerotic lesions. Entitled ‘Angiopoietin-like 2 promotes atherogenesis in mice,’ this study was conducted using an animal model consisting of three to twelve-month-old mice. These results represent a major advance in the prevention and treatment of atherosclerosis. ‘Although much work remains to be done to broaden our knowledge of this protein’s mechanisms of action, angiopoietin-like protein 2 may represent an early biomarker not only to prevent vascular damage but also to predict atherosclerotic disease,’ explained Dr. Thorin. For 15 years, Dr. Thorin, a researcher at the MHI Research Centre and full professor at Université de Montréal, has been interested in the evolution of artery function during the ageing process and in the underlying mechanisms of atherosclerosis.
More specifically over the past five years, he has looked at the role of this particular protein. Thanks to his work, we now know that angptl2 causes a high degree of vascular inflammation. Blood levels of this protein increase in patients with cardiovascular disease as well as in people with complications related to diabetes, obesity and cancer in which the small blood vessels are damaged, as all of these diseases are associated with chronic inflammation.
According to Dr. Anil Nigam, a cardiologist and specialist in cardiovascular disease prevention at the MHI and co-author of the study, ‘Prevention is the ideal solution to delay the onset of atherosclerosis, and an early blood marker such as angptl2—if future clinical studies confirm this finding—will serve as an important tool to identify at-risk subjects who do not present with any symptoms of atherosclerotic disease.’ Montreal Heart Institute

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:12:56The search for an early biomarker to fight atherosclerosis

Loss of E-Cadherin drives prostate cancer progression

, 26 August 2020/in E-News /by 3wmedia

Prostate cancer doesn’t kill in the prostate – it’s only once the disease travels to bone, lung, liver, etc. that it turns fatal. Previous studies have shown that loss of the protein E-Cadherin is essential for this metastasis. A University of Colorado Cancer Center study describes for the first time a switch that regulates the production of E-Cadherin: the transcription factor SPDEF turns on and off production, leading to metastasis or stopping it cold in models of prostate cancer.
‘When E-Cadherin is lost, cells become ‘rogue’ – they can detach from their surrounding tissues, move effortlessly through the circulatory system, grow and attach at new sites. In prostate tumours that had lost E-Cadherin, we put in SPDEF and the tumours once again expressed E-Cadherin. They were once again anchored in place and unable to metastasise. We can make these ‘rouge’ cells back into epithelial-like cells and these epithelial cells stay anchored and lose the ability to migrate,’ says Hari Koul, PhD, investigator at the CU Cancer Center and professor and director of Urology Research at the University of Colorado School of Medicine, the study’s senior author.

In fact, the work could have implications far beyond prostate cancer, as increasing evidence points to loss of E-Cadherin as a prerequisite for metastasis in many cancers.

Koul and colleagues first showed that E-Cadherin levels varied directly with the addition or subtraction of SPDEF. Then the group artificially knocked down E-Cadherin despite the presence of SPDEF and showed that cells remained able to migrate and invade new tissues (SPDEF didn’t by itself affect metastasis and was instead dependent on modulating E-Cadherin, which is the driver). The group also showed a one-way switch – SPDEF regulates E-Cadherin, but E-Cadherin expression does nothing to affect levels of SPDEF.

‘Taken together, these studies paint a pretty compelling picture of SPDEF working in part through the modulation of E-Cadherin to inhibit prostate cancer metastasis,’ Koul says. ‘To the best of our knowledge these are the first studies demonstrating the requirement of SPDEF for expression of E-Cadherin.’

Koul says that his group is getting very close to turning off the loss of E-Cadherin in cancer cells by re-arming tumours with the gene that makes SPDEF and by testing small molecules that increase SPDEF in cancer cells.

‘This could be a real landmark,’ Koul says. ‘We see a prerequisite for metastasis and now we have a very clear picture of how to remove this necessary condition for the most dangerous behaviour of prostate cancer.’ University of Colorado Cancer Center

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:13:04Loss of E-Cadherin drives prostate cancer progression

Elusive substrate protein identified in the most common form of heritable rickets

, 26 August 2020/in E-News /by 3wmedia

Diagnosed in toddlers, X-linked hypophosphatemia (XLH) is the most common form of heritable rickets, in which soft bones bend and deform, and tooth abscesses develop because infections penetrate soft teeth that are not properly calcified. Researchers at McGill University and the Federal University of Sao Paulo have identified that osteopontin, a major bone and tooth substrate protein, plays a role in XLH. Their discovery may pave the way to effectively treating this rare disease.
The findings were made by the laboratories of Marc McKee, a professor in the Faculty of Dentistry and the Department of Anatomy and Cell Biology at McGill University, and of Nilana M.T. Barros, a professor at the Federal University of Sao Paulo. The team built upon previous research that had shown that mutations in the single gene PHEX are responsible for causing XLH.
‘XLH is caused in part by renal phosphate wasting, which is the urinary loss from the body of phosphate, an important building block of bones and teeth, along with calcium.’ says Prof. McKee. ‘In pursuing other factors that might contribute to XLH, we used a variety of research methods to show that PHEX enzymatic activity leads to an essentially complete degradation of osteopontin in bones.’
This loss of osteopontin, a known potent inhibitor of mineralisation (or calcification) in the skeleton and dentition, normally allows bones and teeth to mineralise and thus harden to meet the biomechanical demands placed on them. In XLH patients lacking functional PHEX enzyme, osteopontin and some of its smaller potent inhibitory peptides are retained and accumulate within the bone. This prevents their hardening and leads to soft deformed bones such as bowed legs (or knock-knees) seen in toddlers.

While not life-threatening, this decreased mineralisation of the skeleton (osteomalacia), along with the soft teeth, soon leads to a waddling gait, short stature, bone and muscle pain, weakness and spontaneous tooth abscesses.

The fact that these symptoms are only partially improved by the standard treatment with phosphate – which improves circulating phosphate levels – prompted the researchers to look for local factors within the bone that might be blocking mineralisation in these patients.

‘With this new identification of osteopontin as a substrate protein for PHEX,’ says Professor Barros, ‘we can begin to develop an enzyme-replacement therapy to treat XLH patients who have non-functional PHEX, much as has been done using a different enzyme to treat another rare bone disease called hypophosphatasia.’ McGill University

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:13:11Elusive substrate protein identified in the most common form of heritable rickets

Discovery helps explain how children develop rare, fatal disease

, 26 August 2020/in E-News /by 3wmedia

One of 100,000 children is born with Menkes disease, a genetic disorder that affects the body’s ability to properly absorb copper from food and leads to neurodegeneration, seizures, impaired movement, stunted growth and, often, death before age 3. Now, a team of biochemistry researchers at the University of Missouri has published conclusive scientific evidence that the gene ATP7A is essential for the dietary absorption of the nutrient copper. Their work with laboratory mice also provides a greater understanding of how this gene impacts Menkes disease as scientists search for a treatment.

Humans cannot survive if their bodies are lacking the ATP7A gene, yet children can develop Menkes disease when the gene is mutated or missing. Previously, scientists did not have a good model to test the gene’s function or develop an understanding of the underlying causes of the disease symptoms. In his new study, Michael Petris, associate professor of biochemistry, was able to modify mice so that they were missing the ATP7A gene in certain areas of the body, specifically the intestinal track where nutrient absorption takes place.

‘These findings help us to understand where in the body the function of this gene is vital and how the loss of the gene in certain tissues can give rise to Menke’s disease,’ said Petris, who is a researcher in the Bond Life Sciences Center and holds an appointment in the Department of Nutrition and Exercise Physiology. ‘We want to continue to explore the underlying biology of Menke’s disease to determine where we should focus our research efforts in the future. If we know which organs or tissues are most responsible for transporting copper throughout the body, we can focus on making sure the gene is expressed in those areas. This disease is ideal for gene therapy down the road.’

Petris found that young mice missing the ATP7A gene in their intestinal cells were unable to absorb copper from food, resulting in an overall copper deficiency that mimics symptoms of Menkes disease in children. Petris says it’s vital to ensure that the developing newborns absorb enough copper during the neonatal period when the demand for the mineral is highest.

‘Copper is a little-appreciated but essential trace mineral in all body tissues,’ Petris said. ‘Cells cannot properly use oxygen without copper; it helps in the formation of red blood cells, and it helps keep the blood vessels, nerves, skin, immune system and bones healthy. Normally, people absorb enough copper through their food. However, in the bodies of those with Menkes disease, copper begins to accumulate at abnormally low levels in the liver and brain and at higher than normal levels in the kidney and intestinal lining.’

Newborn screening for this disorder is not routine, and early detection is infrequent because it can arise spontaneously in families, Petris said. Many times, the disease is not detected until the symptoms are noticed, and by that time, it can be too late for any aggressive treatments.

‘The clinical signs of Menkes disease are subtle in the beginning, so the disease is rarely treated early enough to make a significant difference,’ he said. ‘However, a single dose of copper injected into mice within a few days of birth restored normal growth and life expectancy. Early intervention was critical because treatment that began after symptoms developed wasn’t successful.’

Petris says that understanding the roles of copper in biology may have far-reaching health implications for the general population because copper underpins many facets of biology, including the growth of cancer tumours and the formation of toxic proteins in Alzheimer’s disease.

The development of these mice provides a novel experimental system in which to test treatments for patients with this disease. The early-stage results of this research are promising, but additional studies are needed. University of Missouri

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:12:58Discovery helps explain how children develop rare, fatal disease
Page 101 of 229«‹99100101102103›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

January 2026

CLi Cover JAN 2026
15 January 2026

SHIMADZU – Excellence in Science

15 January 2026

Hematology – Oncology Pharmacy Summit

15 January 2026

Total bile acids 21 FS

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription