Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

Solutions for Confirmatory Testing

, 26 August 2020/in E-News /by 3wmedia

Waters has developed a portfolio of complete solutions, including instrument configurations, sample preparation techniques, robust applications development and straightforward result interpretations to consistently meet the technical challenges specifically facing toxicology and forensic laboratories.

Waters has combined the unmatched resolution of UPLC chromatography with the selectivity and sensitivity of mass spectrometry, to enable laboratories to identify and quantify compounds from complex matrices within minutes. In addition, Waters UPLC-MS/MS solutions include powerful interpretation software, chemistries, dedicated applications and support services that expand your analytical capabilities and workflow.

Our dedicated Toxicology team maintains a library of the latest in quantitative methods for forensic toxicology, to save you time and effort of developing complex methods from basic principles. Waters is committed to utilizing the newest instruments to provide the latest, cutting edge applications across a diverse set of sample matrixes and compounds classes including:

Compound classes:

  • Opiates
  • Synthetic and/or “Designer Drugs”
  • Cannabinoids
  • Benzodiazepines
  • Cocaine and metabolites
  • Anti-psychotics/anti-depressants
  • Hallucinogens
  • Ethanol biomarkers

Sample Matrices

  • Urine
  • Blood/plasma
  • Oral fluid
  • Hair
  • Meconium
  • Bone
  • Sweat

Our vast experience in the development and installation of toxicology solutions with leading laboratories enables us to support your lab in achieving the best possible results to maximize your return on investment.

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:12Solutions for Confirmatory Testing

Medical mystery solved

, 26 August 2020/in E-News /by 3wmedia

People from around the country and the world turn to Johan Van Hove, MD, PhD, for advice on a rare metabolic disease known as NKH, which can disrupt the body in devastating and even deadly ways. Now, Van Hove, a University of Colorado medical school professor, has identified a new disease related to NKH, a finding that resolves previously baffling cases including the death of a Colorado girl.
‘This opens the door,’ Van Hove said. ‘I am hopeful that it will eventually lead to major advances in dealing with these diseases.’ The research team led by Van Hove, including scientists from the United States and five other countries, calls the new disease variant NKH.
The discovery is part of the new wave of personalised medicine being pioneered at CU and other institutions, in which researchers and doctors delve into the human genome to determine what is causing disease and use the information to try to fix the problem.
Van Hove has been on the trail of NKH for 22 years. Much of the funding for his research comes from families and others who have encountered the disease.
NKH, short for non-ketotic hyperglycinaemia, occurs in about one in 60,000 births. It involves the amino acid glycine, a building block for many functions including movement and brain activity. When a genetic mutation prevents the body from breaking down excess glycine, it can cause brain problems including severe epilepsy and impaired intellectual development.
Scientists know the symptoms of NKH and also the genes that, when they malfunction, cause it. But a few patients worldwide had symptoms or glycine test results that were similar but did not quite match up.
One of those patients was a Colorado girl. She seemed fine until she was six months old. Then she began to lose muscle tone. She lost some control of her head movements. Seizures came next, along with a range of muscle twitches. By eight she lost her ability to walk. At the end, she spent most of her time curled in the foetal position.
Several years ago, at age 11, she died.
Researchers kept her genetic material, as they did with other patients who seemed to fall outside the NKH symptoms or who had molecular test results that were outside of the NKH pattern. The patients, some of whom are living, were scattered around the globe, in Australia, Lebanon, Canada and other countries as well as in the United States.
By looking into the genomes of this group of 11, Van Hove and his colleagues found that eight shared a genetic glitch different than the ones associated with NKH.
In other words, ‘this is a new disease,’ said Van Hove, who practices at Children’s Hospital Colorado.
More testing is likely to reveal more such patients and, he said, may allow development of a new drug to make life better for patients with variant NKH. EurekAlert

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:19Medical mystery solved

International consortium discovers 2 genes that modulate risk of breast and ovarian cancer

, 26 August 2020/in E-News /by 3wmedia

Today we know that women carrying BCRA1 and BCRA2 gene mutations have a 43% to 88% risk of developing from breast cancer before the age of 70. Taking critical decisions such as opting for preventive surgery when the risk bracket is so wide is not easy. Spanish National Cancer Research Centre (CNIO) researchers are conducting a study that will contribute towards giving every woman far more precise data about her personal risk of suffering from cancer.
The paper has been authored by 200 researchers from 55 research groups from around the world and describes two new genes that influence the risk of women developing breast and ovarian cancer when they are carriers of BCRA1 and BCRA2 mutations.
According to Ana Osorio, lead author of the study and a researcher in the Human Genetics Group, at CNIO: ‘The aim is to create a test that includes all known genetic variants that affect the risk of developing cancer, and at what age, in order to be able to compile a personalised profile for each patient.’ Osorio and Javier Benitez, the Director of the CNIO’s Human Cancer Genetics Programme, have jointly co-ordinated the work of all the participants in the study.
The finding is part of an international effort by the scientific community to get a more precise understanding of genomic information. Researchers are trying to identify genes associated with cancer as well as the reasons why the same mutated gene affects different people in different ways.
In the specific case of BRCA1 and BRCA2 genes, malfunctions may be caused by thousands of different mutations. However, the effects of these mutations can depend on other DNA variants found in other genes. These DNA variants may be caused by a single change in a chemical component from the 3 billion that make up the human genome. These single changes, known as SNPs (Single-nucleotide polymorphisms), do not inactivate genes and nor are they pathological in and of themselves, but they can play an important role when high-risk mutations already exist.
Understanding the genome to this degree of detail demands a lot of work. The weight of each risk-modulating element is small, so thousands of samples are needed for the effect to show in the data.
To do the work for the study that has been published, the researchers created a consortium called CIMBA (The Consortium of Investigators of Modifiers of BRCA1/2) in 2006, made up of research groups from around the world. CIMBA, with data from more than 40,000 carriers of BRCA1 and BRCA2 mutations, has the largest number of samples from which mutation interactions with SNPs can be studied.
Up to now, CIMBA has managed to associate more than 25 SNPs with the risk of developing breast or ovarian cancer in carriers of BRCA1/2 mutations. The study led by CNIO researchers adds at least two more to the list.
To find them, the study’s authors worked in two phases: they first analysed samples from 1,787 Spanish and Italian carriers of BRCA1/2 mutations, and managed to identify 36 potentially interesting SNPs; they later investigated their importance in a further 23,463 CIMBA samples. They thus discovered 11 SNPs that indicate risk, especially so in the case of two of them. Their influence is small—the largest risk multiplier is just 1.12—which is to say 12% on the base risk.
As Osorio explains: ‘The weight of each of these SNPs is very small, but with the 27 already described, the risk might increase or decrease for a woman who is a carrier of mutations.’
The newly discovered SNPs are in two genes known as NEIL2 and OGG1, and not by chance. The researchers went straight to the place where they found them. This way of working distinguishes this study from others that look for BRCA1/2 risk modulators by brute force: analysing and comparing everything to everything.
What advantages does searching with a compass offer? As well as being a more efficient strategy, it has allowed CNIO researchers to validate a hypothesis on how BRCA1/2 work. They also provide clues that might be useful for treatments already being used.
The hypothesis showed them where to look: in the genes of one of the DNA repair pathways. Cells have several ways to repair DNA, and one of them includes the use of BRCA1 and BRCA2 when they are non-mutated. If BRCA1 and BRCA2 do not fulfil their role because they are defective, another repair pathway takes over; if none of these pathways are functional the —cancerous— cell dies. So researchers hypothesised that there may be SNP risk modulators on this alternative repair route.
The hypothesis was correct. NEIL2 and OGG1, the genes that host the two SNPs that show the highest risk of developing cancer, intervene in the initiation of the alternative repair mechanism to BRCA1/2. ‘They are also basic genes for eliminating toxic waste generated by oxidative stress from cells,’ adds Benítez.
The result could also have interesting clinical implications. One of the drugs used against breast cancer that is associated to BRCA1 and BRCA2 mutations —called PARP inhibitors— acts by deactivating the alternative repair pathway. The authors therefore note in the study that: ‘These discoveries could have implications not only for determining risk but also in terms of treatment for carriers of BRCA1/2 mutations with PARP inhibitors.’ CNIO

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:07International consortium discovers 2 genes that modulate risk of breast and ovarian cancer

Study pinpoints protective mutations for type 2 diabetes

, 26 August 2020/in E-News /by 3wmedia

An international team led by researchers at the Broad Institute and Massachusetts General Hospital (MGH) has identified mutations in a gene that can reduce the risk of developing type 2 diabetes, even in people who have risk factors such as obesity and old age. The results focus the search for developing novel therapeutic strategies for type 2 diabetes; if a drug can be developed that mimics the protective effect of these mutations, it could open up new ways of preventing this devastating disease.
The current study breaks new ground in type 2 diabetes research and guides future therapeutic development in this disease. In the new study, researchers describe the genetic analysis of 150,000 patients showing that rare mutations in a gene called SLC30A8 reduce risk of type 2 diabetes by 65 percent. The results were seen in patients from multiple ethnic groups, suggesting that a drug that mimics the effect of these mutations might have broad utility around the globe. The protein encoded by SLC30A8 had previously been shown to play an important role in the insulin-secreting beta cells of the pancreas, and a common variant in that gene was known to slightly influence the risk of type 2 diabetes. However, it was previously unclear whether inhibiting or activating the protein would be the best strategy for reducing disease risk — and how large an effect could be expected.

‘This work underscores that human genetics is not just a tool for understanding biology: it can also powerfully inform drug discovery by addressing one of the most challenging and important questions — knowing which targets to go after,’ said co-senior author David Altshuler, deputy director and chief academic officer at the Broad Institute and a Harvard Medical School professor at Massachusetts General Hospital.

The use of human genetics to identify protective mutations holds great potential. Mutations in a gene called CCR5 were found to protect against infection with HIV, the virus that causes AIDS; drugs have been developed that block the CCR5 protein. A similar protective association for heart disease set off a race to discover new cholesterol-lowering drugs when mutations in the gene PCSK9 were found to lower cholesterol levels and heart disease risk. The new type 2 diabetes study suggests that CCR5 and PCSK9 are likely just the beginning but that it will take large numbers of samples and careful sleuthing to find additional genes with similar protective properties.

The study grew out of a research partnership that started in 2009 involving the Broad Institute, Massachusetts General Hospital, Pfizer Inc., and Lund University Diabetes Centre in Sweden, which set out to find mutations that reduce a person’s risk of type 2 diabetes. The research team selected people with severe risk factors for diabetes, such as advanced age and obesity, who never developed the disease and in fact had normal blood sugar levels. They focused on a set of genes previously identified as playing a role in type 2 diabetes and used next-generation sequencing to search for rare mutations.

The team identified a genetic mutation that appeared to abolish function of the SLC30A8 gene and that was enriched in non-diabetic individuals studied in Sweden and Finland. The protection was surprising, because studies in mice had suggested that mutations in SLC30A8 might have the opposite effect — increasing rather than decreasing risk of type 2 diabetes. However, because this particular genetic variation was exceedingly rare outside of Finland, it proved difficult to obtain additional evidence to corroborate the initial discovery by the Broad/MGH/Pfizer Inc./Lund team.

Then, in 2012, these unpublished results were shared with deCODE genetics, who uncovered a second mutation in an Icelandic population that also appeared to abolish function of the gene SLC30A8. That mutation independently reduced risk for type 2 diabetes and also lowered blood sugar in non-diabetics without any evident negative consequences.

‘This discovery underscores what can be accomplished when human genetics experts on both sides of the Atlantic come together to apply their craft to founder populations, enabling us to find rare mutations with large effects on disease risk,’ said Kari Stefannson, CEO of deCODE genetics.

Finally, the team set out to ask if the effects of SLC30A8 protective mutations were limited to the two mutations found in populations in Finland and Iceland. As part of the NIH-funded T2D-GENES Project, chaired by Mike Boehnke at the University of Michigan, the Broad Institute had performed sequencing of 13,000 samples drawn from multiple ethnicities. The T2D-GENES Project joined the collaboration, found ten more mutations in the same gene, and again saw a protective effect. Combining all the results confirmed that inheriting one copy of a defective version of SLC30A8 led to a 65 percent reduction in risk of diabetes.

‘Through this partnership, we have been able to identify genetic mutations related to loss of gene function, which are protective against type 2 diabetes,’ said Tim Rolph, Vice President and Chief Scientific Officer of Cardiovascular, Metabolic & Endocrine Disease Research at Pfizer Inc. ‘Such genetic associations provide important new insights into the pathogenesis of diabetes, potentially leading to the discovery of drug targets, which may result in a novel medicine.’ Broad Institute

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:14Study pinpoints protective mutations for type 2 diabetes

Powerful tool for genetic engineering

, 26 August 2020/in E-News /by 3wmedia

Viruses cannot only cause illnesses in humans, they also infect bacteria. Those protect themselves with a kind of ‘immune system’ which – simply put – consists of specific sequences in the genetic material of the bacteria and a suitable enzyme. It detects foreign DNA, which may originate from a virus, cuts it up and thus makes the invaders harmless. Scientists from the Helmholtz Centre for Infection Research (HZI) in Braunschweig have now shown that the dual-RNA guided enzyme Cas9 which is involved in the process has developed independently in various strains of bacteria. This enhances the potential of exploiting the bacterial immune system for genome engineering.
Even though it has only been discovered in recent years the immune system with the cryptic name ‘CRISPR-Cas’ has been attracting attention of geneticists and biotechnologists as it is a promising tool for genetic engineering. CRISPR is short for Clustered Regularly Interspaced Palindromic Repeats, whereas Cas simply stands for the CRISPR-associated protein. Throughout evolution, this molecule has developed independently in numerous strains of bacteria. This is now shown by Prof Emmanuelle Charpentier and her colleagues at the Helmholtz Centre for Infection Research (HZI) who published their finding in the international open access journal Nucleic Acids Research.

The CRISPR-Cas-system is not only valuable for bacteria but also for working in the laboratory. It detects a specific sequence of letters in the genetic code and cuts the DNA at this point. Thus, scientists can either remove or add genes at the interface. By this, for instance, plants can be cultivated which are resistant against vermins or fungi. Existing technologies doing the same thing are often expensive, time consuming or less accurate. In contrast to them the new method is faster, more precise and cheaper, as fewer components are needed and it can target longer gene sequences.

Additionally, this makes the system more flexible, as small changes allow the technology to adapt to different applications. ‘The CRISPR-Cas-system is a very powerful tool for genetic engineering,’ says Emmanuelle Charpentier, who came to the HZI from Umeå and was awarded with the renowned Humboldt Professorship in 2013. ‘We have analysed and compared the enzyme Cas9 and the dual-tracrRNAs-crRNAs that guide this enzyme site-specifically to the DNA in various strains of bacteria.’ Their findings allow them to classify the Cas9 proteins originating from different bacteria into groups. Within those the CRISPR-Cas systems are exchangeable which is not possible between different groups.

This allows for new ways of using the technology in the laboratory: The enzymes can be combined and thereby a variety of changes in the target-DNA can be made at once. Thus, a new therapy for genetic disorders caused by different mutations in the DNA of the patient could be on the horizon. Furthermore, the method could be used to fight the AIDS virus HIV which uses a receptor of the human immune cells to infect them. Using CRISPR-Cas, the gene for the receptor could be removed and the patients could become immune to the virus. However, it is still a long way until this aim will be reached.

Still those examples show the huge potential of the CRISPR-Cas technology. ‘Some of my colleagues already compare it to the PCR,’ says Charpentier. This method, developed in the 1980s, allows scientists to ‘copy’ nucleic acids and therefore to manifold small amounts of DNA to such an extent that they can be analysed biochemically. Without this ground-breaking technology a lot of experiments we consider to be routine would have never been possible. Helmholtz Ceentre for Infection Research

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:22Powerful tool for genetic engineering

Faulty gene can delay or block puberty

, 26 August 2020/in E-News /by 3wmedia

Scientists from Queen Mary University of London have identified a new gene that may influence the timing of puberty, according to new research. More than 4% of adolescents suffer from early or late-onset puberty, which is associated with health problems including obesity, type-2 diabetes, heart disease and cancer. The findings of the study will make diagnosis easier and more efficient, reducing the risk of disease.
Researchers scanned the genomes of seven families experiencing delayed puberty. Their genetic profiles were analysed to identify specific genes that were different in these families, compared to individuals who started puberty normally. The researchers identified 15 candidate genes which were then examined in a further 288 individuals with late-onset puberty.
One gene was found to have common variants in nine families. The gene appears to contribute to the early development of gonadotropin-releasing hormone (GnRH) neurons in the brain. At puberty, a surge of GnRH is released, signalling to the pituitary gland to release further hormones that act on the ovaries and testes, triggering reproductive function (sexual maturation). If development of the GnRH neurons is delayed, the surge of GnRH that initiates these signals is also delayed.
Dr Sasha Howard, lead author and Clinical Research Fellow at Queen Mary University of London, comments: ‘Studies estimate the majority of variation in the timing of puberty is genetically determined, yet this is one of the first genes with major impact to be identified. This is an exciting finding as disturbed GnRH neuron development has never been linked to simple delayed puberty before, and may reveal a new biological pathway in the control of puberty timing.’
The group has also shown that the same gene may be responsible for completely blocking puberty – a condition known as hypogonadotrophic hypogonadism. Queen Mary University of London

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:09Faulty gene can delay or block puberty

Understanding the basic biology of bipolar disorder

, 26 August 2020/in E-News /by 3wmedia

Scientists know there is a strong genetic component to bipolar disorder, but they have had an extremely difficult time identifying the genes that cause it. So, in an effort to better understand the illness’s genetic causes, researchers at UCLA tried a new approach.

Instead of only using a standard clinical interview to determine whether individuals met the criteria for a clinical diagnosis of bipolar disorder, the researchers combined the results from brain imaging, cognitive testing, and an array of temperament and behaviour measures. Using the new method, UCLA investigators — working with collaborators from UC San Francisco, Colombia’s University of Antioquia and the University of Costa Rica — identified about 50 brain and behavioural measures that are both under strong genetic control and associated with bipolar disorder. Their discoveries could be a major step toward identifying the specific genes that contribute to the illness.
A severe mental illness that affects about 1 to 2 percent of the population, bipolar disorder causes unusual shifts in mood and energy, and it interferes with the ability to carry out everyday tasks. Those with the disorder can experience tremendous highs and extreme lows — to the point of not wanting to get out of bed when they’re feeling down. The genetic causes of bipolar disorder are highly complex and likely involve many different genes, said Carrie Bearden, a senior author of the study and an associate professor of psychiatry and psychology at the UCLA Semel Institute for Neuroscience and Human Behavior.

‘The field of psychiatric genetics has long struggled to find an effective approach to begin dissecting the genetic basis of bipolar disorder,’ Bearden said. ‘This is an innovative approach to identifying genetically influenced brain and behavioural measures that are more closely tied to the underlying biology of bipolar disorder than the clinical symptoms alone are.’
‘These findings are really just the first step in getting us a little closer to the roots of bipolar disorder,’ Bearden said. ‘What was really exciting about this project was that we were able to collect the most extensive set of traits associated with bipolar disorder ever assessed within any study sample. These data will be a really valuable resource for the field.’

The individuals assessed in this study are members of large families living in Costa Rica’s central valley and Antioquia, Colombia. The families were founded by European and native Amerindian populations about 400 years ago and have a very high incidence of bipolar disorder. The groups were chosen because they have remained fairly isolated since their founding and their genetics are therefore simpler for scientists to study than those of general populations. UCLA Health System

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:17Understanding the basic biology of bipolar disorder

Simple dot test may help gauge the progression of dopamine loss in Parkinson’s disease

, 26 August 2020/in E-News /by 3wmedia

A pilot study by a multi-disciplinary team of investigators at Georgetown University suggests that a simple dot test could help doctors gauge the extent of dopamine loss in individuals with Parkinson’s disease (PD).

‘It is very difficult now to assess the extent of dopamine loss — a hallmark of Parkinson’s disease — in people with the disease,’ says lead author Katherine R. Gamble, a psychology PhD student working with two Georgetown psychologists, a psychiatrist and a neurologist. ‘Use of this test, called the Triplets Learning Task (TLT), may provide some help for physicians who treat people with Parkinson’s disease, but we still have much work to do to better understand its utility,’ she adds.

Gamble works in the Cognitive Aging Laboratory, led by the study’s senior investigator, Darlene Howard, PhD, Davis Family Distinguished Professor in the department of psychology and member of the Georgetown Center for Brain Plasticity and Recovery.

The TLT tests implicit learning, a type of learning that occurs without awareness or intent, which relies on the caudate nucleus, an area of the brain affected by loss of dopamine.

The test is a sequential learning task that does not require complex motor skills, which tend to decline in people with PD. In the TLT, participants see four open circles, see two red dots appear, and are asked to respond when they see a green dot appear. Unbeknownst to them, the location of the first red dot predicts the location of the green target. Participants learn implicitly where the green target will appear, and they become faster and more accurate in their responses.

Previous studies have shown that the caudate region in the brain underlies implicit learning. In the study, PD participants implicitly learned the dot pattern with training, but a loss of dopamine appears to negatively impact that learning compared to healthy older adults.
‘Their performance began to decline toward the end of training, suggesting that people with Parkinson’s disease lack the neural resources in the caudate, such as dopamine, to complete the learning task,’ says Gamble.

In this study of 27 people with PD, the research team is now testing how implicit learning may differ by different PD stages and drug doses.

‘This work is important in that it may be a non-invasive way to evaluate the level of dopamine deficiency in PD patients, and which may lead to future ways to improve clinical treatment of PD patients,’ explains Steven E. Lo, MD, associate professor of neurology at Georgetown University Medical Center, and a co-author of the study.

They hope the TLT may one day be a tool to help determine levels of dopamine loss in PD. EurekAlert

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:26Simple dot test may help gauge the progression of dopamine loss in Parkinson’s disease

Hereditary trauma

, 26 August 2020/in E-News /by 3wmedia

Extreme and traumatic events can change a person – and often, years later, even affect their children. Researchers of the University of Zurich and ETH Zurich have now unmasked a piece in the puzzle of how the inheritance of traumas may be mediated.
The phenomenon has long been known in psychology: traumatic experiences can induce behavioural disorders that are passed down from one generation to the next. It is only recently that scientists have begun to understand the physiological processes underlying hereditary trauma. ‘There are diseases such as bipolar disorder, that run in families but can’t be traced back to a particular gene’, explains Isabelle Mansuy, professor at ETH Zurich and the University of Zurich. With her research group at the Brain Research Institute of the University of Zurich, she has been studying the molecular processes involved in non-genetic inheritance of behavioural symptoms induced by traumatic experiences in early life.

Mansuy and her team have succeeded in identifying a key component of these processes: short RNA molecules. These RNAs are synthesised from genetic information (DNA) by enzymes that read specific sections of the DNA (genes) and use them as template to produce corresponding RNAs. Other enzymes then trim these RNAs into mature forms. Cells naturally contain a large number of different short RNA molecules called microRNAs. They have regulatory functions, such as controlling how many copies of a particular protein are made.

The researchers studied the number and kind of microRNAs expressed by adult mice exposed to traumatic conditions in early life and compared them with non-traumatised mice. They discovered that traumatic stress alters the amount of several microRNAs in the blood, brain and sperm – while some microRNAs were produced in excess, others were lower than in the corresponding tissues or cells of control animals. These alterations resulted in misregulation of cellular processes normally controlled by these microRNAs.

After traumatic experiences, the mice behaved markedly differently: they partly lost their natural aversion to open spaces and bright light and had depressive-like behaviours. These behavioural symptoms were also transferred to the next generation via sperm, even though the offspring were not exposed to any traumatic stress themselves.

The metabolism of the offspring of stressed mice was also impaired: their insulin and blood-sugar levels were lower than in the offspring of non-traumatised parents. ‘We were able to demonstrate for the first time that traumatic experiences affect metabolism in the long-term and that these changes are hereditary’, says Mansuy. The effects on metabolism and behaviour even persisted in the third generation.

‘With the imbalance in microRNAs in sperm, we have discovered a key factor through which trauma can be passed on,’ explains Mansuy. However, certain questions remain open, such as how the dysregulation in short RNAs comes about. ‘Most likely, it is part of a chain of events that begins with the body producing too much stress hormones.’

Importantly, acquired traits other than those induced by trauma could also be inherited through similar mechanisms, the researcher suspects. ‘The environment leaves traces on the brain, on organs and also on gametes. Through gametes, these traces can be passed to the next generation.’

Mansuy and her team are currently studying the role of short RNAs in trauma inheritance in humans. As they were also able to demonstrate the microRNAs imbalance in the blood of traumatized mice and their offspring, the scientists hope that their results may be useful to develop a blood test for diagnostics. ETH Zurich

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:05Hereditary trauma

Gene family proven to suppress prostate cancer

, 26 August 2020/in E-News /by 3wmedia

Cornell researchers report they have discovered direct genetic evidence that a family of genes, called MicroRNA-34 (miR-34), are bona fide tumour suppressors.
Previous research at Cornell and elsewhere has shown that another gene, called p53, acts to positively regulate miR-34. Mutations of p53 have been implicated in half of all cancers. Interestingly, miR-34 is also frequently silenced by mechanisms other than p53 in many cancers, including those with p53 mutations.
The researchers showed in mice how interplay between genes p53 and miR-34 jointly inhibits another cancer-causing gene called MET. In absence of p53 and miR-34, MET overexpresses a receptor protein and promotes unregulated cell growth and metastasis.
This is the first time this mechanism has been proven in a mouse model, said Alexander Nikitin, a professor of pathology in Cornell’s Department of Biomedical Sciences and the paper’s senior author. Chieh-Yang Cheng, a graduate student in Nikitin’s lab, is the paper’s first author.
In a 2011 Proceedings of the National Academy of Sciences paper, Nikitin and colleagues showed that p53 and miR-34 jointly regulate MET in cell culture but it remained unknown if the same mechanism works in a mouse model of cancer (a special strain of mice used to study human disease).
The findings suggest that drug therapies that target and suppress MET could be especially successful in cancers where both p53 and miR-34 are deficient.
The researchers used mice bred to develop prostate cancer, then inactivated the p53 gene by itself, or miR-34 by itself, or both together, but only in epithelium tissue of the prostate, as global silencing of these genes may have produced misleading results.
When miR-34 genes alone were silenced in the mice, the mice developed cancer free. When p53 was silenced by itself, there were signs of precancerous lesions early in development, but no cancer by 15 months of age. When miR-34 and p53 genes were both silenced together, the researchers observed full prostate cancer in the mice.
The findings revealed that ‘miR-34 can be a tumour-suppressor gene, but it has to work together with p53,’ Nikitin said.
In mice that had both miR-34 and p53 silenced concurrently, cancerous lesions formed in a proximal part of the prostrate ducts, in a compartment known to contain prostate stem cells. The early lesions that developed when p53 was silenced alone occurred in a distal part of the ducts, away from the compartment where the stem cell pool is located. This suggested there was another mechanism involved when p53 and miR-34 were jointly silenced.
Also, the number of stem cells in mice with both p53 and miR-34 silenced increased substantially compared with control mice or mice with only miR-34 or p53 independently silenced.
‘These results indicated that together [miR-34 and p53] regulate the prostate stem cell compartments,’ said Nikitin.
This is significant, as cancer frequently develops when stem cells become unregulated and grow uncontrollably, he said.
Researchers further found that p53 and miR-34 affect stem cell growth by regulating MET expression. In absence of p53 and miR-34, MET is overexpressed, which leads to uncontrolled growth of prostate stem cells and high levels of cancer in these mice.
Future work will further examine the role of p53/miR-34/MET genes in stem cell growth and cancer. The findings have implications for many types of cancer. Cornell University

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:12Gene family proven to suppress prostate cancer
Page 121 of 228«‹119120121122123›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
15 December 2025

WERFEN APPLAUDS SIGNIFICANT PUBLICATION URGING ACTION ON THE RISKS OF UNDETECTED HEMOLYSIS

13 December 2025

Indero validates three-day gene expression method

12 December 2025

Johnson & Johnson acquires Halda Therapeutics for $3.05 billion

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription