Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

New Stago Webinar announcement

, 26 August 2020/in E-News /by 3wmedia

How to diagnose and manage Heparin-Induced Thrombocytopenia (HIT)?
by Pr Yves Gruel – Professor of Hematology, Trousseau Hospital and University Francois Rabelais, Tours (France)

Type II Heparin-Induced Thrombocytopenia (HIT) is an immune-mediated adverse effect of heparin treatment. Although rare, this complication can be serious and possibly life threatening.

Approximately one third of hospitalized patients are exposed to heparins. It is therefore of great importance to know how to:

  • diagnose HIT in order to identify the patients who will benefit from an alternative anticoagulant treatment
  • avoid HIT overdiagnosis to minimize the risks of bleedings and the costs associated with the use of alternative anticoagulants

This webinar will focus on HIT pathophysiology, and will outline the necessity of an accurate diagnosis and how it can be achieved. Alternative anticoagulant treatment options will also be discussed.

This 30-minute presentation will be followed by a 15-minute live chat with the speaker.

Pr Gruel is the Head of the Hematology Department at Trousseau University Hospital in Tours and is also leading the Hemophilia Care Center.
Apart from his clinical activity focusing on bleeding and thrombotic disorders, his main research topics are today heparin-induced thrombocytopenia (HIT) and the role of specific coagulation proteins in cancer.

He is currently the President of GEHT (French study Group on Haemostasis and Thrombosis), and Chairman of the ISTH Scientific and Standardization Committee on Platelet Immunology.

Save the date! Friday January 31st 2014 at 4:00 p.m. CET (Central European Time)

To attend this webinar, please register at www.stagowebinars.com.

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:19New Stago Webinar announcement

Virus-fighting genes linked to mutations in cancer

, 26 August 2020/in E-News /by 3wmedia

Our understanding of the biological processes that cause cancer is limited. UV light and smoking are two well-understood cancer-causing processes. Exposure to either of these processes causes distinguishable patterns of genetic damage, or ‘signatures’, on the genome that can lead to cancer. All cancer-causing processes leave their own distinct imprint or signature, on the genomes of cancer cells.
The APOBEC family of genes control enzymes that are believed to have evolved in humans to fight off viral infections. Scientists have speculated that these enzymes are responsible for a very distinct signature of mutations that is present in approximately half of all cancer types. Therefore, understanding the cancer-causing process behind this common genetic signature is pivotal for disease control and prevention.
The team studied the genomes of breast cancers in patients with a specific inherited deletion in two of these APOBEC genes. They found that these cancer genomes had a much greater prevalence of the distinct mutational signature that is thought to be driven by the APOBEC family of genes.
.
‘The increased frequency of this common cancer signature in breast cancer patients with APOBEC gene abnormalities supports our theory that these enzymes play a role in generating this mutational signature,’ says Dr Serena Nik-Zainal, first author from the Wellcome Trust Sanger Institute.
This genetic deletion is found on chromosome 22 where the APOBEC genes, APOBEC3A and APOBEC3B, sit next to each other. Women with this genetic deletion have previously been reported to be more susceptible to breast cancer.
The team examined 923 samples of breast cancer from women from across the world and found more than 140 people with either one or two copies of the deletion on each chromosome. Breast cancer in women with the deletion had a much greater quantity of mutations of this particular genetic signature.
However, the mutational activity of the APOBEC genes appears to be a double-edged sword. This genetic deletion is much more prevalent in some populations than others: it is found in only 8 per cent of Europeans, but is present in 93 per cent of the population of Oceania. Although this deletion increases risk of cancer development, it also seems to provide a currently unknown advantage in populations where it is more common. Wellcome Trust Sanger Iinstitute

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:05Virus-fighting genes linked to mutations in cancer

Findings on cause, progression of endometriosis

, 26 August 2020/in E-News /by 3wmedia

Changes to two previously unstudied genes are the centrepiece of a new theory regarding the cause and development of endometriosis, a chronic and painful disease affecting 1 in 10 women.

The discovery by Northwestern Medicine scientists suggests epigenetic modification, a process that enhances or disrupts how DNA is read, is an integral component of the disease and its progression. Matthew Dyson, PhD, research assistant professor of Obstetrics and Gynecology-Reproductive Biology Research and Serdar Bulun, MD, chair of Obstetrics and Gynecology also identified a novel role for a family of key gene regulators in the uterus.

‘Until now, the scientific community was looking for a genetic mutation to explain endometriosis,’ said Dr. Bulun, a member of the Center for Genetic Medicine and the Robert H. Lurie Comprehensive Cancer Center. ‘This is the first conclusive demonstration that the disease develops as a result of alterations in the epigenetic landscape and not from classical genetic mutations.’

Women develop endometriosis when cells from the lining of the uterus, usually shed during menstruation, grow in other areas of the body. The persistent survival of these cells results in chronic pelvic pain and infertility. Although the cause of the disease has remained unknown on a cellular level, there have been several different models established to explain its development.

Endometriosis only occurs in menstruating primates, suggesting that the unique evolution behind uterine development and menstruation are linked to the disease. Scientists consider retrograde menstruation – cells moving up the fallopian tubes and into the pelvis – as one probable cause.
Previous models, however, have been unable to explain why only 10 percent of women develop the disease when most experience retrograde menstruation at some point. Nor do they explain instances of endometriosis that arise independent of menstruation.

Bulun and Dyson propose that an epigenetic switch permits the expression of the transcription factor GATA6 rather than GATA2, resulting in progesterone resistance and disease development.

‘We believe an overwhelming number of these altered cells reach the lining of the abdominal cavity, survive and grow,’ said Dr. Bulun, obstetrician-gynaecologist-in-chief at Northwestern Memorial’s Prentice Women’s Hospital. ‘These findings could someday lead to the first non-invasive test for endometriosis.’

Clinicians could then prevent the disease by placing teenagers predisposed to this epigenetic change on a birth control pill regimen, preventing the possibility of retrograde menstruation in the first place.

Dyson will also look to use the epigenetic fingerprint resulting from the presence of GATA6 rather than GATA2 as a potential diagnostic tool, since these epigenetic differences are readily detectable.

‘These findings have the potential to shift how we view and treat the disease moving forward,’ Dr. Bulun said. Feinberg School of Medicine

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:13Findings on cause, progression of endometriosis

Genetic mutation increases risk of Parkinson’s disease from pesticides

, 26 August 2020/in E-News /by 3wmedia

A team of researchers has brought new clarity to the picture of how gene-environmental interactions can kill nerve cells that make dopamine. Dopamine is the neurotransmitter that sends messages to the part of the brain that controls movement and co-ordination. Their discoveries include identification of a molecule that protects neurons from pesticide damage.

‘For the first time, we have used human stem cells derived from Parkinson’s disease patients to show that a genetic mutation combined with exposure to pesticides creates a ‘double hit’ scenario, producing free radicals in neurons that disable specific molecular pathways that cause nerve-cell death,’ says Stuart Lipton, M.D., Ph.D., professor and director of Sanford-Burnham’s Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research and senior author of the study.

Until now, the link between pesticides and Parkinson’s disease was based mainly on animal studies and epidemiological research that demonstrated an increased risk of disease among farmers, rural populations, and others exposed to agricultural chemicals.

In the new study, Lipton, along with Rajesh Ambasudhan, Ph.D., research assistant professor in the Del E. Webb Center, and Rudolf Jaenisch, M.D., founding member of Whitehead Institute for Biomedical Research and professor of biology at the Massachusetts Institute of Technology (MIT), used skin cells from Parkinson’s patients that had a mutation in the gene encoding a protein called alpha-synuclein. Alpha-synuclein is the primary protein found in Lewy bodies—protein clumps that are the pathological hallmark of Parkinson’s disease.

Using patient skin cells, the researchers created human induced pluripotent stem cells (hiPSCs) containing the mutation, and then ‘corrected’ the alpha-synuclein mutation in other cells. Next, they reprogrammed all of these cells to become the specific type of nerve cell that is damaged in Parkinson’s disease, called A9 dopamine-containing neurons—thus creating two sets of neurons—identical in every respect except for the alpha-synuclein mutation.

‘Exposing both normal and mutant neurons to pesticides—including paraquat, maneb, or rotenone—created excessive free radicals in cells with the mutation, causing damage to dopamine-containing neurons that led to cell death,’ said Frank Soldner, M.D., research scientist in Jaenisch’s lab and co-author of the study.

‘In fact, we observed the detrimental effects of these pesticides with short exposures to doses well below EPA-accepted levels,’ said Scott Ryan, Ph.D., researcher in the Del E. Webb Center and lead author of the paper.

Having access to genetically matched neurons with the exception of a single mutation simplified the interpretation of the genetic contribution to pesticide-induced neuronal death. In this case, the researchers were able to pinpoint how cells with the mutation, when exposed to pesticides, disrupt a key mitochondrial pathway—called MEF2C-PGC1alpha—that normally protects neurons that contain dopamine. The free radicals attacked the MEF2C protein, leading to the loss of function of this pathway that would otherwise have protected the nerve cells from the pesticides.

‘Once we understood the pathway and the molecules that were altered by the pesticides, we used high-throughput screening to identify molecules that could inhibit the effect of free radicals on the pathway,’ said Ambasudhan. ‘One molecule we identified was isoxazole, which protected mutant neurons from cell death induced by the tested pesticides. Since several FDA-approved drugs contain derivatives of isoxazole, our findings may have potential clinical implications for repurposing these drugs to treat Parkinson’s.’ Sanford-Burnham Medical Research Institution

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:20Genetic mutation increases risk of Parkinson’s disease from pesticides

Mechanical forces driving breast cancer lead to key molecular discovery

, 26 August 2020/in E-News /by 3wmedia

UCSF scientists say new finding could lead to more accurate prognosis
The stiffening of breast tissue in breast-cancer development points to a new way to distinguish a type of breast cancer with a poor prognosis from a related, but often less deadly type, UC San Francisco researchers have found in a new study.
The findings may lead eventually to new treatment focused not only on molecular targets within cancerous cells, but also on mechanical properties of surrounding tissue, the researchers said.
In a mouse model of breast cancer, scientists led by Valerie Weaver, PhD, professor of surgery and anatomy and director of the Center for Bioengineering and Tissue Regeneration at UCSF, identified a biochemical chain of events leading to tumour progression. Significantly, this chain of events was triggered by stiffening of scaffolding tissue in the microscopic environment surrounding pre-cancerous cells. The stiffening led to the production of a molecule that can be measured in human breast cancer tissue, and which the researchers found was associated with worse clinical outcomes.
‘This discovery of the molecular chain of events between tissue stiffening and spreading cancer may lead to new and more effective treatment strategies that target structural changes in breast cancers and other tumours,’ Weaver said.
In the mouse experiments, Janna Mouw, PhD, a UCSF associate specialist who works in Weaver’s lab, found that tissue stiffening in microscopic scaffolding known as the extracellular matrix, or ECM, increases signalling by ECM-associated molecules, called integrins. The integrins in turn trigger a signalling cascade within cells that leads to the production of a tumour-promoting molecule called miR-18a.
Unlike most cellular signalling molecules thus far studied by scientists, miR-18a is not a protein or a hormone, but rather a microRNA, another type of molecule recognised in recent years to play an important role in the lives of cells. The miR-18a dials down the levels of a protective, tumour-suppressing protein called PTEN, which often is disabled in cancerous cells, leading to abnormal biochemical signalling that can promote cancer growth. University of California – San Francisco

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:08Mechanical forces driving breast cancer lead to key molecular discovery

A paper diagnostic for cancer

, 26 August 2020/in E-News /by 3wmedia

Cancer rates in developing nations have climbed sharply in recent years, and now account for 70 percent of cancer mortality worldwide. Early detection has been proven to improve outcomes, but screening approaches such as mammograms and colonoscopy, used in the developed world, are too costly to be implemented in settings with little medical infrastructure.
To address this gap, MIT engineers have developed a simple, cheap, paper test that could improve diagnosis rates and help people get treated earlier. The diagnostic, which works much like a pregnancy test, could reveal within minutes, based on a urine sample, whether a person has cancer. This approach has helped detect infectious diseases, and the new technology allows non-communicable diseases to be detected using the same strategy.
The technology, developed by MIT professor and Howard Hughes Medical Institute investigator Sangeeta Bhatia, relies on nanoparticles that interact with tumour proteins called proteases, each of which can trigger release of hundreds of biomarkers that are then easily detectable in a patient’s urine.
‘When we invented this new class of synthetic biomarker, we used a highly specialized instrument to do the analysis,’ says Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science. ‘For the developing world, we thought it would be exciting to adapt it instead to a paper test that could be performed on unprocessed samples in a rural setting, without the need for any specialized equipment. The simple readout could even be transmitted to a remote caregiver by a picture on a mobile phone.’
 
In 2012, Bhatia and colleagues introduced the concept of a synthetic biomarker technology to amplify signals from tumour proteins that would be hard to detect on their own. These proteins, known as matrix metalloproteinases (MMPs), help cancer cells escape their original locations by cutting through proteins of the extracellular matrix, which normally holds cells in place.
The MIT nanoparticles are coated with peptides (short protein fragments) targeted by different MMPs. These particles congregate at tumour sites, where MMPs cleave hundreds of peptides, which accumulate in the kidneys and are excreted in the urine.
In the original version of the technology, these peptides were detected using an instrument called a mass spectrometer, which analyses the molecular makeup of a sample. However, these instruments are not readily available in the developing world, so the researchers adapted the particles so they could be analysed on paper, using an approach known as a lateral flow assay — the same technology used in pregnancy tests.
To create the test strips, the researchers first coated nitrocellulose paper with antibodies that can capture the peptides. Once the peptides are captured, they flow along the strip and are exposed to several invisible test lines made of other antibodies specific to different tags attached to the peptides. If one of these lines becomes visible, it means the target peptide is present in the sample. The technology can also easily be modified to detect multiple types of peptides released by different types or stages of disease.
In tests in mice, the researchers were able to accurately identify colon tumours, as well as blood clots. Bhatia says these tests represent the first step toward a diagnostic device that could someday be useful in human patients. MIT

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:15A paper diagnostic for cancer

Genomic marker better informs treatment choices for CRPC

, 26 August 2020/in E-News /by 3wmedia

The CYP1B1*3 genotype is a potential marker for poor prognosis for men with castration resistant prostate cancer who received docetaxel-based therapy. Men carrying the homozygous CYP1B1*3 genotype (o) had reduced survival times compared to patients carrying at least one copy of the unmutated form of the gene (*).

Docetaxel remains the frontline standard of care for castration-resistant prostate cancer (CRPC), which grows without stimulation from male hormones. However, patient responses to this drug are highly variable. Researchers at CCR can now search a patient’s genome for a specific genomic variant (called a polymorphism) that predicts lesser responses to docetaxel among CRPC patients.
Led by William Douglas Figg, Sr., Pharm.D., a Senior Investigator in CCR’s Medical Oncology Branch, and Staff Scientist, Tristan Sissung, Ph.D., from the Pharmacogenetics Core of the Clinical Pharmacology Program, the clinical team studied a commonly inherited polymorphism in the cytochrome P450 1B1 (CYP1B1) gene. Specifically, the 432ValVal polymorphism in CYP1B 9 (called the CYP1B1*3 polymorphism) was shown to reduce a patient’s survival following docetaxel treatment by more than half—from 30.6 to 12.8 months in combination trials, and from 15.3 to 7.5 months in trials that compared docetaxel alone to prednisone alone. Figg and colleagues conclude that testing for CYP1B1*3 should guide docetaxel treatment decisions in patients with CRPC, because it could spare many from taking a drug unlikely to help them. Similarly, CYP1B1*3 testing could inform treatment decisions involving docetaxel and other therapies in breast, ovarian, and non-small cell lung cancers.
While examining the mechanism of action for docetaxel, which inhibits microtubule disassembly, Figg and his team noted that this drug was being metabolized similarly by cells whether or not they carried the CYP1B1*3 variant, based upon clearance data, which was the same for the differing genotypes. They wanted to know what was occurring at the biochemical level. They knew that the CYP1B1 enzyme metabolizes endogenous steroids, including estrogen, so they looked at how estrogen metabolites interact with tubulin, which makes up microtubules. They found that the estrogen metabolite estradiol-3,4 quinone interferes with docetaxel’s ability to promote tubulin formation and binds directly with docetaxel, creating a drug-estrogen adduct.
Based on these findings, Figg and colleagues proposed that CYP1B1*3 interferes with docetaxel therapy by boosting the production of a metabolite that displaces docetaxel from its target and by creating adducts with more limited potency than the drug itself. ‘Patients who harbor the variant make more estradiol-3,4 quinone, which may work against docetaxel efficacy, while patients who have the wild-type gene make less of it and respond better to the drug, ‘ explains Sissung.
The frequency varies among racial and ethnic groups worldwide, with approximately 20 percent of the Caucasian population harboring the CYP1B1*3 variant. ‘We want to limit the number of people who receive docetaxel without experiencing benefits from the treatment,’ said Figg.
Figg has now patented the use of CYP1B1*3 genotyping in blood samples to mark patients unlikely to benefit from docetaxel treatment in CRPC. ‘We think this genetic marker has value, and we are willing to work with other groups to validate the findings prospectively,’ he said. ‘The goal is to make sure this test reaches the market so it can be used to improve treatment planning.’ Center for Cancer Research

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:22Genomic marker better informs treatment choices for CRPC

Siemens Healthcare Diagnostics partners with Pfizer to develop companion diagnostics

, 26 August 2020/in E-News /by 3wmedia

Siemens Healthcare Diagnostics has announced that it has entered into a collaboration agreement with Pfizer, the world’s largest research-based pharmaceutical company, to design, develop and commercialize diagnostic tests for therapeutic products across Pfizer’s pipeline. Under the agreement, Siemens will be one of Pfizer’s collaboration partners to develop and provide in vitro diagnostic tests for use in clinical studies and, potentially, eventual global commercialization with Pfizer products. The Siemens Clinical Laboratory (SCL), a high-complexity testing laboratory focused on advancing personalized medicine, will develop the companion diagnostic tests under the partnership. The collaboration will leverage Siemens’ worldwide leadership in providing clinical diagnostic solutions for hospital and reference laboratories, specialty laboratories and point-of-care settings to help enable diagnostics development. “Companion diagnostics are an important enabler of targeted therapies for patients,” states John Hubbard, Senior Vice President and Worldwide Head of Development Operations at Pfizer. “This agreement with Siemens Healthcare Diagnostics is another example of Pfizer’s commitment to develop new precision medicines to address unmet clinical needs.” “Our relationship with Pfizer marks a major milestone in Siemens’ personalized medicine strategy,” states Dr. Trevor Hawkins, Senior Vice President, Strategy & Innovations, Diagnostics Division, Siemens Healthcare. “We look forward to collaborating with Pfizer to realize the goal of advancing innovative solutions that change the way patient care is delivered and, together, shape the future of diagnostic medicine.”  Companion diagnostic tests are clinical tests linked to a specific drug or therapy intended to assist physicians in making more informed and personalized treatment decisions for their patients. When used in the drug development process, companion diagnostics may help pharmaceutical companies improve patient selection and treatment monitoring, determine the preferred therapy dosing for patients, and establish a protocol to help maximize the treatment benefit for patients.

www.siemens.com
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:10Siemens Healthcare Diagnostics partners with Pfizer to develop companion diagnostics

‘Barcode’ profiling

, 26 August 2020/in E-News /by 3wmedia

A new technology developed by Harvard Medical School researchers at the Massachusetts General Hospital Center for Systems Biology allows the simultaneous analysis of hundreds of cancer-related protein markers from minuscule patient samples gathered through minimally invasive methods. This powerful and sensitive technology uses antibodies linked to unique DNA ‘barcodes’ to detect a wide range of target proteins.

It could serve as a tool to help clinicians gain insights into the biology of cancer progression as well as determine why certain cancer therapies stop working or are ineffective to begin with.

Minimally invasive techniques—such as fine-needle aspiration or circulating tumour cell analysis—are increasingly employed to track treatment response over time in clinical trials, as the tests can be simple and cheap to perform. Fine-needle aspirates are also much less invasive than core biopsies or surgical biopsies, since very small needles are used. The challenge has been to comprehensively analyse the very few cells that are obtained via this method.

‘What this study sought to achieve was to vastly expand the information that we can obtain from just a few cells,’ explained Cesar Castro, HMS instructor in medicine at Mass General and a co-author of the paper. ‘Instead of trying to procure more tissue to study, we shrank the analysis process so that it could now be performed on a few cells.’

Until now, pathologists have been able to examine only a handful of protein markers at a time for tumour analyses. With this new technology, the researchers have demonstrated the ability to look at hundreds of markers simultaneously, down to the single-cell level.

‘We are no longer limited by the scant cell quantities procured through minimally invasive procedures,’ Castro said. ‘Rather, the bottleneck will now be our own understanding of the various pathways involved in disease progression and drug target modulation.’

The new method uses an approach known as DNA-barcoded antibody sensing, in which unique DNA sequences are attached to antibodies against known cancer marker proteins. The DNA ‘barcodes’ are linked to the antibodies with a special type of glue that breaks apart when exposed to light. When mixed with a tumour sample, the antibodies seek out and bind to their targets; then a light pulse releases the unique DNA barcodes of these bound antibodies that are subsequently tagged with fluorescently labelled complementary barcodes. The tagged barcodes can be detected and quantified via imaging, revealing which markers are present in the sample.

After initially demonstrating and validating the technique’s feasibility in cell lines and single cells, the team tested it on samples from patients with lung cancer. The technology was able to reflect the great heterogeneity—differences in features such as cell-surface protein expression—of cells within a single tumour and to reveal significant differences in protein expression between tumours that appeared identical under the microscope. Examination of cells taken at various time points from participants in a clinical trial of a targeted therapy drug revealed patterns that distinguished those who did and did not respond to treatment.

‘We showed that this technology works well beyond the highly regulated laboratory environment, extending into early-phase clinical trials,’ said Castro, who is also a medical oncologist in the Mass General Cancer Center and director of the Cancer Program within the hospital’s Center for Systems Biology. ‘In this era of personalised medicine, we could leverage such technology not only to monitor but actually to predict treatment response. By obtaining samples from patients before initiating therapy and then exposing them to different chemo-therapeutics or targeted therapies, we could select the most appropriate therapy for individual patients.’ Harvard Medical School

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:17‘Barcode’ profiling

Researchers identify seven types of breast cancer for more accurate prognosis

, 26 August 2020/in E-News /by 3wmedia

A study by researchers in Nottingham has identified seven distinct types of breast cancer, a discovery which could lead to new and improved prognostic tests for patients with the disease.
The findings could revolutionise the way in which breast cancer patients are treated by giving clinicians more detailed information about a patient’s breast cancer type and helping them create a more personalised treatment plan, avoiding over or under-treatment.
Dr Green said: ‘With an increasing number of treatment options available for breast cancer patients, decision making regarding the choice of the most appropriate treatment method is becoming increasingly complex. Improvements in care and outcome for patients with breast cancer will involve improved targeting of effective therapies to appropriate patients.
‘Equally important should be improvement in parallel strategies to avoid unnecessary or inappropriate treatment and side effects.’
Breast cancer is a biologically complex disease and each tumour can have very different properties, so the more information that doctors have about each patient’s cancer, the better they can plan treatments. Currently just two proteins are tested for as standard in breast cancer cells (known as biomarkers): the oestrogen receptor (ER), and human epidermal growth factor receptor 2 (HER2), alongside information about the tumour size, spread and grade.
Dr Green and colleagues, who also included Professor Ian Ellis in the Division of Oncology and Jon Garibaldi and Daniele Soria in the University’s School of Computer Science, wanted to see if, by testing for more biomarkers, but keeping the number of biomarkers as low as possible to make an affordable test a realistic proposition, they could devise categories that better reflect the diversity of breast cancer and, importantly, better predict how a patient’s cancer is likely to progress.
Using tissue that now forms part of the Breast Cancer Campaign Tissue Bank, the team tested 1073 tumour samples and from these, 997 (93%) fitted perfectly into one of seven classes, whereas 76 (7%) had mixed characteristics and couldn’t be put into a distinct category. They then verified these classes in another 238 tumour samples.
The seven classes are defined by different combinations and levels of ten biomarkers found in breast cancer cells. These biomarkers include ER and HER2, the two biomarkers currently tested for in clinics, but also others that are not currently tested for, such as p53, cytokeratins, HER3 and HER4.
To test whether the new classes could give doctors more information about prognosis, Dr Green’s team compared the classes to survival outcomes from the patient samples. Each of the seven classes was found to have its own unique survival outcome. This indicates that the classes can tell us more about prognosis and help doctors to fine-tune treatment plans to improve survival.
Importantly, the technology required to measure protein biomarkers in tumour samples is already in place in most pathology laboratories across the UK, whereas newly developed genetic profiling tests such as Oncotype DX need to be sent to specialist laboratories, which brings additional costs. University of Nottingham

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:35:032021-01-08 11:12:27Researchers identify seven types of breast cancer for more accurate prognosis
Page 126 of 229«‹124125126127128›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

January 2026

CLi Cover JAN 2026
15 January 2026

SHIMADZU – Excellence in Science

15 January 2026

Hematology – Oncology Pharmacy Summit

15 January 2026

Total bile acids 21 FS

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription