Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

New disease gene discovery sheds light on cause of bone marrow failure

, 26 August 2020/in E-News /by 3wmedia

New research from Queen Mary University of London has identified a novel genetic defect among patients with bone marrow failure, which could reveal its underlying cause.
The study detected and identified a new disease gene (ERCC6L2). In its normal form, the gene plays a key role in protecting DNA from damaging agents, but when the gene is mutated the cell is not able to protect itself in the normal way.
The research findings suggest that the gene defect and the subsequent DNA damage was the underlying cause of bone marrow failure among the study participants.
Bone marrow failure is a term used for a group of life threatening disorders associated with an inability of the bone marrow to make an adequate number of mature blood cells.
Patients were recruited from all over the world to join an international bone marrow failure registry and researchers used new DNA sequencing technologies to study cases of bone marrow failure with similar clinical features. These included bone marrow failure associated with neurological abnormalities (learning defects and developmental delay), and patients whose parents were first cousins.
The findings mean it is now possible to carry out a reliable genetic test (including antenatal testing) in these families and get an accurate diagnosis. In the long term, with further research, the findings could lead to the development of new treatment for this specific gene defect.
Professor Inderjeet Dokal, Chair of Paediatrics and Child Health at Queen Mary University of London, comments: ‘New DNA sequencing technology has enabled us to identify and define a new gene defect which causes a particular type of bone marrow failure. This is a promising finding which we hope one day could lead to finding an effective treatment for this type of gene defect. Clinicians treating patients with bone marrow failure should now include analysis for this gene in their investigation.
‘Now we know this research technique works, we plan to carry out further studies to shed more light on the genetic basis of many other cases of bone marrow failure.’ Queen Mary University

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:17New disease gene discovery sheds light on cause of bone marrow failure

Genetic variation increases risk of kidney disease progression in African Americans

, 26 August 2020/in E-News /by 3wmedia

New research provides direct evidence that genetic variations in some African Americans with chronic kidney disease contribute to a more rapid decline in kidney function compared with white Americans. The research, led by investigators from the University of Maryland School of Medicine and Johns Hopkins University, may help explain, in part, why even after accounting for differences in socio-economic background, end-stage kidney disease is twice as prevalent among blacks as whites.
‘What we found is pretty remarkable — that variations in a single gene account for a large part of the racial disparity in kidney disease progression and risk for end-stage kidney disease,’ says co-lead author and nephrologist Afshin Parsa, M.D., M.P.H., assistant professor of medicine and member of the Program in Personalized and Genomic Medicine at the University of Maryland School of Medicine. ‘If it were possible to reduce the effect of this gene, there could be a very meaningful decrease in progressive kidney and end-stage kidney disease within blacks.’
Previous landmark discoveries revealed that two common variants within a gene called apolipoprotein L1 (APOL1) were strongly associated with non-diabetic end-stage renal disease in blacks. Having only one copy of the variant APOL1 gene variant is associated with a health benefit – protection against African sleeping sickness, a potentially lethal parasitic infection transmitted by the tsetse fly, found only in sub-Saharan Africa. However, people with two copies of the variant are at a higher risk for kidney disease.
The current research expands on these prior findings and demonstrates the effect of these variants on the progression of established kidney disease and development of end-stage renal disease; analyses their role in black-versus-white renal disease disparities; investigates their effect in patients with diabetes and observes the impact of blood pressure control on APOL1-associated disease progression.
According to Dr. Parsa, approximately 13 percent of the African American population has two copies of the risk variants. Fortunately, most of those at risk do not develop kidney disease. The researchers analysed the role of APOL1 gene variants in two longitudinal studies of patients with kidney disease: the Chronic Renal Insufficiency Cohort (CRIC) and the African American Study of Kidney Disease and Hypertension (AASK), both sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), part of the National Institutes of Health (NIH). Dr. Parsa examined the CRIC study data, while co-lead author and Johns Hopkins epidemiologist W.H. Linda Kao, Ph.D., M.H.S., analysed the AASK data. University of Maryland Medical Center

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:26Genetic variation increases risk of kidney disease progression in African Americans

Newly discovered gene regulator could precisely target sickle cell disease

, 26 August 2020/in E-News /by 3wmedia

A research team from Dana-Farber/Boston Children’s Cancer and Blood Disorders Center and other institutions has discovered a new genetic target for potential therapy of sickle cell disease (SCD). The target, called an enhancer, controls a molecular switch in red blood cells called BCL11A that, in turn, regulates haemoglobin production.
The researchers were led by Daniel Bauer, MD, PhD, and Stuart Orkin, MD, of Dana-Farber/Boston Children’s.
Prior work by Orkin and others has shown that when flipped off, BCL11A causes red blood cells to produce foetal haemoglobin that, in SCD patients, is unaffected by the sickle cell mutation and counteracts the deleterious effects of sickle haemoglobin. BCL11A is thus an attractive target for treating SCD.
The disease affects roughly 90,000 to 100,000 people in the United States and millions worldwide.

However, BCL11A plays important roles in other cell types, including the immune system’s antibody-producing B cells, which raises concerns that targeting it directly in sickle cell patients could have unwanted consequences.
The discovery of this enhancer—which regulates BCL11A only in red blood cells—opens the door to targeting BCL11A in a more precise manner. Approaches that disable the enhancer would have the same end result of turning on foetal haemoglobin in red blood cells due to loss of BCL11A, but without off-target effects in other cell types.

The findings were spurred by the observation that some patients with SCD spontaneously produce higher levels of foetal haemoglobin and enjoy an improved prognosis. The researchers found that these individuals possess naturally occurring beneficial mutations that function to weaken the enhancer, turning BCL11A’s activity down and allowing red blood cells to manufacture some foetal haemoglobin.

‘This finding gives us a very specific target for sickle cell disease therapies,’ said Orkin, a leader of Dana-Farber/Boston Children’s who serves as chairman of pediatric oncology at Dana-Farber Cancer Institute and associate chief of hematology/oncology at Boston Children’s Hospital. ‘Coupled with recent advances in technologies for gene engineering in intact cells, it could lead to powerful ways of manipulating haemoglobin production and new treatment options for haemoglobin diseases.’ Boston Children’s Hospital

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:05Newly discovered gene regulator could precisely target sickle cell disease

Common mutation is culprit in acute leukaemia relapse

, 26 August 2020/in E-News /by 3wmedia

Harvard stem cell scientists have identified a mutation in human cases of acute lymphoblastic leukaemia that likely drives relapse. The research could translate into improved patient care strategies for this particular blood cancer, which typically affects children but is more deadly in adults.

In recent years, a trend toward single-cell analysis has shown that individual cells within a tumour are capable of amassing mutations to make them more aggressive and treatment resistant. So while 99% of a tumour may be destroyed by the initial treatment, a particularly aggressive cell can survive and then cause a cancer patient with the ‘all clear’ to relapse six months later.

Harvard Stem Cell Institute Principal Faculty member David Langenau, PhD, and his lab members in the Department of Pathology at Massachusetts General Hospital used zebrafish to search for these rare, relapse-driving leukaemia cells and then designed therapies that could kill these cells.

The researchers found that at least half of relapse-driving leukemic cells had a mutation that activated the Akt pathway, which rendered cells resistant to common chemotherapy and increased growth. From that insight, Langenau’s lab next examined human acute lymphoblastic leukaemia and discovered that inhibition of the Akt pathway restored leukemic cell responses to front-line chemotherapy.

‘The Akt pathway appears to be a major driver of treatment resistance,’ Langenau said. ‘We also show that this same pathway increases overall growth of leukemic cells and increases the fraction of cells capable of driving relapse.’

Jessica Blackburn, PhD, the study’s first author adds, ‘Our work will likely help in identifying patients that are prone to relapse and would benefit from co-treatment with inhibitors of the Akt pathway and typical front-line cancer therapy.’

In addition to determining how best to translate this finding into the clinic, Langenau hopes to identify other mutations that lead to relapse. The work should identify a host of other potential drug targets for patients with aggressive leukaemia. Harvard Stem Cell Institute

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:12Common mutation is culprit in acute leukaemia relapse

Research may help scientists understand what causes pregnancy complications

, 26 August 2020/in E-News /by 3wmedia

Dr. Hanna Mikkola and researchers at UCLA’s Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have identified a specific type of cell and a related cell communication pathway that are key to the successful growth of a healthy placenta. The findings could greatly bolster our knowledge about the potential causes of complications during pregnancy.
Specifically, the findings could help scientists clarify the particular order in which progenitor cells grow in the placenta, which would allow researchers to track foetal development and identify complications. Progenitor cells are cells that develop into other cells and that initiate growth of the placenta.
The placenta is the organ that forms inside the uterus during pregnancy and enables oxygen and nutrients to reach the foetus, but little is understood about the biological mechanisms and cellular processes responsible for this interface. Studying mouse models, Mikkola and her colleagues tracked individual cells in the placenta to determine which cells and which cell communication routes, or signalling pathways, were responsible for the healthy development of the placenta.
The UCLA team was the first to identify the cells that form the placenta: Epcamhi labyrinth trophoblast progenitors, or LaTP cells, can become the various cells necessary to form a specific tissue, in this case the placenta.
Mikkola and her colleagues also found a signalling pathway that consists of hepatocyte growth factor and its receptor, c-Met. The researchers found that this signalling pathway was required for the placenta to keep making LaTP cells. Production of LaTP cells, in turn, continues the production of the different cells needed to maintain the growth and health of the placenta while the foetus is growing. Placental health enables healthy transmission of oxygen and nutrients through the exchange of blood between the foetus and the mother. In the mice, when c-Met signalling stopped, foetal growth slowed, the liver did not develop fully and it produced fewer blood cells, and the foetus died.
‘Identifying this novel c-Met–dependent multipotent labyrinth trophoblast progenitor is a landmark that may help us understand pregnancy complications that are caused by defective placental exchange, such as foetal growth restriction,’ Mikkola said. University of California – Los Angeles

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:19Research may help scientists understand what causes pregnancy complications

A key regulator of colon cancer

, 26 August 2020/in E-News /by 3wmedia

The team headed by Angel Rodríguez Nebreda, ICREA researcher at IRB, identifies for the first time in mice that the p38 MAPK protein is required for the survival and proliferation of colon cancer cells.

In the same study the scientists demonstrate that a p38 inhibitor that has been used in clinical trials for inflammatory diseases shrinks the tumours in mice.
A team headed by Angel R. Nebreda at the Institute for Research in Biomedicine (IRB) identifies a dual role of the p38 MAPK protein in colon cancer. The study demonstrates that, on the one hand, p38 is important for the optimal maintenance of the epithelial barrier that protects the intestine against toxic agents, thus contributing to decreased tumour development. Intriguingly, on the other hand, once a tumour has formed, p38 is required for the survival and proliferation of colon cancer cells, thus favouring tumour growth.

The protein p38 is a member of the MAPK family—molecules that transmit signals from outside the cell inside, thus allowing an appropriate and dynamic cell response. This protein is expressed in all cells of the body and it performs highly diverse functions depending on the context and tissue involved.

Nebreda’s group at IRB focuses on the function of p38 in cancer. Their work describes the essential role of p38 in tumour progression for the first time in vivo. Furthermore, the scientists demonstrate that the treatment of mice with a p38 inhibitor previously used in clinical assays causes a considerable reduction in tumour size. The study provides useful information for clinicians and pharmaceutical companies about the role of p38 in the context of colon cancer. Colorectal cancer is now the second leading cause of cancer-related death in the world.

‘p38 inhibitors may have clinical applications, but probably—and this forms part of the medicine of the future—these will be in combination with other drugs. We are trying to find out what p38 inhibitors should be combined with to make the tumour, which is now smaller, finally disappear,’ explains the Spanish scientist Nebreda, head of the Signalling and Cell Cycle Lab at IRB, BBVA Foundation Cancer Research Professor and ICREA research professor.

The role of p38 in cancer is not clear cut. In this same study, Indian-born Jalaj Gupta who recently obtained his PhD in Nebreda’s lab and is first author of the work, demonstrates that this same protein in a pre-tumoral context, favoured by inflammation of the colon—also known as colitis—impedes tumour development.

It is well-known that patients with chronic inflammation of the intestine, such as that caused by Crohn’s disease, have a greater incidence of colon tumours that the healthy population. In order to study the relationship between inflammation and cancer, Nebreda’s team use mouse models that reproduce this inflammatory context.

‘Given that p38 regulates inflammation and also functions as a tumour suppressor in some mouse models, our study addressed how these two functions are integrated during the colon tumorigenesis associated with inflammation’, says Gupta.

An important finding of the present study is related to the contribution of p38 to the maintenance of an intact epithelial barrier, a structure that protects the intestine from toxic agents and pathogens. Mice genetically depleted of p38 in the epithelial cells that form the intestinal barrier were subjected to a cancer-inducing protocol that causes mutations and inflammation.

These animals developed twice as many tumours as a group of p38-expressing mice subjected to the same protocol. The tumour-suppressing capacity of p38 has also been described in cancer of the liver and lung.

‘Our study highlights the complexity of p38 functions, both in cancer and in the normal maintenance of tissues, and shows why an inhibitor of this molecule could effectively have undesirable side effects. This is why it is necessary to study in depth the patients and contexts in which treatment with such inhibitors would be suitable,’ explains Gupta.

‘All drugs currently used to treat cancer have side effects,’ states Nebreda, ‘and in this regard p38 inhibitors would be no exception. However, the administration of such inhibitors to colon cancer patients may be a useful strategy to shrink the tumour in a few days before its surgical removal’.

Nebreda goes on to explain that the basic research performed in his lab seeks to understand better the biology of tumour cells, the roles of the molecules involved and the mechanisms that allow tumour progression. ‘We try to take this basic information a step further so that it becomes clinically useful when designing new treatments,’ says the researcher, who joined IRB, in Barcelona, in 2010, after working in USA, UK, Germany and the CNIO in Madrid. IRB Barcelona

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:07A key regulator of colon cancer

Laboratory launches more accurate carrier screening test for spinal muscular atrophy

, 26 August 2020/in E-News /by 3wmedia

The Icahn School of Medicine at Mount Sinai announced the launch of a more accurate carrier screening test for spinal muscular atrophy (SMA), one of the most common and severe autosomal recessive disorders. This new test will help prospective parents more effectively identify whether they carry the mutation that will affect their offspring. The test screens for genetic variation discovered by Mount Sinai researchers, which has been demonstrated to identify silent carriers of SMA in certain populations with higher accuracy and offers more accurate risk estimates than existing tests in all ethnic groups tested. Mount Sinai will be licensing the new test to other clinical laboratories to facilitate access to more accurate SMA carrier screening for as many people as possible.
SMA is an autosomal recessive disease that affects about 1 in 10,000 people and is one of the most deadly genetic diseases among infants and toddlers. It is transmitted by carrier parents who have no symptoms themselves; as many as 1 in 35 people may carry an SMN1 gene mutation, which is the gene that is defective in SMA. The disease kills nerve cells in the spinal cord, causing progressive degeneration among patients and diminishing capacity for walking, breathing, and swallowing. Severe forms of SMA are fatal, and there is currently no cure for the disease.
Scientists at the Mount Sinai Genetic Testing Laboratory recently used next-generation DNA sequencing to discover a new SMN1 genetic pattern that more accurately predicts the risk of having children with this disease. Current SMA carrier screening tests may result in false negative results due to their inability to detect silent carriers with two copies of the SMN1 gene on one chromosome and no copies on the other. The Mount Sinai Genetic Testing Laboratory’s patent-pending enhanced SMA test identifies a novel haplotype that successfully distinguishes those duplicated genes. This work significantly improves detection rates in the Ashkenazi Jewish population and improves risk estimates after a negative carrier screen for SMA in all ethnic groups.
‘People who choose to undergo carrier screening for spinal muscular atrophy do so to ensure that their future children will not suffer from this debilitating disease. It is important to provide patients with the most accurate risk estimates possible,’ said Lisa Edelmann, PhD, Director of the Mount Sinai Genetic Testing Laboratory. ‘Launching this enhanced test based on our recent scientific findings on SMN1 will provide more meaningful answers to these prospective parents, and it can also provide new information to people who have previously been screened with existing SMA carrier tests.’
The new test will be performed by the Genetic Testing Laboratory for all patients undergoing carrier screening for SMA. In addition, Mount Sinai will actively license the test to as many third-party clinical laboratories as possible. Mount Sinai Health System

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:15Laboratory launches more accurate carrier screening test for spinal muscular atrophy

Epigenetic changes may explain chronic kidney disease

, 26 August 2020/in E-News /by 3wmedia

The research of physician-scientist Katalin Susztak, MD, PhD, associate professor of Medicine in the Renal Electrolyte and Hypertension Division, at the Perelman School of Medicine, University of Pennsylvania, strives to understand the molecular roots and genetic predisposition of chronic kidney disease. In a recent Genome Biology paper, Susztak, and her co-corresponding author John Greally from the Albert Einstein College of Medicine, Bronx, NY, found, in a genome-wide survey, significant differences in the pattern of chemical modifications on DNA that affect gene expression in kidney cells from patients with chronic kidney disease versus healthy controls. This is the first study to show that changes in these modifications – the cornerstone of the field of epigenetics – might explain chronic kidney disease.
Epigenetics is the science of how gene activity can be altered without actual changes in the DNA sequence. DNA can be modified by different chemical groups. In the case of this study, these are methyl groups that, like using sticky notes as reminders, open or close up regions of the genome to make these areas more or less available to be ‘read’ as a gene.

Chronic kidney disease is a condition in which the kidneys are damaged and cannot adequately filter blood. This damage can cause wastes to build up, which leads to other health problems, including cardiovascular disease, anaemia, and bone disease. More than 10% of people, or more than 20 million, aged 20 years or older in the United States have chronic kidney disease, according to the Centers for Disease Control.
Past epidemiological studies have shown that adverse intrauterine and postnatal conditions have a long-lasting, over-a-lifetime role in the development of chronic kidney disease. Adverse intrauterine factors include small size of babies for gestational age due to a lack of nutrients, or conversely, a large size for gestational age, for example if mom had pregnancy-related diabetes.
Studies from the Diabetes Control and Complications trial also indicate that patients with diabetes who had poor diabetes control 25 years earlier still have an increased risk of kidney disease despite having a decade of excellent glucose control. ‘This is called the metabolic memory effect,’ says Susztak. ‘Kidney cells remember the past bad metabolic environment.’
Susztak’s lab used human kidney cells that looked almost the same under a microscope, but the way each cell type is affected by the methyl groups was very different. In general, an increase in the number of methyl groups on a gene turns off expression, and a decrease of methyl groups turns on a gene’s expression.
Specifically, they found that the differences in the methyl groups were not on promoter regions in the diseased kidney cells, but mostly on enhancer regions, and were also near sequences for important kidney transcription factors. ‘This all speaks to the importance of these regions in regulating gene expression,’ says Susztak.

Promoter regions are in front of genes and near the gene they influence. Enhancer regions are farther away from the gene of influence. This difference indicates that the two cell types would likely respond differently to stress.
‘The difference in methylation related to kidney fibrosis — genes encoding collagen and growth factors — at core kidney development sites in the genome raises the possibility that these differences are established early on in a person’s development because the genes Pax2 and Pax8 are active in the developing kidney in the fetus,’ explains Susztak.
‘Most of the research on kidney epigenetics so far has been on promoter regions on kidney cancer cells,’ says Susztak. ‘The difference we found in dysregulation between the two cell populations may indicate that dysregulation in cancer is different from dysregulation in chronic kidney disease. Five years ago there was no epigenetic information outside of cancer,’ says Susztak.

Overall, the findings raise the possibility that dysregulation of epigenetic marks plays a role in chronic kidney disease by affecting pathways that lead to more fibrosis. Identifying the genes and proteins associated with this system gone awry may help identify new biomarkers and targets for new drugs. Perelman School of Medicine

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:22Epigenetic changes may explain chronic kidney disease

Freelite serum free light chain test now in Chinese guidelines

, 26 August 2020/in E-News /by 3wmedia

Freelite, a rapid serum based assay, is now included in the Chinese Multiple Myeloma Diagnosis and Treatment Guidelines. These guidelines recommend serum free light chains in multiple myeloma for diagnosis, as a prognostic indicator, to assess response, and follow-up monitoring to predict disease progression. These guidelines are published by the Chinese Medical Association and Chinese Myeloma Working Group and were written by 17 key opinion leaders from 14 different hospitals. Two of the authors, Professor Hou Jian and Dr Du Juan, recommend all hospital units to routinely use serum free light chains. A summary by these two authors specifically recommend the use of a polyclonal assay and its importance in nonsecretory multiple myeloma, and detection of light chain escape in multiple myeloma. Freelite is a rapid quantitative assay that measures kappa (k) and lambda (λ) immunoglobulin free light chains in multiple myeloma. These values can be expressed as a k / λ free light chain ratio.

www.thebindingsite.com
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:10Freelite serum free light chain test now in Chinese guidelines

Quick test finds signs of diarrhoeal disease

, 26 August 2020/in E-News /by 3wmedia

Bioengineers at Rice University and the University of Texas Medical Branch (UTMB) at Galveston have developed a simple, highly sensitive and efficient test for the diarrhoeal disease cryptosporidiosis that could have great impact on global health.
Results from the diagnostic developed by the lab of Rice bioengineer Rebecca Richards-Kortum are read from a paper strip that resembles a pregnancy test. Lines on the strip tell whether samples taken from the stool of a patient contain genetic DNA from the parasite that causes the disease.
‘Diarrhoeal illness is a leading cause of global mortality and morbidity,’ said Richards-Kortum, director of the Rice 360˚: Institute for Global Health Technologies. ‘Parasites such as cryptosporidium are more common causes of prolonged diarrhoea. Current laboratory tests are not sensitive, are time-consuming and require days before results are available. A rapid, affordable, accurate point-of-care test could greatly enhance care for the underserved populations who are most affected by parasites that cause diarrhoeal illness.’
A. Clinton White, director of the Infectious Disease Division at UTMB, asked Richards-Kortum to help develop a diagnostic test for the parasite. ‘I’ve been working with cryptosporidium for more than 20 years, so I wanted to combine her expertise in diagnosis with our clinical interest,’ he said. ‘Recent studies in Africa and South Asia by people using sophisticated techniques show this organism is a very common, under-appreciated cause of diarrhoeal disease in under-resourced countries.’
Current specialized tests that depend on microscopic or fluorescent analysis of stool samples or polymerase chain reactions (PCR) that amplify pathogen DNA are considered impractical for deployment in developing countries because of the need for expensive equipment and/or the electricity to operate it.
The Rice test depends on recent developments in a recombinase polymerase amplification (RPA) technique that gives similar ‘gold standard’ results to PCR but operates between room and body temperatures. In Rice’s experiments, samples were prepared with a commercial chemical kit that releases all the DNA and RNA in the small amount of stool tested. The purified nucleic acids are then combined with RPA primers and enzymes tuned to amplify the pathogen of interest, Crannell said.
‘If the pathogen DNA is present, these primers will amplify it billions of times to a level that we can easily detect,’ he said. The sample is then flowed over the detection strip, which provides a positive or negative result.
The RPA enzymes are stable in their dried form and can be safely stored at the point of care without refrigeration for up to a year, he said.
While current tests might catch the disease in samples with thousands of the pathogens, the Rice technique detects the presence of very few – even one – parasite in a sample. In their experiments, the researchers reported the presence or absence of the disease was correctly identified in 27 of 28 infected and control-group mice and all 21 humans whose stool was tested. Rice University

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:17Quick test finds signs of diarrhoeal disease
Page 124 of 229«‹122123124125126›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

January 2026

CLi Cover JAN 2026
15 January 2026

SHIMADZU – Excellence in Science

15 January 2026

Hematology – Oncology Pharmacy Summit

15 January 2026

Total bile acids 21 FS

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription