Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

Blood levels of fat cell hormone may predict severity of migraines

, 26 August 2020/in E-News /by 3wmedia

In a small, preliminary study of regular migraine sufferers, scientists have found that measuring a fat-derived protein called adiponectin (ADP) before and after migraine treatment can accurately reveal which headache victims felt pain relief.

A report on the study of people experiencing two to 12 migraine headaches per month, led by researchers at Johns Hopkins, has been published.

‘This study takes the first steps in identifying a potential biomarker for migraine that predicts treatment response and, we hope, can one day be used as a target for developing new and better migraine therapies,’ says study leader B. Lee Peterlin, D.O., an associate professor of neurology and director of headache research at the Johns Hopkins University School of Medicine. She cautioned that larger, confirmatory studies are needed for that to happen.

Experts estimate that roughly 36 million Americans, or 12 percent of the population, suffer from debilitating migraine headaches that last four hours or longer. Migraines are defined as headaches with at least two of four special characteristics: unilateral or one-side-of-the-head occurrence; moderately to severely painful; aggravated by routine activity and of a pounding or throbbing nature. Sufferers generally also feel nauseated or are sensitive to light and sound. Women are three times as likely to get migraines as men.

Such complicated diagnostic criteria mean that diagnosis is tricky, a fact driving efforts, Peterlin says, to find better diagnostic tools.

For the study, Peterlin and her colleagues collected blood from 20 women who visited three headache clinics between December 2009 and January 2012 during an acute migraine attack. Blood was taken before treatment with either sumatriptan/naproxen sodium (a drug routinely given to people with migraines) or a placebo. The investigators re-drew blood at 30, 60 and 120 minutes after the study drug was given. Eleven women received the drug and nine got the placebo.

The researchers measured blood levels of ADP, a protein hormone secreted from fat tissue and known to modulate several of the pain pathways implicated in migraine. The hormone is also implicated in sugar metabolism, insulin regulation, immunity and inflammation, as well as obesity, which is a risk factor for migraines.

Peterlin and her colleagues looked at total adiponectin levels and two subtypes or fragments of total ADP in circulation in the blood: low molecular weight (LMW)-adiponectin and high molecular weight (HMW)-adiponectin. LMW is comprised of small fragments of ADP and it is known to have anti-inflammatory properties, while HMW is made up of larger fragments of ADP and is known to have pro-inflammatory properties. Inflammatory pathways in blood vessels in the head are at work in migraine headache.

The researchers found that in all 20 participants when levels of LMW increased, the severity of pain decreased. When the ratio of HMW to LMW molecules increased, the pain severity increased.

‘The blood tests could predict response to treatment,’ Peterlin says.

At onset of pain – even before study drug was given – the researchers could identify who would be a responder to treatment and who would not, as there was a greater ratio of HMW to LMW in those who would be responders as compared to those who were not.

After study treatment changes in adiponectin were also seen. Interestingly, in those patients who reported less pain after receiving study drug to treat the migraine – whether they got the active migraine medication or a placebo – researchers were able to see a decrease in total levels of ADP in the blood.

Peterlin says the findings indicate it may be possible to develop a treatment that would reduce levels of ADP or parts of adiponectin such as HMW or LMW adiponectin. She says should ADP prove to be a biomarker for migraine, it could help physicians identify who has migraine and know who is likely to respond to which type of medication. It also may help doctors make better medication choices and try alternate drugs sooner. John Hopkins Medicine

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:13:07Blood levels of fat cell hormone may predict severity of migraines

Genetic basis of high-risk childhood cancer points to possible new drug treatment strategy

, 26 August 2020/in E-News /by 3wmedia

Research led by St. Jude Children’s Research Hospital scientists has identified a possible lead in treatment of two childhood leukaemia subtypes known for their dramatic loss of chromosomes and poor treatment outcomes.
The findings also provide the first evidence of the genetic basis for this high-risk leukaemia, which is known as hypodiploid acute lymphoblastic leukaemia (ALL). Normal human cells have 46 chromosomes, half from each parent, but hypodiploid ALL is characterised by fewer than 44 chromosomes. Chromosomes are highly condensed pieces of DNA, the molecule that carries the inherited instructions for assembling and sustaining a person.
The study, the largest ever focused on hypodiploid ALL, confirmed that this tumour has distinct subtypes distinguished by the number of chromosomes lost and the submicroscopic genetic alterations they harbour. Researchers found evidence suggesting more than one-third of patients with a subtype known as low hypodiploid ALL have Li-Fraumeni syndrome. Families with Li-Fraumeni syndrome harbour inherited mutations in the TP53 tumour suppressor gene and have a high risk of a range of cancers. Hypodiploid ALL had not previously been recognised as a common manifestation of Li-Fraumeni syndrome.
Researchers reported that the major hypodiploid subtypes are both sensitive to a family of compounds that block the proliferation of cancer cells. The compounds include drugs already used to treat other cancers. The subtypes are low hypodiploid ALL, characterised by 32 to 39 chromosomes, and near haploid ALL, which has 24 to 31 chromosomes.
‘This study is a good example of the important insights that can be gained by studying the largest possible number of patients in as much detail as possible. This approach led us to key insights about these leukaemia subtypes that we would otherwise have missed,’ said the study’s senior and corresponding author, Charles Mullighan, MBBS(Hons), MSc, M.D., an associate member of the St. Jude Pathology Department. Mullighan is a Pew Scholar in Biomedical Sciences.
The near haploid and low hypodiploid ALL subtypes represent 1 to 2 percent of the estimated 3,000 pediatric ALL cases diagnosed annually in the U.S. But they account for a much larger number of ALL treatment failures. Today more than 90 percent of young ALL patients will become long-term survivors, compared to 40 percent for patients with these two high-risk subtypes. St. Jude researchers led the study in collaboration with investigators from the Children’s Oncology Group, the world’s largest organisation devoted exclusively to childhood and adolescent cancer research.
‘The cure rate for hypodiploid ALL is only about half that obtained overall for children with ALL. The findings of this study are very important and have the potential to impact how this high-risk subset of childhood ALL is treated,’ said Stephen Hunger, M.D., chair of the Children’s Oncology Group ALL committee and one of the paper’s co-authors. ‘This study grew out of the efforts of Hank Schueler, a teenager who died from hypodiploid ALL. He wanted to find ways to help treat other children with this type of leukaemia. After he passed away, his parents established a foundation to support research in hypodiploid ALL. We thought that one way to do this was to conduct the genomic analyses reported in this paper. These findings would not have been possible without Hank’s idea and without support from the Schueler family.’
Researchers used a variety of laboratory techniques to look for genetic abnormalities in cancer cells from 124 pediatric patients missing at least one chromosome. The patients included 68 with near haploid ALL and 34 with low hypodiploid ALL. Investigators also checked white blood cells collected when 89 of the 124 patients were in remission. The study included whole-genome sequencing of the entire cancer and normal genomes of 20 patients with near haploid or low hypodiploid subtypes. For another 20 patients, investigators deciphered just DNA involved in protein production. Researchers also screened cancer cells from 117 adult ALL patients, including 11 with the low hypodiploid subtype.
The whole genome sequencing was done in conjunction with the St. Jude Children’s Research Hospital – Washington University Pediatric Cancer Genome Project. The project has sequenced the complete normal and cancer genomes of more than 600 children and adolescents with some of the most aggressive and least understood cancers.
Near haploid ALL was characterised by alterations in six genes and increased activity in key pathways that help regulate cell division and development. Disruption of these pathways, known as Ras and PI3K, has been linked to other cancers. The changes were found in 71 percent of near haploid ALL patients and included deletion of the NF1 gene. The gene had not previously been linked to high-risk leukemia. Other alterations involved the genes NRAS, KRAS, MAPK1, FLT3 and PTPN11.
Low hypodiploid ALL in both adults and children was linked to mutations in the TP53 tumour suppressor gene. The gene was altered in 91 percent of pediatric patients with the ALL subtype and in 10 of the 11 adults with low hypodiploid ALL included in the study. Other common alterations involved RB1, another tumour suppressor gene.
About 38 percent of children with low hypodiploid ALL also carried TP53 abnormalities in non-cancerous blood cells. The mutations included many previously linked to Li-Fraumeni syndrome, which is characterized by changes in TP53.
Further evidence linking low hypodiploid ALL to Li-Fraumeni syndrome came when researchers found the same TP53 mutation in two generations of the same family. The father was 31 years old when he was found to have a brain tumour associated with Li-Fraumeni syndrome. His son later developed low hypodiploid ALL.
‘Identification of children with low-hypodiploid ALL and inherited TP53 mutations could help expand the use of life-saving cancer screening,’ said Linda Holmfeldt, Ph.D., a St. Jude postdoctoral fellow. She and Lei Wei, Ph.D., of the St. Jude Department of Computational Biology and formerly of Pathology, are the study’s co-first authors. ‘Screening helps save lives by finding cancers much earlier when the odds of a cure are greatest,’ Holmfeldt said. St. Jude Children’s Research Hospital

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:13:17Genetic basis of high-risk childhood cancer points to possible new drug treatment strategy

Genetic predictors of postpartum depression

, 26 August 2020/in E-News /by 3wmedia

Johns Hopkins researchers say they have discovered specific chemical alterations in two genes that, when present during pregnancy, reliably predict whether a woman will develop postpartum depression.
The epigenetic modifications, which alter the way genes function without changing the underlying DNA sequence, can apparently be detected in the blood of pregnant women during any trimester, potentially providing a simple way to foretell depression in the weeks after giving birth, and an opportunity to intervene before symptoms become debilitating.
The findings are of the small study involving 52 pregnant women.
‘Postpartum depression can be harmful to both mother and child,’ says study leader Zachary Kaminsky, Ph.D., an assistant professor of psychiatry and behavioral sciences at the Johns Hopkins University School of Medicine. ‘But we don’t have a reliable way to screen for the condition before it causes harm, and a test like this could be that way.’
It is not clear what causes postpartum depression, a condition marked by persistent feelings of sadness, hopelessness, exhaustion and anxiety that begins within four weeks of childbirth and can last weeks, several months or up to a year. An estimated 10 to 18 percent of all new mothers develop the condition, and the rate rises to 30 to 35 percent among women with previously diagnosed mood disorders. Scientists long believed the symptoms were related to the large drop-off in the mother’s oestrogen levels following childbirth, but studies have shown that both depressed and non-depressed women have similar oestrogen levels.
By studying mice, the Johns Hopkins researchers suspected that oestrogen induced epigenetic changes in cells in the hippocampus, a part of the brain that governs mood. Kaminsky and his team then created a complicated statistical model to find the candidate genes most likely undergoing those epigenetic changes, which could be potential predictors for postpartum depression. That process resulted in the identification of two genes, known as TTC9B and HP1BP3, about which little is known save for their involvement in hippocampal activity.
Kaminsky says the genes in question may have something to do with the creation of new cells in the hippocampus and the ability of the brain to reorganise and adapt in the face of new environments — two elements important in mood. In some ways, he says, oestrogen can behave like an antidepressant, so that when inhibited, it adversely affects mood.
The researchers later confirmed their findings in humans by looking for epigenetic changes to thousands of genes in blood samples from 52 pregnant women with mood disorders. Jennifer L. Payne, M.D., director of the Johns Hopkins Women’s Mood Disorders Center, collected the blood samples. The women were followed both during and after pregnancy to see who developed postpartum depression.
The researchers noticed that women who developed postpartum depression exhibited stronger epigenetic changes in those genes that are most responsive to oestrogen, suggesting that these women are more sensitive to the hormone’s effects. Specifically, two genes were most highly correlated with the development of postpartum depression. TTC9B and HP1BP3 predicted with 85 percent certainty which women became ill. John Hopkins Medicine

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:12:54Genetic predictors of postpartum depression

Scientists find that prostate cancer patients with BRCA2 mutations require urgent treatment

, 26 August 2020/in E-News /by 3wmedia

Men who develop prostate cancer after inheriting a faulty gene need immediate surgery or radiotherapy rather than being placed under surveillance, as their disease is more aggressive than other types, a new study has found.
A team at The Institute of Cancer Research, London, and The Royal Marsden NHS Foundation Trust found prostate cancers spread more quickly and were more often fatal in men who had inherited a faulty BRCA2 gene than in men without the faulty gene.
The research, funded by the Ronald and Rita McAulay Foundation and Cancer Research UK, could challenge current NHS guidelines for prostate cancer, under which BRCA2 mutation carriers are offered the same treatment options as non-carriers.
It is often difficult to tell at diagnosis whether prostate cancer will be life-threatening or not, and while treatment options for early-stage disease include surgery and radiotherapy, many men instead receive active surveillance to see if the disease starts to progress.
The new study is the largest to compare prostate cancer patients with and without BRCA mutations, in order to tell whether gene testing should help to direct management options.
Senior author Professor Ros Eeles, Professor of Oncogenetics at The Institute of Cancer Research (ICR) and Honorary Consultant in Clinical Oncology at The Royal Marsden, said: ‘It is clear from our study that prostate cancers linked to inheritance of the BRCA2 cancer gene are more deadly than other types. It must make sense to start offering affected men immediate surgery or radiotherapy, even for early-stage cases that would otherwise be classified as low-risk. We won’t be able to tell for certain that earlier treatment can benefit men with inherited cancer genes until we’ve tested it in a clinical trial, but the hope is that our study will ultimately save lives by directing treatment at those who most need it.’
The team from the ICR and The Royal Marsden, with collaborators across the UK, examined the medical records of 61 BRCA2-mutation carriers, 18 BRCA1-mutation carriers and 1,940 non-carriers.
They found BRCA1/2 mutation carriers were more likely to be diagnosed with advanced stage prostate cancers (37 per cent versus 28 per cent) or cancer that had already spread (18 per cent versus nine per cent) than non-carriers. Among those whose cancers had not spread out of the prostate at diagnosis, within five years more carriers than non-carriers had metastatic disease (23 per cent versus seven per cent).
Patients with BRCA2-mutations were also significantly less likely to survive the cancer, living an average of 6.5 years compared with 12.9 years for non-carriers. The team concluded that a BRCA2 test could be used in combination with other factors as a prognostic test. Men with a BRCA1 mutation also had a shorter average survival time of 10.5 years, but there was not a statistically significant difference with non-carriers. ICR

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:13:02Scientists find that prostate cancer patients with BRCA2 mutations require urgent treatment

Improper protein digestion in neurons identified as a cause of familial Parkinson’s

, 26 August 2020/in E-News /by 3wmedia

Researchers at Columbia University Medical Center (CUMC), with collaborators at the Albert Einstein College of Medicine of Yeshiva University, have discovered how the most common genetic mutations in familial Parkinson’s disease damage brain cells. The mutations block an intracellular system that normally prevents a protein called alpha-synuclein from reaching toxic levels in dopamine-producing neurons. The findings suggest that interventions aimed at enhancing this digestive system, or preventing its disruption, may prove valuable in the prevention or treatment of Parkinson’s.

Parkinson’s disease is characterised by the formation of Lewy bodies (which are largely composed of alpha-synuclein) in dopamine neurons. In 1997, scientists discovered that a mutation in alpha-synuclein can lead to Lewy body formation. ‘But alpha-synuclein mutations occur in only a tiny percentage of Parkinson’s patients,’ said co-lead author David L. Sulzer, PhD, professor of neurology, pharmacology, and psychiatry at CUMC. ‘This meant that there must be something else that interfered with alpha-synuclein in people with Parkinson’s.’

Dr. Sulzer and his colleagues suspected that a gene called leucine-rich repeat kinase-2 (LRRK2) might be involved. LRRK2 mutations are the most common mutations to have been linked to Parkinson’s. The current study aimed to determine how these mutations might lead to the accumulation of alpha-synuclein.

‘We found that abnormal forms of LRRK2 protein disrupt a critical protein-degradation process in cells called chaperone-mediated autophagy,’ said Dr. Sulzer. ‘One of the proteins affected by this disruption is alpha-synuclein. As this protein starts to accumulate, it becomes toxic to neurons.’ Delving deeper, the researchers found that LRRK2 mutations interfere with LAMP-2A, a lysosome membrane receptor that plays a key role in lysosome function.

‘Now that we know this step that may be causing the disease in many patients, we can begin to develop drug treatments or genetic treatments that can enhance the digestion of these disease-triggering proteins, alpha-synuclein and LRRK2, or that remove alpha-synuclein,’ said Dr. Sulzer.

While LRRK2 mutations are the most common genetic cause of Parkinson’s, it is too early to tell whether these findings, and therapies that might stem from them, would apply to patients with non-familial Parkinson’s, the more common form of the disease. ‘Right now, all we can say is that it looks as though we’ve found a fundamental pathway that causes the buildup of alpha-synuclein in people with LRRK2 mutations and links these mutations to a common cause of the disease. We suspect that this pathway may be involved in many other Parkinson’s patients,’ said Dr. Sulzer.

The study involved mouse neurons in tissue culture from four different animal models, neurons from the brains of patients with Parkinson’s with LRRK2 mutations, and neurons derived from the skin cells of Parkinson’s patients via induced pluripotent stem (iPS) cell technology. All the lines of research confirmed the researchers’ discovery. Columbia University Medical Center

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:13:10Improper protein digestion in neurons identified as a cause of familial Parkinson’s

Potential flu pandemic lurks

, 26 August 2020/in E-News /by 3wmedia

In the summer of 1968, a new strain of influenza appeared in Hong Kong. This strain, known as H3N2, spread around the globe and eventually killed an estimated 1 million people.
A new study from MIT reveals that there are many strains of H3N2 circulating in birds and pigs that are genetically similar to the 1968 strain and have the potential to generate a pandemic if they leap to humans. The researchers, led by Ram Sasisekharan, the Alfred H. Caspary Professor of Biological Engineering at MIT, also found that current flu vaccines might not offer protection against these strains.
‘There are indeed examples of H3N2 that we need to be concerned about,’ says Sasisekharan, who is also a member of MIT’s Koch Institute for Integrative Cancer Research. ‘From a pandemic-preparedness point of view, we should potentially start including some of these H3 strains as part of influenza vaccines.’
The study also offers the World Health Organization and public-health agencies’ insight into viral strains that should raise red flags if detected.
In the past 100 years, influenza viruses that emerged from pigs or birds have caused several notable flu pandemics. When one of these avian or swine viruses gains the ability to infect humans, it can often evade the immune system, which is primed to recognise only strains that commonly infect humans.
Strains of H3N2 have been circulating in humans since the 1968 pandemic, but they have evolved to a less dangerous form that produces a nasty seasonal flu. However, H3N2 strains are also circulating in pigs and birds.
Sasisekharan and his colleagues wanted to determine the risk of H3N2 strains re-emerging in humans, whose immune systems would no longer recognise the more dangerous forms of H3N2. This type of event has a recent precedent: In 2009, a strain of H1N1 emerged that was very similar to the virus that caused a 1918 pandemic that killed 50 million to 100 million people.
‘We asked if that could happen with H3,’ Sasisekharan says. ‘You would think it’s more readily possible with H3 because we observe that there seems to be a lot more mixing of H3 between humans and swine.’
In the new study, the researchers compared the 1968 H3N2 strain and about 1,100 H3 strains now circulating in pigs and birds, focusing on the gene that codes for the viral haemagglutinin (HA) protein.
After comparing HA genetic sequences in five key locations that control the viruses’ interactions with infected hosts, the researchers calculated an ‘antigenic index’ for each strain. This value indicates the percentage of these genetic regions identical to those of the 1968 pandemic strain and helps determine how well an influenza virus can evade a host’s immune response.
The researchers also took into account the patterns of attachment of the HA protein to sugar molecules called glycans. The virus’ ability to attach to glycan receptors found on human respiratory-tract cells is key to infecting humans.
Seeking viruses with an antigenic index of at least 49 percent and glycan-attachment patterns identical to those of the 1968 virus, the research team identified 581 H3 viruses isolated since 2000 that could potentially cause a pandemic. Of these, 549 came from birds and 32 from pigs.
The researchers then exposed some of these strains to antibodies provoked by the current H3 seasonal-flu vaccines. As they predicted, these antibodies were unable to recognise or attack these H3 strains. Of the 581 HA sequences, six swine strains already contain the standard HA mutations necessary for human adaptation, and are thus capable of entering the human population either directly or via genetic reassortment, Sasisekharan says.
‘One of the amazing things about the influenza virus is its ability to grab genes from different pools,’ he says. ‘There could be viral genes that mix among pigs, or between birds and pigs.’
Sasisekharan and colleagues are now doing a similar genetic study of H5 influenza strains. The H3 study was funded by the National Institutes of Health and the National Science Foundation. MIT

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:12:57Potential flu pandemic lurks

Study identifies genetic connections in 15q Duplication Syndrome

, 26 August 2020/in E-News /by 3wmedia

A new study published from the University of Tennessee Health Science Center and Le Bonheur researchers is making the genetic connections between autism and Chromosome 15q Duplication Syndrome (Dup15q).

The Memphis researchers determined that the maternally derived or inherited duplication of the region inclusive of the UBE3A gene (also known as the Angelman/Prader-Willi syndrome locus) are sufficient to produce a phenotype on the autism spectrum in all ten maternal duplication subjects. The number of subjects was too small to determine if parental duplications do not cause autism. The team assembled the largest single cohort of interstitial 15q duplication subjects for phenotype/genotype analysis of the autism component of the syndrome.

Chromosome 15q Duplication Syndrome (Dup15q) results from duplications of chromosome 15q11-q13. Duplications that are maternal in origin often result in developmental problems. The larger 15q duplication syndrome, which includes individuals with idic15, manifests itself in a wide range of developmental disabilities including autism spectrum disorders; motor, cognitive and speech/language delays; and seizure disorders among others. While there is no specific treatment plan, therapies are available to address or manage symptoms.

Previous research suggests that as many as 1,000 genes may contribute to autism phenotypes, but as much as 1-3 percent of all autism spectrum disorder cases may be a result of 15q11-q13 duplication alone.

The researchers also found through EEG evaluations a pattern that looks like the type of signal you see when individuals take GABA promoting drugs (benzodiazepines). The lead researcher on this study, Lawrence T. Reiter, PhD, says this signal gives clinicians a clue about what types of anti-seizure medication may be most useful in children with 15q duplications.

Reiter says genetic testing can help families connect to resources, like the Dup15q Alliance. Reiter is an associate professor in Department of Neurology with an adjunct appointment in Pediatrics at UTHSC.

‘If a paediatrician suspects autism due to hypotonia and developmental delay, I highly recommend they order an arrayCGH test. Duplication 15q is the second most common duplication in autism. The test will help families in future treatments specific to this sub-type of autism,’ he said. Le Bonheur Childrens Hospital

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:13:04Study identifies genetic connections in 15q Duplication Syndrome

Molecular basis found for tissue specific immune regulation in eye and kidney

, 26 August 2020/in E-News /by 3wmedia

Scientists at The University of Manchester have made important advances in understanding why our immune system can attack our own tissues resulting in eye and kidney diseases. It is hoped the research will pave the way for the development of new treatments for the eye condition age-related macular degeneration (AMD) and the kidney condition atypical Haemolytic Uremic Syndrome (aHUS).
Both AMD, which affects around 50 million people worldwide, and aHUS, a rare kidney disease that affects children, are associated with incorrectly controlled immune systems. A protein called complement factor H (CFH) is responsible for regulating part of our immune system called the complement cascade. Genetic alterations in CFH have been shown to increase a person’s risk of developing either AMD or aHUS, but rarely both. Why this is the case has never been explained until now.
Researchers from the Wellcome Trust Centre for Cell Matrix Research and the Ophthalmology and Vision Research Group in The University of Manchester’s Institute of Human Development have been expanding on their previous work that demonstrated a single common genetic alteration in CFH prevents it from fully protecting the back of the human eye. The research teams of Professor Tony Day and Professor Paul Bishop found that a common genetically altered form of CFH associated with AMD couldn’t bind properly to a layer under the retina called Bruch’s membrane. Having a reduced amount of CFH in this part of the eye leads to low-level inflammation and tissue damage, eventually resulting in AMD.
However, this mutation that changes CFH function in the eye has no affect on the protein’s ability to regulate the immune system in the kidney. A cluster of genetic mutations in a completely different part of CFH are associated with the kidney disease aHUS, but these have no affect on the eyes.
In their most recent study, which was funded by the Medical Research, the Manchester researchers have identified why these mutations in CFH result in diseases in very specific tissues. Professor Day explains: ‘For the first time we’ve been able to identify why these protein mutations are so tissue specific. We’re hoping our discovery will open the door to the development of tissue specific treatments to help the millions of people diagnosed with AMD every year.’
The research team looked at the two parts of CFH affected by the mutations. Both regions are capable of recognising host tissues, through interacting with sugars called glycosaminoglycans (GAGs). Successfully recognising these GAGs lets CFH build up a protective layer on the surface of our tissues that prevents our own immune system from attacking them.
It had always been believed that the region with mutations associated with aHUS was the most important for host recognition and for years people have been researching how to readdress immune dysregulation based on this belief. However, the recent discovery of a single common genetic alteration in the other part of CFH that is associated with eye disease raised the possibility that this previous opinion was not fully accurate. The University of Manchester

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:13:12Molecular basis found for tissue specific immune regulation in eye and kidney

Particular DNA changes linked with prostate cancer development and lethality

, 26 August 2020/in E-News /by 3wmedia

Prostate Cancer (PCa) is the most common cancer among men in the United States. It is not clear why some prostate cancers are so ‘aggressive’ and eventually become deadly, while others remain inactive or ‘indolent’for many years. Scientists have been trying to find markers that can distinguish aggressive from indolent forms of prostate cancer. Although a lot of progress has been made in using tumour tissue and blood markers for prognosis, physicians still cannot tell for sure what type of prostate cancer a patient has at the time of diagnosis or surgery based on these markers. Many patients end up with over-treatment and unnecessary physical and mental distress. On the other hand, some patients with aggressive prostate cancer may end up with under-treatment and therefore die from this disease due to the lack of knowledge regarding the cause and also because of limited tools for prognosis. Therefore, it is extremely important to distinguish the aggressive prostate cancers from the ones that are not life-threatening or those that do not even need treatment.
From many years of research, we know that cancer cells lose and amplify many pieces of DNA containing important genes; these losses and amplifications are called DNA copy number alterations. Using a method that can examine copy number alterations in all regions of the DNA from prostate tumours, we found a total 20 regions, with 4 of them not previously reported, that likely contribute to prostate cancer development. More importantly, seven of these 20 regions were associated with early death due to prostate cancer. In addition, patients whose cancer cells had a loss of the PTEN gene and a copy number gain of the MYC gene were more likely to die from prostate cancer at an early stage after surgery than the patients who did not have copy number alterations at these two genes. Our findings from this retrospective study may allow for more accurate prognosis of patients with high-riskPCa, at the time of surgery or biopsy, and may help guide the selection of appropriate therapy once validated in prospective studies. In addition, the information generated by our study may impact clinical management or the stratification of patients in clinical trials. Wake Forest Baptist Medical Center

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:12:59Particular DNA changes linked with prostate cancer development and lethality

Programmed destruction

, 26 August 2020/in E-News /by 3wmedia

Stroke, heart attacks and numerous other common disorders result in a massive destruction of cells and tissues called necrosis. It’s a violent event: As each cell dies, its membrane ruptures, releasing substances that trigger inflammation, which in turn can cause more cellular necrosis. A new Weizmann Institute study may help develop targeted therapies for controlling the tissue destruction resulting from inflammation and necrosis.
The study, conducted in the laboratory of Prof. David Wallach of the Biological Chemistry Department, focused on a group of signalling enzymes, including caspase 8, which was discovered by Wallach nearly two decades ago. Earlier studies by scientists in the United States, China and Europe had shown that this group of proteins induces ‘programmed,’ or deliberate, necrosis intended to kill off damaged or infected cells. This revelation had generated the hope that by blocking the induction of necrotic cell death by these proteins, it might be possible to prevent excessive tissue damage in various diseases.
But in the new study, Wallach’s team sounds a warning. The researchers have revealed that under conditions favouring inflammation – that is, in the presence of certain bacterial components or other irritants – the same group of signalling enzymes can trigger an entirely different process in certain cells. It can activate a previously unknown cascade of biochemical reactions that causes inflammation more directly, without inducing necrosis, by stimulating the production of hormone-like regulatory proteins called cytokines. The research, mainly based on experiments in transgenic mice lacking caspase 8 in certain immune cells, was spearheaded by postdoctoral fellow Dr. Tae-Bong Kang. Team members Seung-Hoon Yang, Dr. Beata Toth and Dr. Andrew Kovalenko made important contributions to the study.
These findings suggest that prior to developing targeted necrosis-controlling therapies, researchers need to learn more about the signals transmitted by caspase 8 and its molecular partners: Since this signalling can lead to several entirely different outcomes, the scientists need to determine when exactly it results directly in necrosis and when it does not. Clarifying this matter is of enormous importance: Tissue necrosis occurs in a variety of disorders affecting billions of people, from the above-mentioned stroke and heart attack to viral infections and alcoholism-related degeneration of the liver. Weizmann Institute

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:432021-01-08 11:13:07Programmed destruction
Page 108 of 228«‹106107108109110›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
15 December 2025

WERFEN APPLAUDS SIGNIFICANT PUBLICATION URGING ACTION ON THE RISKS OF UNDETECTED HEMOLYSIS

13 December 2025

Indero validates three-day gene expression method

12 December 2025

Johnson & Johnson acquires Halda Therapeutics for $3.05 billion

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription