Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

New, more accurate test for Down’s syndrome developed

, 26 August 2020/in E-News /by 3wmedia

Researchers at King’s College London and King’s College Hospital, part of King’s Health Partners Academic Health Sciences Centre, have developed a new, non-invasive blood test that can reliably detect whether or not an unborn baby has Down’s syndrome. The test can be given earlier in pregnancy and is more accurate than current checks.
Down’s syndrome, also referred to as trisomy 21, is a genetic disorder caused by the presence of all or part of an extra copy of chromosome 21 in a person’s DNA. Current screening for Down’s syndrome and other trisomy conditions includes a combined test done between the 11th and 13th weeks of pregnancy, which involves an ultrasound screen and a hormonal analysis of the pregnant woman’s blood. Methods such as chorionic villus sampling (CVS), which involves taking cell samples from the placenta, and amniocentesis (using a sample of amniotic fluid), are also used to detect abnormalities but they are both invasive and carry a risk of miscarriage.
Several studies have shown that non-invasive prenatal diagnosis for trisomy syndromes using foetal cell free (cf) DNA from a pregnant woman’s blood is highly sensitive and specific, making it a potentially reliable alternative that can be done earlier in pregnancy.
Kypros Nicolaides, Professor of Fetal Medicine at King’s College London and Head of the Harris Birthright Research Centre for Fetal Medicine at King’s College Hospital, and colleagues have now demonstrated the feasibility of routine screening for trisomies 21, 18, and 13 by cfDNA testing. Testing done in 1005 pregnancies at 10 weeks had a lower false positive rate and higher sensitivity for foetal trisomy than the combined test done at 12 weeks. Both cfDNA and combined testing detected all trisomies, but the estimated false-positive rates were 0.1 percent and 3.4 percent, respectively.
‘This study has shown that the main advantage of cfDNA testing, compared with the combined test, is the substantial reduction in false positive rate. Another major advantage of cfDNA testing is the reporting of results as very high or very low risk, which makes it easier for parents to decide in favour of or against invasive testing,’ said Professor Nicolaides.
A second Ultrasound in Obstetrics & Gynecology study by the group, which included pregnancies undergoing screening at three UK hospitals between March 2006 and May 2012, found that effective first-trimester screening for Down’s syndrome could be achieved by cfDNA testing contingent on the results of the combined test done at 11 to 13 weeks. The strategy detected 98 percent of cases, and invasive testing was needed for confirmation in less than 0.5 percent of cases.
The authors conclude that screening for trisomy 21 by cfDNA testing contingent on the results of an expanded combined test would retain the advantages of the current method of screening, but with a simultaneous major increase in detection rate and decrease in the rate of invasive testing. Kings College London

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:232021-01-08 11:12:52New, more accurate test for Down’s syndrome developed

Diagnosing concussion could be as easy as a blood test

, 26 August 2020/in E-News /by 3wmedia

Huskies football defensive lineman Caleb Eidsvik takes up a lot of room as he sits on an examining table in the Huskies trainer’s room at Griffiths Field, patiently waiting for pharmacology student Hungbo Qudus to draw a small sample of his blood.

At six-foot three and 260 pounds, Eidsvik exudes strength and good health. And that’s the problem, according to researcher Changiz Taghibiglou, since Eidsvik is suspected of having a concussion.

‘There’s no easy way to conclusively diagnose concussion now. You need an MRI or a CT scan,’ he said. ‘Whether it’s car accidents, falls or sports injuries, we actually don’t have any simple tests.’

Taghibiglou is an assistant professor in the College of Medicine’s Department of Pharmacology. If he gets his way, testing for concussion will be so simple that a test kit will be a standard item in every medical bag, to be used by trainers and coaches at football fields and hockey arenas, and even by first responders and EMTs.

Diagnosis of concussion is critical. While short term symptoms such as vomiting, confusion and headache may be easy to spot, Taghibiglou explained that long-term effects can be more subtle and easier to brush off. This can be extremely dangerous: if the person suffers a second concussion before fully recovering from the first, they are at high risk of developing permanent brain damage, psychiatric problems or even dying. There are also risks of long term effects, including Parkinson’s and Alzheimer diseases, and post-traumatic stress disorder.

At the heart of Taghibiglou’s concussion test is a molecule that exists on the surface of brain cells. Through research carried out with scientists at the Canadian Department of National Defence, a link was found between the molecule and brain trauma. This research is ongoing and represents one of the agency’s many inquiries into the effects of battlefield blasts on soldiers.

‘Physical injuries are easy to spot but with a concussion a person can appear fine,’ Taghibiglou said. ‘In the worst case, there are no outward signs of injury so they are sent back out, re-injured, and suffer significant neurological issues later.’

Taghibiglou explains that head trauma – whether from an accidental blow to the head, a hard slam on the gridiron or a forceful check against the boards – can knock certain brain cell molecules loose. Once free, they circulate in the blood where they can be detected by a simple blood test (a patent for the test has been applied for through the U of S Industry Liaison Office).

Working with Huskie Athletics, Taghibiglou, Qudus and graduate student Nathan Pham are gathering blood samples from athletes pre- and post-injury. Taghibiglou praised Director of Huskie Athletics Basil Hughton and Huskies Head Therapist Rhonda Shishkin for arranging access, particularly during peak season.

‘We’re collecting from the football team and are also looking for concussion in other teams such as soccer and hockey,’ he said.

Since the test is so new, the research team also needs about 300 male and female volunteers to donate small blood samples to establish the normal level of the concussion-associated molecules in the blood.

‘There are no values in the reference books, simply because no one has gathered the data yet. Our ultimate goal is a simple diagnostic test, much like the blood sugar tests used by diabetics.’ The test would be particularly valuable for rural and remote communities that lack the medical equipment typically used for trauma diagnosis.

‘Small health clinics don’t have an MRI. It may help rural doctors refer their patients to larger centres and know what’s going on.’ University of Saskatchewan

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:232021-01-08 11:12:31Diagnosing concussion could be as easy as a blood test

Researchers discover a potential cause of autism

, 26 August 2020/in E-News /by 3wmedia

Problems with a key group of enzymes called topoisomerases can have profound effects on the genetic machinery behind brain development and potentially lead to autism spectrum disorder (ASD), according to research. Scientists at the University of North Carolina School of Medicine have described a finding that represents a significant advance in the hunt for environmental factors behind autism and lends new insights into the disorder’s genetic causes.

‘Our study shows the magnitude of what can happen if topoisomerases are impaired,’ said senior study author Mark Zylka, PhD, associate professor in the Neuroscience Center and the Department of Cell Biology and Physiology at UNC. ‘Inhibiting these enzymes has the potential to profoundly affect neurodevelopment — perhaps even more so than having a mutation in any one of the genes that have been linked to autism.’

The study could have important implications for ASD detection and prevention.

‘This could point to an environmental component to autism,’ said Zylka. ‘A temporary exposure to a topoisomerase inhibitor in utero has the potential to have a long-lasting effect on the brain, by affecting critical periods of brain development. ‘

This study could also explain why some people with mutations in topoisomerases develop autism and other neurodevelopmental disorders.

Topiosomerases are enzymes found in all human cells. Their main function is to untangle DNA when it becomes overwound, a common occurrence that can interfere with key biological processes.

Most of the known topoisomerase-inhibiting chemicals are used as chemotherapy drugs. Zylka said his team is searching for other compounds that have similar effects in nerve cells. ‘If there are additional compounds like this in the environment, then it becomes important to identify them,’ said Zylka. ‘That’s really motivating us to move quickly to identify other drugs or environmental compounds that have similar effects — so that pregnant women can avoid being exposed to these compounds.’

Zylka and his colleagues stumbled upon the discovery quite by accident while studying topotecan, a topoisomerase-inhibiting drug that is used in chemotherapy. Investigating the drug’s effects in mouse and human-derived nerve cells, they noticed that the drug tended to interfere with the proper functioning of genes that were exceptionally long — composed of many DNA base pairs. The group then made the serendipitous connection that many autism-linked genes are extremely long.

‘That’s when we had the ‘Eureka moment,’’ said Zylka. ‘We realised that a lot of the genes that were suppressed were incredibly long autism genes.’

Of the more than 300 genes that are linked to autism, nearly 50 were suppressed by topotecan. Suppressing that many genes across the board — even to a small extent — means a person who is exposed to a topoisomerase inhibitor during brain development could experience neurological effects equivalent to those seen in a person who gets ASD because of a single faulty gene.

The study’s findings could also help lead to a unified theory of how autism-linked genes work. About 20 percent of such genes are connected to synapses — the connections between brain cells. Another 20 percent are related to gene transcription — the process of translating genetic information into biological functions. Zylka said this study bridges those two groups, because it shows that having problems transcribing long synapse genes could impair a person’s ability to construct synapses.

‘Our discovery has the potential to unite these two classes of genes — synaptic genes and transcriptional regulators,’ said Zylka. ‘It could ultimately explain the biological mechanisms behind a large number of autism cases.’ University of North Carolina School of Medicine

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:232021-01-08 11:12:38Researchers discover a potential cause of autism

Researchers pinpoint sources of fibrosis-promoting cells that ravage organs

, 26 August 2020/in E-News /by 3wmedia

Scientists have tracked down and quantified the diverse origins of cells that drive fibrosis, the incurable, runaway wound-healing that scars and ultimately destroys organs such as the lungs, liver and kidneys.
Findings are from research conducted at Beth Israel Deaconess Medical Center, Harvard Medical School and Massachusetts Institute of Technology in Boston and continued at The University of Texas MD Anderson Cancer Center.
‘Answering a fundamental question about the origin of these cells by identifying four separate pathways involved in their formation allows us to look at ways to block those pathways to treat fibrosis,’ said senior author Raghu Kalluri, Ph.D., M.D., MD Anderson chair and professor of Cancer Biology. ‘It’s highly unlikely that a single drug will work.’
‘In addition to being lethal in its own right, fibrosis is a precursor for the development of cancer and plays a role in progression, metastasis and treatment resistance,’ Kalluri said. ‘In some cancers, such as pancreatic cancer, up to 95 percent of tumours consist of fibrotic stroma.’
Working in genetic mouse models of kidney fibrosis, Kalluri and colleagues identified four sources of cells called myofibroblasts, the dominant producers of collagen. Collagen normally connects damaged tissue and serves as scaffolding for wound-healing. As healing occurs, myofibroblasts and collagen usually diminish or disappear.
In fibrosis, collagen production marches on. While inflammation-inhibiting drugs can sometimes slow its progress, fibrosis now is treatable only by organ transplant.
The researchers employed a fate-mapping strategy to track cells on their way to becoming myofibroblasts. In fate mapping, the promoter of a protein expresses a colour inside a cell that remains with the cell no matter what happens to it until it dies, Kalluri said.
This was particularly important because two of the four sources of myofibroblasts start out as another cell type and differentiate into the collagen-producing cells.
Their experiments showed:
Half of all myofibroblasts are produced by the proliferation of pre-existing resting fibroblasts.
Another 35 percent are produced by mesenchymal stem cells that originate in the bone marrow, migrate to the ‘wound’ site, and then differentiate into myofibroblasts.
An additional 10 percent are the products of endothelial to mesenchymal transition (EndMT), in which blood vessel cells change into mesenchymal cells, then become myofibroblasts.
The final 5 percent come from epithelial to mesenchymal transition (EMT), in which functional cells of an organ sometimes behave like mesenchymal cells and myofibroblasts.
‘These differentiation pathways provide leads for drug targets,’ Kalluri said. ‘Combining an antiproliferation drug with therapies that block one or more differentiation pathways could provide a double hit to control fibrosis. We hope to synergise these pathways for the most effective therapeutic response.’ MD Anderson Cancer Center

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:232021-01-08 11:12:45Researchers pinpoint sources of fibrosis-promoting cells that ravage organs

MRI reveals genetic activity

, 26 August 2020/in E-News /by 3wmedia

Doctors commonly use magnetic resonance imaging (MRI) to diagnose tumours, damage from stroke, and many other medical conditions. Neuroscientists also rely on it as a research tool for identifying parts of the brain that carry out different cognitive functions.

Now, a team of biological engineers at MIT is trying to adapt MRI to a much smaller scale, allowing researchers to visualise gene activity inside the brains of living animals. Tracking these genes with MRI would enable scientists to learn more about how the genes control processes such as forming memories and learning new skills, says Alan Jasanoff, an MIT associate professor of biological engineering and leader of the research team.

‘The dream of molecular imaging is to provide information about the biology of intact organisms, at the molecule level,’ says Jasanoff, who is also an associate member of MIT’s McGovern Institute for Brain Research. ‘The goal is to not have to chop up the brain, but instead to actually see things that are happening inside.’

To help reach that goal, Jasanoff and colleagues have developed a new way to image a ‘reporter gene’ — an artificial gene that turns on or off to signal events in the body, much like an indicator light on a car’s dashboard. In the new study, the reporter gene encodes an enzyme that interacts with a magnetic contrast agent injected into the brain, making the agent visible with MRI. This approach allows researchers to determine when and where that reporter gene is turned on.
MRI uses magnetic fields and radio waves that interact with protons in the body to produce detailed images of the body’s interior. In brain studies, neuroscientists commonly use functional MRI to measure blood flow, which reveals which parts of the brain are active during a particular task. When scanning other organs, doctors sometimes use magnetic ‘contrast agents’ to boost the visibility of certain tissues.

The new MIT approach includes a contrast agent called a manganese porphyrin and the new reporter gene, which codes for a genetically engineered enzyme that alters the electric charge on the contrast agent. Jasanoff and colleagues designed the contrast agent so that it is soluble in water and readily eliminated from the body, making it difficult to detect by MRI. However, when the engineered enzyme, known as SEAP, slices phosphate molecules from the manganese porphyrin, the contrast agent becomes insoluble and starts to accumulate in brain tissues, allowing it to be seen.

The natural version of SEAP is found in the placenta, but not in other tissues. By injecting a virus carrying the SEAP gene into the brain cells of mice, the researchers were able to incorporate the gene into the cells’ own genome. Brain cells then started producing the SEAP protein, which is secreted from the cells and can be anchored to their outer surfaces. That’s important, Jasanoff says, because it means that the contrast agent doesn’t have to penetrate the cells to interact with the enzyme.

Researchers can then find out where SEAP is active by injecting the MRI contrast agent, which spreads throughout the brain but accumulates only near cells producing the SEAP protein.
In this study, which was designed to test this general approach, the detection system revealed only whether the SEAP gene had been successfully incorporated into brain cells. However, in future studies, the researchers intend to engineer the SEAP gene so it is only active when a particular gene of interest is turned on.

Jasanoff first plans to link the SEAP gene with so-called ‘early immediate genes,’ which are necessary for brain plasticity — the weakening and strengthening of connections between neurons, which is essential to learning and memory.

‘As people who are interested in brain function, the top questions we want to address are about how brain function changes patterns of gene expression in the brain,’ Jasanoff says. ‘We also imagine a future where we might turn the reporter enzyme on and off when it binds to neurotransmitters, so we can detect changes in neurotransmitter levels as well.’ MIT

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:09MRI reveals genetic activity

Two parents with Alzheimer’s Disease? Disease may show up decades early on brain scans

, 26 August 2020/in E-News /by 3wmedia

People who are dementia-free but have two parents with Alzheimer’s disease may show signs of the disease on brain scans decades before symptoms appear, according to a new study. ‘Studies show that by the time people come in for a diagnosis, there may be a large amount of irreversible brain damage already present,’ said study author Lisa Mosconi, PhD, with the New York University School of Medicine in New York. ‘This is why it is ideal that we find signs of the disease in high-risk people before symptoms occur.’ For the study, 52 people between the ages of 32 and 72 and free of dementia underwent several kinds of brain scans, including Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) scans. PET scans measure the amount of brain plaques as well as overall brain activity, such as brain metabolism. MRI scans look at brain structure and possible reductions in brain volume. Participants were split into four groups of 13 people: those with a mother with Alzheimer’s disease, a father, both parents, or no family history of the disease. People with both parents who had Alzheimer’s disease showed more severe abnormalities in brain volume, metabolism and five to 10 percent increased brain plaques in certain brain regions compared to the other three groups. ‘Our study also suggests that there might be genes that predispose individuals to develop brain Alzheimer’s pathology as a function of whether one parent or both parents have the disease,’ Mosconi said. ‘We do not yet know which genes, if any, are responsible for these early changes, and we hope that our study will be helpful to future genetic investigations.’ People whose mother had Alzheimer’s disease showed a greater level of the Alzheimer’s disease biomarkers in the brain than people whose father had the disease, which is consistent with previous studies showing that people whose mothers had the disease were more likely to develop it than those with fathers with the disease, Mosconi said. She noted the small sample size of the study. The research was supported by the National Institutes of Health and the Alzheimer’s Association. American Academy of Neurology

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:16Two parents with Alzheimer’s Disease? Disease may show up decades early on brain scans

New trigger for breast cancer metastasis

, 26 August 2020/in E-News /by 3wmedia

For years, scientists have observed that tumour cells from certain breast cancer patients with aggressive forms of the disease contained low levels of mitochondrial DNA. But, until recently, no one was able to explain how this characteristic influenced disease progression.

Now, University of Pennsylvania researchers have revealed how a reduction in mitochondrial DNA content leads human breast cancer cells to take on aggressive, metastatic properties. The work breaks new ground in understanding why some cancers progress and spread faster than others and may offer clinicians a biomarker that would distinguish patients with particularly aggressive forms of disease, helping personalise treatment approaches.

The study was led by the Penn School of Veterinary Medicine’s Manti Guha, a senior research investigator, and Narayan Avadhani, Harriet Ellison Woodward Professor of Biochemistry in the Department of Animal Biology. Additional Penn Vet collaborators included Satish Srinivasan, Gordon Ruthel, Anna K. Kashina and Thomas Van Winkle. They teamed with Russ P. Carstens of Penn’s Perelman School of Medicine and Arnulfo Mendoza and Chand Khanna of the National Cancer Institute.

Mitochondria, the ‘powerhouses’ of mammalian cells, are also a signalling hub. They are heavily involved in cellular metabolism as well as in apoptosis, the process of programmed cell death by which potentially cancerous cells can be killed before they multiply and spread. In addition, mitochondria contain their own genomes, which code for specific proteins and are expressed in co-ordination with nuclear DNA to regulate the provision of energy to cells.

In mammals, each cell contains between 100 and 1,000 copies of mitochondrial DNA, but previous research had found that as many as 80 percent of people with breast cancer have low mitochondrial DNA, or mtDNA, content.

To gain an understanding of the mechanism that connects low mtDNA levels with a cellular change that leads to cancer and metastasis, Guha, Avadhani and their colleagues set up two systems by which they could purposefully reduce the amount of mtDNA in a cell. One used a chemical to deplete the DNA content, and another altered mtDNA levels genetically. They compared normal, non-cancer-forming human breast tissue cells with cancerous breast cells using both of these treatments, contrasting them with cells with unmanipulated mtDNA.

The differences between cells with unmodified and reduced mtDNA levels were striking, the researchers found. The cells in which mtDNA was reduced had altered metabolism and their structure appeared disorganised, more like that of a metastatic cancer cell. Even the non-tumour-forming breast cells became invasive and more closely resembled cancer cells. Significantly, cells with reduced mtDNA became self-renewing and expressed specific cell surface markers characteristic of breast cancer stem cells.

‘Reducing mitochondrial DNA makes mammary cells look like cancerous stem cells,’ Avadhani said. ‘These cells acquire the characteristics of stem cells, that is the ability to propagate and migrate, in order to begin the process of metastasis and move to distal sites in the body.’

‘Most patients who had low copy numbers of mitochondrial DNA have a poor disease prognosis,’ Guha said. ‘We’ve shown a causal role for this mitochondrial defect and identified a candidate biomarker for aggressive forms of the disease. In the future, mtDNA and the factors involved in mitochondrial signalling may serve as markers of metastatic potential and novel points for therapeutic intervention of cancer stem cells. Since the specific inducers of cancer stem cells, which are key drivers of metastasis, remain elusive, our current findings are a significant advancement in this area.’

No two breast cancers are exactly alike, so having a way to recognise patients who are at high-risk for developing particularly invasive and rapidly metastasising cancers could help physicians customise treatments. In addition, researchers are currently filling in the unknown components of the signalling pathway linking a cell’s mitochondrial DNA levels and its involvement in metastatic disease. University of Pennsylvania

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:26New trigger for breast cancer metastasis

Confirmation of the neurobiological origin of attention – deficit disorder

, 26 August 2020/in E-News /by 3wmedia

A study, carried out on mice, has just confirmed the neurobiological origin of attention-deficit disorder (ADD), a syndrome whose causes are poorly understood. Researchers from CNRS, the University of Strasbourg and INSERM have identified a cerebral structure, the superior colliculus, where hyperstimulation causes behaviour modifications similar to those of some patients who suffer from ADD. Their work also shows noradrenaline accumulation in the affected area, shedding light on this chemical mediator having a role in attention disorders.

Attention-deficit disorder affects between 4-8% of children. It manifests mainly through disturbed attention and verbal and motor impulsiveness, sometimes accompanied by hyperactivity. About 60% of these children still show symptoms in adulthood. No cure exists at this time. The only effective treatment is to administer psychostimulants, but these have substantial side effects, such as dependence. Persistent controversy surrounding the neurobiological origin of this disorder has hindered the development of new treatments.
The study in Strasbourg investigated the behaviour of transgenic mice having developmental defects in the superior colliculus. This structure, located in the midbrain, is a sensory hub involved in controlling attention and visual and spatial orientation. The mice studied were characterised by duplicated neuron projections between the superior colliculus and the retina. This anomaly causes visual hyperstimulation and excess noradrenaline in the superior colliculus. The effects of the neurotransmitter noradrenaline, which vary from species to species, are still poorly understood. However, we do know that this noradrenaline imbalance is associated with significant behavioural changes in mice carrying the genetic mutation. By studying them, researchers have observed a loss of inhibition: for example mice hesitate less to penetrate a hostile environment. They have difficulties in understanding relevant information and demonstrate a form of impulsiveness. These symptoms remind us of adult patients suffering from one of the forms of ADD.
Currently, the fundamental work on ADD uses mainly animal models obtained by mutations that disturb dopamine production and transmission pathways. In mice with a malformed superior colliculus, these pathways are intact. The changes occur elsewhere in the neural networks of the midbrain. By broadening the classic boundary used to research its causes, using these new models would allow a more global approach to ADD to be developed. Characterizing the effects of noradrenaline on the superior colliculus more precisely could open the way to innovative therapeutic strategies. INSERM

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:05Confirmation of the neurobiological origin of attention – deficit disorder

Solutions for Confirmatory Testing

, 26 August 2020/in E-News /by 3wmedia

Waters has developed a portfolio of complete solutions, including instrument configurations, sample preparation techniques, robust applications development and straightforward result interpretations to consistently meet the technical challenges specifically facing toxicology and forensic laboratories.

Waters has combined the unmatched resolution of UPLC chromatography with the selectivity and sensitivity of mass spectrometry, to enable laboratories to identify and quantify compounds from complex matrices within minutes. In addition, Waters UPLC-MS/MS solutions include powerful interpretation software, chemistries, dedicated applications and support services that expand your analytical capabilities and workflow.

Our dedicated Toxicology team maintains a library of the latest in quantitative methods for forensic toxicology, to save you time and effort of developing complex methods from basic principles. Waters is committed to utilizing the newest instruments to provide the latest, cutting edge applications across a diverse set of sample matrixes and compounds classes including:

Compound classes:

  • Opiates
  • Synthetic and/or “Designer Drugs”
  • Cannabinoids
  • Benzodiazepines
  • Cocaine and metabolites
  • Anti-psychotics/anti-depressants
  • Hallucinogens
  • Ethanol biomarkers

Sample Matrices

  • Urine
  • Blood/plasma
  • Oral fluid
  • Hair
  • Meconium
  • Bone
  • Sweat

Our vast experience in the development and installation of toxicology solutions with leading laboratories enables us to support your lab in achieving the best possible results to maximize your return on investment.

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:12Solutions for Confirmatory Testing

Medical mystery solved

, 26 August 2020/in E-News /by 3wmedia

People from around the country and the world turn to Johan Van Hove, MD, PhD, for advice on a rare metabolic disease known as NKH, which can disrupt the body in devastating and even deadly ways. Now, Van Hove, a University of Colorado medical school professor, has identified a new disease related to NKH, a finding that resolves previously baffling cases including the death of a Colorado girl.
‘This opens the door,’ Van Hove said. ‘I am hopeful that it will eventually lead to major advances in dealing with these diseases.’ The research team led by Van Hove, including scientists from the United States and five other countries, calls the new disease variant NKH.
The discovery is part of the new wave of personalised medicine being pioneered at CU and other institutions, in which researchers and doctors delve into the human genome to determine what is causing disease and use the information to try to fix the problem.
Van Hove has been on the trail of NKH for 22 years. Much of the funding for his research comes from families and others who have encountered the disease.
NKH, short for non-ketotic hyperglycinaemia, occurs in about one in 60,000 births. It involves the amino acid glycine, a building block for many functions including movement and brain activity. When a genetic mutation prevents the body from breaking down excess glycine, it can cause brain problems including severe epilepsy and impaired intellectual development.
Scientists know the symptoms of NKH and also the genes that, when they malfunction, cause it. But a few patients worldwide had symptoms or glycine test results that were similar but did not quite match up.
One of those patients was a Colorado girl. She seemed fine until she was six months old. Then she began to lose muscle tone. She lost some control of her head movements. Seizures came next, along with a range of muscle twitches. By eight she lost her ability to walk. At the end, she spent most of her time curled in the foetal position.
Several years ago, at age 11, she died.
Researchers kept her genetic material, as they did with other patients who seemed to fall outside the NKH symptoms or who had molecular test results that were outside of the NKH pattern. The patients, some of whom are living, were scattered around the globe, in Australia, Lebanon, Canada and other countries as well as in the United States.
By looking into the genomes of this group of 11, Van Hove and his colleagues found that eight shared a genetic glitch different than the ones associated with NKH.
In other words, ‘this is a new disease,’ said Van Hove, who practices at Children’s Hospital Colorado.
More testing is likely to reveal more such patients and, he said, may allow development of a new drug to make life better for patients with variant NKH. EurekAlert

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:19Medical mystery solved
Page 119 of 228«‹117118119120121›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
15 December 2025

WERFEN APPLAUDS SIGNIFICANT PUBLICATION URGING ACTION ON THE RISKS OF UNDETECTED HEMOLYSIS

13 December 2025

Indero validates three-day gene expression method

12 December 2025

Johnson & Johnson acquires Halda Therapeutics for $3.05 billion

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription