Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

Gene family linked to brain evolution is implicated in autism severity

, 26 August 2020/in E-News /by 3wmedia

The same gene family that may have helped the human brain become larger and more complex than in any other animal also is linked to the severity of autism, according to new research from the University of Colorado Anschutz Medical Campus.
The gene family is made up of over 270 copies of a segment of DNA called DUF1220. DUF1220 codes for a protein domain – a specific functionally important segment within a protein. The more copies of a specific DUF1220 subtype a person with autism has, the more severe the symptoms, according to a paper.
This association of increasing copy number (dosage) of a gene-coding segment of DNA with increasing severity of autism is a first and suggests a focus for future research into the condition Autism Spectrum Disorder (ASD). ASD is a common behaviourally defined condition whose symptoms can vary widely – that is why the word ‘spectrum’ is part of the name. One federal study showed that ASD affects one in 88 children.
‘Previously, we linked increasing DUF1220 dosage with the evolutionary expansion of the human brain,’ says James Sikela, PhD, a professor in the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine. Sikela led the autism study which also involved other members of his laboratory.

‘One of the most well-established characteristics of autism is an abnormally rapid brain growth that occurs over the first few years of life. That feature fits very well with our previous work linking more copies of DUF1220 with increasing brain size. This suggests that more copies of DUF1220 may be helpful in certain situations but harmful in others.’

The research team found that not only was DUF1220 linked to severity of autism overall, they found that as DUF1220 copy number increased, the severity of each of three main symptoms of the disorder — social deficits, communicative impairments and repetitive behaviours – became progressively worse.
In 2012, Sikela was the lead scientist of a multi-university team whose research established the link between DUF1220 and the rapid evolutionary expansion of the human brain. The work also implicated DUF1220 copy number in brain size both in normal populations as well as in microcephaly and macrocephaly (diseases involving brain size abnormalities).

Jack Davis, PhD, who contributed to the project while a postdoctoral fellow in the Sikela lab, has a son with autism and thus had a very personal motivation to seek out the genetic factors that cause autism.

The research by Sikela, Davis and colleagues at the Anschutz campus in Aurora, Colo., focused on the presence of DUF1220 in 170 people with autism.
Strikingly, Davis says, DUF1220 is as common in people who do not have ASD as in people who do. So the link with severity is only in people who have the disorder.

‘Something else is at work here, a contributing factor that is needed for ASD to manifest itself,’ Davis says. ‘We were only able to look at one of the six different subtypes of DUF1220 in this study, so we are eager to look at whether the other subtypes are playing a role in ASD.’
Because of the high number of copies of DUF1220 in the human genome, the domain has been difficult to measure. As Sikela says, ‘To our knowledge DUF1220 copy number has not been directly examined in previous studies of the genetics of autism and other complex human diseases .So the linking of DUF1220 with ASD is also confirmation that there are key parts of the human genome that are still unexamined but are important to human disease.’ University of Colorado Denver

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:06Gene family linked to brain evolution is implicated in autism severity

Google Glass app for instant medical diagnostic test results

, 26 August 2020/in E-News /by 3wmedia

A team of researchers from UCLA’s Henry Samueli School of Engineering and Applied Science has developed a Google Glass application and a server platform that allow users of the wearable, glasses-like computer to perform instant, wireless diagnostic testing for a variety of diseases and health conditions.
With the new UCLA technology, Google Glass wearers can use the device’s hands-free camera to capture pictures of rapid diagnostic tests (RTDs), small strips on which blood or fluid samples are placed and which change colour to indicate the presence of HIV, malaria, prostate cancer or other conditions. Without relying on any additional devices, users can upload these images to a UCLA-designed server platform and receive accurate analyses — far more detailed than with the human eye — in as little as eight seconds.
The new technology could enhance the tracking of dangerous diseases and improve public health monitoring and rapid responses in disaster-relief areas or quarantine zones where conventional medical tools are not available or feasible, the researchers said.
‘This breakthrough technology takes advantage of gains in both immunochromatographic rapid diagnostic tests and wearable computers,’ said principal investigator Aydogan Ozcan, the Chancellor’s Professor of Electrical Engineering and Bioengineering at UCLA and associate director of UCLA’s California NanoSystems Institute. ‘This smart app allows for real-time tracking of health conditions and could be quite valuable in epidemiology, mobile health and telemedicine.’
In addition to designing the custom RDT–reader app for Google Glass, Ozcan’s team implemented server processes for fast and high-throughput evaluation of test results coming from multiple devices simultaneously. Finally, the researchers developed a web portal where users can view test results, maps charting the geographical spread of various diseases and conditions, and the cumulative data from all the tests they have submitted over time.
To submit images for test results, Google Glass users only need to take photos of RTD strips or other commonly available in-home tests, then upload the images wirelessly through the device to the UCLA-designed web portal. The technology permits quantified reading of the results to a few-parts-per-billion level of sensitivity — far greater than that of the naked eye — thus eliminating the potential for human error in interpreting results, which is a particular concern if the user is a health care worker who routinely deals with many different types of tests.
To gauge the accuracy and efficiency of the technology, the UCLA team used an in-home HIV test designed by OraSure Technologies and a prostate-specific antigen test made by JAJ International. The researchers took images of tests under normal, indoor, fluorescent-lit room conditions. They submitted more than 400 images of the two tests, and the RDT reader and server platform were able to read the images 99.6 percent of the time. In every case in which the technology successfully read the images, it returned accurate and quantified test results, according to the team.
The researchers also tested more than 300 blurry images or images of the testing device taken under various natural-usage scenarios and achieved a read rate of 96.6 percent. The UCLA Henry Samueli School of Engineering and Applied Science

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:13Google Glass app for instant medical diagnostic test results

Are you carrying adrenal Cushing’s syndrome without knowing it?

, 26 August 2020/in E-News /by 3wmedia

In light of new research, Dr André Lacroix suggests genetic screening to find ‘silent carriers’.
Genetic research suggests to Dr. André Lacroix, professor at the University of Montreal, that clinicians’ understanding and treatment of a form of Cushing’s syndrome affecting both adrenal glands will be fundamentally changed, and that moreover, it might be appropriate to begin screening for the genetic mutations that cause this form of the disease. ‘Screening family members of bilateral adrenal Cushing’s syndrome patients with genetic mutations may identify affected silent carriers,’ Lacroix said ‘The development of drugs that interrupt the defective genetic chemical link that causes the syndrome could, if confirmed to be effective in people, provide individualised specific therapies for hypercortisolism, eliminate the current practice of removing both adrenal glands, and possibly prevent disease progression in genetically affected family members.’ Adrenal glands sit above the kidneys are mainly responsible for releasing cortisol, a stress hormone. Hypercortiolism means a high level of the adrenal hormone cortisol, which causes many symptoms including weight gain, high blood pressure, diabetes, osteoporosis, concentration deficit and increased cardiovascular deaths.

Cushing’s syndrome can be caused by corticosteroid use (such as for asthma or arthritis), a tumour on the adrenal glands, or a pituitary gland that releases too much ACTH. The pituitary gland sits under the brain and releases various hormones that regulate our bodies’ mechanisms.

Jérôme Bertherat is a researcher at Cochin Hospital in Paris. In the study he showed that 55% of Cushing’s Syndrome patients with bilaterally very enlarged adrenal glands have mutations in a gene that predisposes to the development of adrenal tumours. This means that bilateral adrenal Cushing’s is much more hereditary than previously thought. The new knowledge will also enable clinicians to undertake genetic screening. Hervé Lefebvre is a researcher at the University Hospital in Rouen, France. His research shows that the adrenal glands from the same type of patients with two large adrenal glands can produce ACTH, which is normally produced by the pituitary gland. Hormone receptors are the chemical link that cause a cell to behave differently when a hormone is present. Several misplaced hormone receptors cause the ACTH to be produced in the enlarged benign adrenal tissue. Knowing this means that researchers might be able to develop drugs that interrupt the receptors for these hormones and possibly even prevent the benign tissue from developing in the first place. Université de Montréal.

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:21Are you carrying adrenal Cushing’s syndrome without knowing it?

Genetic-based testing and treatment for breast cancer

, 26 August 2020/in E-News /by 3wmedia

Dartmouth researchers at its Norris Cotton Cancer Center have compiled a review of the role that information gathered through genetic testing plays in the diagnosis and treatment of breast cancer.

Genomic testing is changing the way breast cancer is diagnosed and treated. By examining a woman’s genes to look for specific mutations or biomarkers, treatment can be personalised to the tumour cell’s biology and a woman’s genetics.

‘A personalised approach increases the precision and success of breast cancer treatment,’ said Gregory Tsongalis, PhD, director of Molecular Pathology at Norris Cotton Cancer Center and lead author of the paper. ‘Molecular profiling exposes a tumour’s Achilles’ heel. We can see what messages the tumour cells are receiving and sending. It is a biological intelligence gathering mission in an attempt to interrupt the disease.

According to Tsongalis large scale genetic testing of breast cancer is not yet part of routine clinical care as it is with lung and colon cancers, even though he and his team run a genetics laboratory for routine cancer care. Genetic testing according to Tsongalis is a powerful weapon in the diagnosis and treatment of breast cancer.

With results from the genetic testing of a tumour cell’s biology, clinicians categorise breast cancer in ways that allow them to select the most effective treatments. Based on genetic biomarkers, there are three categories of breast cancer:
1. ER-positive breast cancer needs hormones, such as oestrogen to grow. Oestrogen fuels cancer cell growth, stops cancer cells from dying, and helps the cells lay down roots to maintain blood supply for tumours. ER-positive cancers are less aggressive and often treated with drugs that are selective estrogen receptor modulators (SERM).
2. HER2 –positive breast cancer cells contain large amounts of protein that help them grow and multiply. Medications turn off the production of protein to stop tumour growth and kill cancer cells.
3. Triple negative (ER-negative/PR-negative/HER2-negative) breast cancer is the most aggressive type and has the poorest clinical outcome. There is no approved personalised therapy for triple negative, but research has identified six subtypes of tumours. This is the first step in identifying biomarkers that can lead to the development of personalised treatments.

‘Genomic testing of breast cancer has expanded our understanding of the disease process and has proven more effective than traditional laboratory tests,’ said Tsongalis. ‘At NCCC all of our breast cancer patients are tested for abnormal copies of the HER2 gene using specially designed DNA probes. New biomarkers and the reclassification of cancers based on these biomarkers has led to the development of new, effective treatments that can be personalised to an individual breast cancer patient.’ Norris Cotton Cancer Center

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:09Genetic-based testing and treatment for breast cancer

Discovery: pre-leukemic stem cell at root of AML, relapse

, 26 August 2020/in E-News /by 3wmedia

Cancer researchers led by stem cell scientist Dr. John Dick have discovered a pre-leukemic stem cell that may be the first step in initiating disease and also the culprit that evades therapy and triggers relapse in patients with acute myeloid leukaemia (AML).
The research​ is a significant leap in understanding the steps that a normal cell has to go through as it turns into AML, says Dr. Dick, and sets the stage to advance personalised cancer medicine by potentially identifying individuals who might benefit from targeting the pre-leukemic stem cell. AML is an aggressive blood cancer that the new research shows starts in stem cells in the bone marrow. Dr. Dick, a Senior Scientist at Princess Margaret Cancer Centre, University Health Network (UHN), and Professor in the Department of Molecular Genetics, University of Toronto, pioneered the cancer stem cell field by first identifying leukaemia stem cells (1994) and colon cancer stem cells (2007).
‘Our discovery lays the groundwork to detect and target the pre-leukemic stem cell and thereby potentially stop the disease at a very early stage when it may be more amenable to treatment,’ says Dr. Dick, who holds a Canada Research Chair in Stem Cell Biology and is also Director of the Cancer Stem Cell Program at the Ontario Institute for Cancer Research (OICR).
‘Now we have a potential tool for earlier diagnosis that may allow early intervention before the development of full AML. We can also monitor remission and initiate therapy to target the pre-leukemic stem cell to prevent relapse,’ he says.
The findings show that in about 25% of AML patients, a mutation in the gene DNMT3a causes pre-leukemic stem cells to develop that function like normal blood stem cells but grow abnormally. These cells survive chemotherapy and can be found in the bone marrow at remission, forming a reservoir of cells that may eventually acquire additional mutations, leading to relapse.
The discovery of pre-leukemic stem cells came out of a large Leukemia Disease Team that Dr. Dick assembled and included oncologists who collected samples for the Princess Margaret Cancer Centre Biobank and genome scientists at the OICR who developed sophisticated targeted sequencing methodology. With this team, it was possible to carry out genomic analysis of more than 100 leukaemia genes on many patient samples. The findings also capitalised on data from more than six years of experiments in Dr. Dick’s lab involving growing human AML in special mice that do not reject human cells.
‘By peering into the black box of how cancer develops during the months and years prior to when it is first diagnosed, we have demonstrated a unique finding. People tend to think relapse after remission means chemotherapy didn’t kill all the cancer cells. Our study suggests that in some cases the chemotherapy does, in fact, eradicate AML; what it does not touch are the pre-leukemic stem cells that can trigger another round of AML development and ultimately disease relapse,’ says Dr. Dick, who anticipates the findings will spawn accelerated drug development to specifically target DNMT3a.
These findings should also provide impetus for researchers to look for pre-cancerous cells in AML patients with other mutations and even in non-blood cancers. Princess Margaret Cancer Centre, University Health Network

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:16Discovery: pre-leukemic stem cell at root of AML, relapse

Nanoparticles to probe mystery sperm defects behind infertility

, 26 August 2020/in E-News /by 3wmedia

A way of using nanoparticles to investigate the mechanisms underlying ‘mystery’ cases of infertility has been developed by scientists at Oxford University.
The technique `could eventually help researchers to discover the causes behind cases of unexplained infertility and develop treatments for affected couples. The method involves loading porous silica nanoparticle ‘envelopes’ with compounds to identify, diagnose or treat the causes of infertility.
The researchers demonstrated that the nanoparticles could be attached to boar sperm with no detrimental effects on their function.
‘An attractive feature of nanoparticles is that they are like an empty envelope that can be loaded with a variety of compounds and inserted into cells,’ says Dr Natalia Barkalina, lead author of the study from the Nuffield Department of Obstetrics and Gynaecology at Oxford University. ‘The nanoparticles we use don’t appear to interfere with the sperm, making them a perfect delivery vessel.’
Dr Barkalina added: ‘We will start with compounds to investigate the biology of infertility, and within a few years may be able to explain or even diagnose rare cases in patients. In future we could even deliver treatments in a similar way.’
Sperm are difficult to study owing to their small size, unusual shape and short lifetime outside of the body. Yet this is a vital part of infertility research, as senior author Dr Kevin Coward explains: ‘To discover the causes of infertility, we need to investigate sperm to see where the problems start. Previous methods involved complicated procedures in animals and introduced months of delays before the sperm could be used.
‘Now, we can simply expose sperm to nanoparticles in a petri dish. It’s so simple that it can all be done quickly enough for the sperm to survive perfectly unharmed.’
The team, based at the Institute of Reproductive Sciences, used boar sperm because of its similarities to human sperm, as study co-author Celine Jones explains: ‘It is similar in size, shape and activity. Now that we have proved the system in boar sperm, we hope to replicate our findings in human sperm and eventually see if we can use them to deliver compounds to eggs as well.’ Oxford University

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:25Nanoparticles to probe mystery sperm defects behind infertility

Gene variant raises risk for aortic tear and rupture

, 26 August 2020/in E-News /by 3wmedia

Researchers from Yale School of Medicine and Celera Diagnostics have confirmed and extended the significance of a genetic variant that substantially increases the risk of a frequently fatal thoracic aortic dissection or full rupture.
Thoracic aortic aneurysms, or bulges in the artery wall, can develop without pain or other symptoms. If they lead to a tear — dissection — or full rupture, the patient will often die without immediate treatment. Therefore, better identification of patients at risk for aortic aneurysm and dissection is considered essential.
The research team, following up on a previous genome-wide association study by researchers at Baylor College of Medicine, investigated genetic variations in a protein called FBN-1, which is essential for a strong arterial wall. After studying hundreds of patients at Yale, they confirmed what was found in the Baylor study: that one variation, known as rs2118181, put patients at significantly increased risk of aortic tear and rupture. In addition, the Yale team was able to show that this increased risk of tear was powerful enough to be significant even independently of aortic size.
‘Although surgical therapy is remarkable and effective, it is incumbent on us to move to a higher genetic level of understanding of these diseases,’ said senior author Dr. John Elefteriades, the William W. L. Glenn Professor of Surgery (Section of Cardiac Surgery) at Yale School of Medicine, and director of the Aortic Institute at Yale-New Haven Hospital. ‘Such studies represent important steps along that path.’
The researchers hope their confirmation of the earlier study may help lead to better clinical care of patients who may be at high risk of this fatal condition. ‘Patients with this mutation may merit earlier surgical therapy, before aortic dissection has a chance to occur,’ Elefteriades says. Yale cardiothoracic surgeons will now begin assessing this gene in clinical patients with aneurysm disease. Yale University

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:04Gene variant raises risk for aortic tear and rupture

Study shows blocking microRNA miR-25 halts progression of heart failure, improves cardiac function, and may increase survival.

, 26 August 2020/in E-News /by 3wmedia

A team of cardiovascular researchers from the Cardiovascular Research Center at Icahn School of Medicine at Mount Sinai, Sanford-Burnham Medical Research Institute, and University of California, San Diego have identified a small, but powerful, new player in the onset and progression of heart failure. Their findings also show how they successfully blocked the newly discovered culprit to halt the debilitating and chronic life-threatening condition in its tracks.
In the study, investigators identified a tiny piece of RNA called miR-25 that blocks a gene known as SERCA2a, which regulates the flow of calcium within heart muscle cells. Decreased SERCA2a activity is one of the main causes of poor contraction of the heart and enlargement of heart muscle cells leading to heart failure. Using a functional screening system developed by researchers at Sanford-Burnham, the research team discovered miR-25 acts pathologically in patients suffering from heart failure, delaying proper calcium uptake in heart muscle cells.
‘Before the availability of high-throughput functional screening, our chance of teasing apart complex biological processes involved in disease progression like heart failure was like finding a needle in a haystack,’ says study co-senior author Mark Mercola, PhD, professor in the Development, Aging, and Regeneration Program at Sanford-Burnham and professor of Bioengineering at UC San Diego Jacobs School of Engineering. ‘The results of this study validate our approach to identifying microRNAs as potential therapeutic targets with significant clinical value.’
Dr. Mercola’s laboratory has pioneered the use of robotic high-throughput methods of drug discovery to identify new targets for heart failure. According to co-lead study authors Christine Wahlquist and Agustin Rojas Muñoz, PhD, developers of the approach and researchers in Mercola’s lab at Sanford-Burnham, they used high-throughput robotics to sift through the entire genome for microRNAs involved in heart muscle dysfunction.
Subsequently, the researchers at the Cardiovascular Research Center at Icahn School of Medicine at Mount Sinai found that injecting a small piece of RNA to inhibit the effects of miR-25 dramatically halted heart failure progression in mice. In addition, it also improved their cardiac function and survival.
‘In this study, we have not only identified one of the key cellular processes leading to heart failure, but have also demonstrated the therapeutic potential of blocking this process,’ says co-lead study author Dongtak Jeong, PhD, a post-doctoral fellow at the Cardiovascular Research Center at Icahn School of Medicine at Mount Sinai in the laboratory of the study’s co-senior author Roger J. Hajjar, MD.
Nearly 6 million Americans suffer from heart failure, which is when the heart becomes weak and cannot pump enough blood and oxygen throughout the body. Heart failure is a leading cause of hospitalisation in the elderly. Often, a variety of medications are used to provide heart failure patients temporary relief of their debilitating symptoms. However, these medications do not improve cardiac function or halt the progression of the disease. Mount Sinai Health System

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:11Study shows blocking microRNA miR-25 halts progression of heart failure, improves cardiac function, and may increase survival.

Families don’t understand genetic test results or their implications

, 26 August 2020/in E-News /by 3wmedia

A study done by researchers at Fox Chase Cancer Center shows that many relatives of patients who undergo testing for a gene linked to breast and ovarian cancers misinterpret the results, and less than half of those who could benefit from genetic testing say they plan to get tested themselves—despite the fact that knowing your genetic status may help catch the disease in its earliest stages.
‘People don’t always understand genetic information, so there’s confusion,’ says study author Mary B. Daly, MD, PhD, chair of the Department of Clinical Genetics at Fox Chase. ‘Family members are either not understanding what they’re hearing, not realising it has implications for them, or they’re not hearing it at all.’
For a long time, Daly says she ‘naively’ assumed that, once one family member knew whether or not they carried genes linked to breast and ovarian cancers—known as BRCA1/2—their entire family would understand the result, and what it meant for their own genetic risk. ‘Over time, we realised that wasn’t happening, or it wasn’t happening very well.’
Some genetic information is straightforward, says Daly. For example, when a woman learns she carries BRCA1/2 that means her parents, siblings and children may also carry the gene. But there are more ‘indeterminate’ results, which are harder to interpret, she adds. If a woman with a strong family history of breast and ovarian cancers tests negative for the BRCA1/2 genes, that does not mean her relatives are not at risk, says Daly—her siblings could still carry the gene, or there could be additional genes present that predispose them to cancer that clinicians don’t yet know how to test for.
‘When you look at some of these families who are so full of breast and ovarian cancer, and the person tests negative, you think there’s got to be something going on here. We just can’t find it. That’s a difficult thing for someone to explain to a relative,’ says Daly.
To understand better what was (and was not) being communicated after people underwent genetic testing, Daly and her team called 438 relatives of 253 people who had undergone genetic testing and said they’d shared their results. More than one-quarter of family members reported the test result incorrectly. They were most likely to understand positive results—like their family member carries the BRCA1/2 gene. But only 60% understood the so-called ‘indeterminate’ results, where their relative tested negative for the gene but they and other family members could still be at risk. Nearly one-third said they had trouble understanding the result.
Concerningly, only half (52%) of family members whose relative tested positive for the BRCA1/2 gene said they planned to get tested themselves. Among those whose relative tested negative for the BRCA1/2 gene, but knew the gene was present in their families (meaning they could still carry the gene), only 36% said they were going to find out their own genetic risk. ‘These findings imply the family members did not fully understand the significance of these results for their own risk,’ says Daly.
People were more likely to share their results with adult children than parents or siblings, and particularly with female relatives. ‘Over and over you hear people say ‘I’m doing this for my children’s sake,” says Daly.
As part of the study, Daly and her colleagues had asked half of the people getting tested to participate in two coaching sessions to help them communicate their results to relatives, such as through role playing. However, these people were no more likely to communicate the result of their tests than people who had simply sat through educational sessions about overall health. ‘It didn’t matter which group they were in, unfortunately,’ says Daly. ‘That disappointed me.’
But it also inspired her to develop the next project—exploring the effect of directly reaching out to the relatives of someone who underwent genetic testing (with that person’s permission), to see if hearing the results from an expert who’s not personally involved in the situation helps family members understand what they mean. Fox Chase Cancer Center

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:18Families don’t understand genetic test results or their implications

Thermo Fisher Scientific and the Technical University of Denmark form systems biology collaboration

, 26 August 2020/in E-News /by 3wmedia

Thermo Fisher Scientific and the Department of Systems Biology at the Technical University of Denmark (DTU) have formed a collaboration to pursue breakthroughs in the understanding of how cellular protein networks drive important diseases. Under the collaboration, Thermo Fisher will provide early access to new technology and designs, and DTU proteomics scientists will provide feedback and collaborate on new applications. The centerpiece of this collaboration is a new proteomics laboratory in Lyngby, Denmark equipped with the latest liquid chromatography- mass spectrometry (LC-MS) technology. This includes the unique Thermo Scientific Orbitrap Fusion Tribrid LC-MS system that offers unprecedented depth of analysis of biological samples. ‘Studying the dynamic rewiring of cellular signaling networks requires state-of-the-art mass spectrometry,” said DTU professor Rune Linding. “The Orbitrap Fusion system enables us to push the boundaries and analyse completely new avenues of cellular decision processes, and perform genome-scale studies of how the dynamics in these networks affect cell behaviour. This is crucial, as it is now clear that the progression of complex diseases such as cancer is due to changes in these molecular networks. We were extremely excited to see, only a few days aft er installation, the Orbitrap Fusion system generate the best MS/MS data we have ever seen for the characterization of phosphorylation sites on critical tumour samples.” DTU is establishing the state-of-the-art laboratory to develop new experiments to dig deeper into the core machinery of the cell.

www.dtu.dk/english www.thermofisher.com
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:28Thermo Fisher Scientific and the Technical University of Denmark form systems biology collaboration
Page 121 of 229«‹119120121122123›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

January 2026

CLi Cover JAN 2026
15 January 2026

SHIMADZU – Excellence in Science

15 January 2026

Hematology – Oncology Pharmacy Summit

15 January 2026

Total bile acids 21 FS

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription