Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

Elevated liver enzyme levels linked to higher gestational diabetes risk

, 26 August 2020/in E-News /by 3wmedia

Women with high levels of a common liver enzyme measured prior to pregnancy were twice as likely to subsequently develop gestational diabetes than those with the lowest levels, according to a Kaiser Permanente study.

The liver plays an important role in regulating glucose levels in the body. The liver enzyme, called gamma-glutamyl transferase (known as GGT), is a common marker of liver function and has also been associated with insulin resistance, which can be a precursor to gestational diabetes and type 2 diabetes.

‘Several biomarkers appear to be associated with the risk of gestational diabetes,’ said Monique M. Hedderson, PhD, senior author of the study and research scientist with the Kaiser Permanente Division of Research in Oakland, Calif. ‘This study and others we’ve done provide evidence that women who develop gestational diabetes have metabolic abnormalities even before pregnancy. In the future, we could potentially try to prevent gestational diabetes by intervening before women get pregnant.’

Gestational diabetes, or glucose intolerance during pregnancy, has increased dramatically in recent decades and is now one of the most common complications of pregnancy. It can lead to the birth of larger-than-normal babies and subsequent delivery complications. According to recent studies, women with gestational diabetes are seven times more likely to develop type 2 diabetes later in life, and their children are at greater risk of becoming obese and developing diabetes themselves.

Researchers examined the medical records of 256 women who developed gestational diabetes during pregnancy and compared them with 497 women who did not. Those studied had voluntarily given blood samples between 1985 and 1996 during routine care and subsequently delivered an infant in Kaiser Permanente’s Northern California region.

After adjusting for numerous possible confounding factors, including body mass index and alcohol use, the researchers found that women in the highest quartile of GGT had nearly twice the risk of subsequent gestational diabetes than those in the lowest quartile. No associations were found with two other commonly monitored liver enzymes, alanine aminotransferase and aspartate aminotransferase.

‘A few studies have looked at liver enzyme levels during pregnancy and the risk of gestational diabetes, but to our knowledge this is the first to look at liver enzyme levels measured before pregnancy,’ said lead author Sneha Sridhar, MPH, project coordinator with the Kaiser Permanente Division of Research.

This study is the third in a series using the same cohort of mothers to examine the role of biomarkers prior to pregnancy in predicting the risk of gestational diabetes. The researchers ultimately hope to develop a risk model to help identify women who would benefit from interventions during the pre-conception period. Kaiser Permanente

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:12:00Elevated liver enzyme levels linked to higher gestational diabetes risk

Researchers debunk myth about Parkinson’s disease

, 26 August 2020/in E-News /by 3wmedia

Using advanced computer models, neuroscience researchers at the University of Copenhagen have gained new knowledge about the complex processes that cause Parkinson’s disease.

The defining symptoms of Parkinson’s disease are slow movements, muscular stiffness and shaking. There is currently no cure for the condition, so it is essential to conduct innovative research with the potential to shed some light on this terrible disruption to the central nervous system that affects one person in a thousand in Denmark. Using advanced computer models, neuroscience researchers at the University of Copenhagen have gained new knowledge about the complex processes that cause Parkinson’s disease.

Dopamine is an important neurotransmitter which affects physical and psychological functions such as motor control, learning and memory. Levels of this substance are regulated by special dopamine cells. When the level of dopamine drops, nerve cells that constitute part of the brain’s ‘stop signal’ are activated.

“This stop signal is rather like the safety lever on a motorised lawn mower: if you take your hand off the lever, the mower’s motor stops. Similarly, dopamine must always be present in the system to block the stop signal.  Parkinson’s disease arises because for some reason the dopamine cells in the brain are lost, and it is known that the stop signal is being over-activated somehow or other. Many researchers have therefore considered it obvious that long-term lack of dopamine must be the cause of the distinctive symptoms that accompanies the disease. However, we can now use advanced computer simulations to challenge the existing paradigm and put forward a different theory about what actually takes place in the brain when the dopamine cells gradually die,” explains Jakob Kisbye Dreyer, Postdoc at the Department of Neuroscience and Pharmacology, University of Copenhagen.

Scanning the brain of a patient suffering from Parkinson’s disease reveals that in spite of dopamine cell death, there are no signs of a lack of dopamine – even at a comparatively late stage in the process.

“The inability to establish a lack of dopamine until advanced cases of Parkinson’s disease has been a thorn in the side of researchers for many years. On the one hand, the symptoms indicate that the stop signal is over-activated, and patients are treated accordingly with a fair degree of success. On the other hand, data prove that they are not lacking dopamine,” says Postdoc Jakob Kisbye Dreyer.
“Our calculations indicate that cell death only affects the level of dopamine very late in the process, but that symptoms can arise long before the level of the neurotransmitter starts to decline. The reason for this is that the fluctuations that normally make up a signal become weaker. In the computer model, the brain compensates for the shortage of signals by creating additional dopamine receptors. This has a positive effect initially, but as cell death progresses further, the correct signal may almost disappear. At this stage, the compensation becomes so overwhelming that even small variations in the level of dopamine trigger the stop signal – which can therefore cause the patient to develop the disease.” University of Copenhagen

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:38Researchers debunk myth about Parkinson’s disease

Taking the guesswork out of cancer therapy

, 26 August 2020/in E-News /by 3wmedia

Researchers and doctors at the Institute of Bioengineering and Nanotechnology (IBN), Singapore General Hospital (SGH) and National Cancer Centre Singapore (NCCS) have co-developed the first molecular test kit that can predict treatment and survival outcomes in kidney cancer patients.

According to IBN Executive Director Professor Jackie Y. Ying, “By combining our expertise in molecular diagnostics and cancer research, we have developed the first genetic test to help doctors prescribe the appropriate treatment for kidney cancer patients based on their tumor profile.”

Dr. Min-Han Tan, who is IBN Team Leader and Principal Research Scientist and a visiting consultant at the Division of Medical Oncology NCCS, shared his motivation, “As a practicing oncologist, I have cared for many patients with kidney cancer. I see the high costs of cancer care, the unpredictable outcomes and occasional futility of even the best available drugs. This experience inspired our development of this assay to improve all these for patients.”

The study was conducted retrospectively with tissue samples collected from close to 280 clear cell renal cell carcinoma (ccRCC) patients who underwent surgery at SGH between 1999 and 2012.

“High quality tissue samples are crucial in achieving significant findings in biomedical research. As an Academic Medical Center, we wish to promote the translation of research into advances in healthcare and personalised medicine. The development of this test kit for patient care, utilizing the robust tissue archive that we have at SGH, is a good example of this,” said Professor Tan Puay Hoon, Head and Senior Consultant, Department of Pathology, SGH.

Kidney cancer is among the ten most frequent cancers affecting men in Singapore, according to The Singapore Cancer Registry (2009-2013). The most common type of kidney cancer is clear cell renal cell carcinoma. Treatment options include surgery, ablation or removal of the tumour, or targeted therapy to shrink or slow the growth of the cancer. The latter works by blocking the growth of new blood vessels (angiogenesis) or important proteins in cancer cells (tyrosine kinase) that nourish the tumours and help them survive.

According to Dr. Min-Han Tan, there are currently about 250 new patients diagnosed with kidney cancer per year in Singapore. “Outcomes can be very different. Some patients can be observed for years on end, some benefit from immediate treatment including surgery or targeted therapy, and for some patients, treatment can be futile. Experience is required in making the right judgment for patients. We hope our assay will play a role in helping that judgment.”

Targeted drugs are prescribed routinely for cancer patients. Revenues from anti-angiogenic drugs, such as Sutent and Nexavar, are estimated at several billion dollars annually.

Such drugs, however, are not only expensive but may cause side effects in patients, including fatigue, loss of appetite, nausea, diarrhea, pain, high blood pressure, bleeding and heart problems. Due to genetic variations, individual patients respond differently to these drugs and have different survival outcomes.

Pharmaceutical companies and academic institutions have invested heavily in seeking out tools and biomarkers to predict personalized outcomes with these therapies, and the development of a reliable anti-angiogenic predictor would be of significant interest to them.

Extensive molecular characterization of ccRCC by the team and other researchers worldwide in recent studies has suggested the existence of specific subtypes with different survival outcomes. The researchers therefore set out to discover reliable biomarkers that could improve the prognostic prediction, and identify patients who would be likely to benefit from one type of treatment.

For this purpose, the team designed a practical assay for studying/diagnosing real-world tumour samples from ccRCC patients. The assay was able to distinguish patients into groups of different survival and treatment outcomes. This is one of the first assays capable of predicting outcomes of anti-angiogenic therapy, a key goal for cancer care and industry.

Dr. Tan added, “Our diagnostic assay successfully classified ccRCC into groups correlating to different survival and treatment outcomes. This allows patients and doctors to make more educated choices in their treatment options. Additionally, the development of such assays in Singapore demonstrates the highest levels of research, care and expertise that are available to our patients here.” A-Star

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:45Taking the guesswork out of cancer therapy

Found: ‘master’ protein in pulmonary fibrosis

, 26 August 2020/in E-News /by 3wmedia

This spring has brought rare but tangible moments of progress against the devastating lung disease idiopathic pulmonary fibrosis (IPF), which afflicts millions of people worldwide. Two drugs recently showed promise in clinical trials, and now a study offers both an unprecedentedly deep explanation of how the disease progresses and introduces another potential therapeutic avenue.
The new study features a central figure: an evolutionarily ancient protein called ‘chitinase 3-like-1’ (CHI3L1). The authors implicate it as the ‘master regulator’ of what appears to be a tragically errant repair response to the mysterious lung injuries that give rise to the disease. In describing how CHI3L1 works in IPF, the research also points to a strategy for treatment.
The report demonstrates that CHI3L1 is produced to help in response to the injury. It feeds back to protect injured cells from dying and simultaneously stimulates tissue repair to patch the damage that has occurred. But the study also shows how this dual role contributes to the ultimate problem. If IPF resulted from a single injury, like a paper cut, CHI3L1 would decrease the injury and cause local scarring while it restored tissue integrity. In that case, the amount of scarring would not be excessive and tissue function would not be significantly altered. But in IPF lungs, cells undergo ongoing injury, so CHI3L1 is chronically elevated and scar tissue accumulates. As CHI3L1 rescues cell after cell, the scarring builds up, eventually compromising the lung’s ability to breathe. In IPF, 70 percent of patients die within five years.
‘The CHI3L1 is doing exactly what it is supposed to do — it is designed to shut off cell death and decrease injury,’ said Dr. Jack A. Elias, a co-senior author of the study and dean of medicine and biological sciences at Brown University. He is joined on the paper by a host of his former colleagues and students at Yale University where the research occurred. ‘But at the same time it is decreasing cell death it is driving the fibrosis. You’ve got this ongoing injury so you’ve got these ongoing attempts to shut off injury which stimulate scarring.’
 
 
They compared tissues and serum from normal patients, outpatients with IPF, and patients with an acute exacerbation (AE) of IPF. In AE, widespread lung injury is superimposed on the pulmonary fibrosis, which frequently occurs before patients die. In lung biopsies and serum, they found that CHI3L1 levels are elevated in both tissue compartments in the outpatients with IPF and that the levels of CHI3L1 correlated with their disease progression. In the patients with AE, elevated levels of CHI3L1 were not noted, showing that the levels of CHI3L1 decrease right before the patients die.
‘This demonstrates that the CHI3L1 plays a key role in controlling lung injury in this setting,’ Elias said.
After documenting that elevated levels of CHI3L1 correlate with ongoing fibrosis and scarring and that a lack of the protein associates with widespread cell death, the team engaged in several manipulations of CHI3L1 in mice to see how levels and the clinical outcomes might be related. (In mice, CHI3L1 is also called BRP-39.)
Scientists can induce an IPF-like response in mice using a drug called bleomycin. In mice given bleomycin, the researchers found that the levels of CHI3L1 declined at first and then surged. At the times when the protein levels were low, cell damage occurred, and when the protein surged, the excessive scarring set in.
In previous research the team had engineered several lines of genetically modified mice. Some were transgenic and can produce CHI3l1 on chemically delivered command. Other mice were engineered to never produce BRP-39 — the mouse version of CHI3L1 — at all.
Using these mice, the researchers found that if they triggered CHI3L1 production early after administering bleomycin, the mice fared well, experiencing less injury, less damage and less scarring than controls. If they waited several days after bleomycin to trigger CHI3L1, the mice fared very poorly and scarring and mortality went up.
Mice who couldn’t produce CHI3L1/BRP-39, had acute lung cell damage, somewhat like AE patients who have a relative deficiency of CHI3L1. However, without CHI3L1 they did not generate much scarring.
All of these findings were supplemented with several other experiments that were designed to learn how CHI3L1 interacts with other cells involved in the tissue repair response in both human and mouse lungs. The experiments, including studies conducted in a bioengineered 3-D model of lung tissue seeded with relevant cells, showed that CHI3L1 regulates a pathway that recruits cells such as macrophages and fibroblasts that produce the scarring, or fibrosis.
In all, the results show that CHI3L1 plays a fundamental role in the course, if not the origin, of IPF. An ongoing buildup of it results in excessive scarring. Too little and cells die much more frequently.
‘To my knowledge this is the first comprehensive paper that’s been able to explain the many facets and presentations of IPF,’ Elias said. ‘It explains and links the injury and the repair responses that are critical in the disease. It also provides an explanation for the slowly progressing patients and the patients that experience acute exacerbations.’ Brown University

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:53Found: ‘master’ protein in pulmonary fibrosis

Test reliably detects inherited immune deficiency in newborns

, 26 August 2020/in E-News /by 3wmedia

A newborn screening test for severe combined immunodeficiency (SCID) reliably identifies infants with this life-threatening inherited condition, leading to prompt treatment and high survival rates, according to a study supported by the National Institutes of Health. Researchers led by Jennifer Puck, M.D., of the University of California, San Francisco, also found that SCID affects approximately 1 in 58,000 newborns, indicating that the disorder is less rare than previously thought. The study was funded in part by NIH’s National Institute of Allergy and Infectious Diseases (NIAID) and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD).

SCID is a group of disorders caused by defects in genes involved in the development and function of T cells and other infection-fighting immune cells. Infants with SCID are highly susceptible to life-threatening infections. SCID is fatal, usually within the first year or two of life, unless affected infants are given immune-restoring treatments such as transplants of blood-forming stem cells or gene therapy. More than 80 percent of affected infants do not have a family history of the condition.

“The results of this study highlight the important role of newborn screening for SCID,” said NIAID Director Anthony S. Fauci, M.D. “The findings demonstrate that detecting SCID before symptoms such as severe infections appear helps ensure that infants with this serious condition receive lifesaving treatments.”

The SCID newborn screening test, originally developed at NIH, measures T cell receptor excision circles (TRECs), a by-product of T-cell development. Infants with SCID have few or no T cells, regardless of the underlying genetic defect, and the absence of TRECs may indicate SCID. The TREC test also may help doctors identify infants with non-SCID T-cell deficiencies. SCID was added in 2010 to the U.S. Department of Health and Human Services’ Recommended Uniform Screening Panel for newborns in the United States. However, the TREC test has not yet been adopted universally. Nearly half of states conduct newborn screening for SCID, and the test is performed for almost two thirds of infants born across the country.

“We have made great strides in our knowledge of SCID and other related immunodeficiencies in a relatively short period of time, thanks to newborn screening,” said Tiina Urv, Ph.D., a program director in the Intellectual and Developmental Disabilities Branch at NICHD. “Such collaborative research efforts could serve as a model for other disorders.” Eunice Kennedy Shriver National Institute of Child Health and Human Development

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:40Test reliably detects inherited immune deficiency in newborns

Crohn’s disease research

, 26 August 2020/in E-News /by 3wmedia

University of Delaware researchers have identified a protein, hiding in plain sight, that acts like a bodyguard to help protect and stabilize another key protein, that when unstable, is involved in Crohn’s disease. The fundamental research points to a possible pathway for developing an effective therapy for the inflammatory bowel disease.

The research was conducted by Catherine Leimkuhler Grimes, assistant professor of chemistry and biochemistry at UD, and Vishnu Mohanan, doctoral student in biological sciences,

As the scientists point out, our immune system provides the first line of defence against invading pathogens, a task even more challenging in the human gut, where over a trillion commensal bacteria live — resident microorganisms that help convert food into protein, vitamins and minerals.

To distinguish “bad” versus “good” bacteria, our bodies rely on a complex network of receptors that can sense patterns that are unique to bacteria, such as small fragments of bacterial cell wall. The receptors recognize and bind to these fragments, triggering an immune response to take out the “bad guys” or control the growth of the “good guys.”

However, when one of these receptors breaks down, or mutates, an abnormal immune response can occur, causing the body to mount an immune response against the “good” bacteria. Chronic inflammatory disorders, such as Crohn’s disease, are hypothesized to arise as a result.

The UD team focused on a protein called NOD2 — nucleotide-binding oligomerisation domain containing protein 2. More than 58 mutations in the NOD2 gene have been linked with various diseases, and 80 percent of these mutations are connected specifically to Crohn’s disease, according to Grimes.

In experiments to unveil NOD2’s signalling mechanisms and where they break down, “we stumbled on this chaperone molecule,” says Mohanan, who was the lead author of the scientific article.

The chaperone molecule was HSP70, which stands for “heat shock protein 70.” It assists with the folding of proteins into their correct three-dimensional shapes, even when cells are under stress from elevated body temperatures, such as a fever.

Grimes said she was a little sceptical at first about pursuing studies with HSP70 because it is a commonly known protein, but she found Mohanan’s initial data intriguing.

“Vishnu found that if we increased the expression level of HSP70, the NOD2 Crohn’s mutants were able to respond to bacterial cell wall fragments. A hallmark of the NOD2 mutations is inability to respond to these fragments. Essentially, Vishnu found a fix for NOD2, and we wanted to determine how we were fixing it.”

In further experiments, Mohanan created a tagged-wild-type NOD2 cell line in which NOD2 levels nearly matched the levels found in nature (versus “super” levels that might stimulate an artificial response) and found that NOD2 became more stabilized and degraded more slowly when treated with HSP70. In fact, HSP70 increased the half-life of NOD2 by more than four hours.

“Basically, HSP70 keeps the protein around — it kind of watches over and protects NOD2, and keeps it from going in the cellular trash can,” Grimes explains.

The researchers tested three human cell lines in their study: kidney cells, colon cells and white blood cells. In the next phase of the study, patient tissue will be examined through a collaboration with Nemours/A.I. duPont Hospital for Children to determine if NOD2 levels can be controlled via HSP70 expression.

“We want to figure out why the mutation in NOD2 results in an increase in inflammation,” says Mohanan. “Right now, we have limited knowledge. Once the signalling mechanism is figured out, we will have the keystone.” University of Delaware

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:48Crohn’s disease research

Study shows how common obesity gene contributes to weight gain

, 26 August 2020/in E-News /by 3wmedia

Researchers have discovered how a gene commonly linked to obesity—FTO—contributes to weight gain. The study shows that variations in FTO indirectly affect the function of the primary cilium, a little-understood hair-like appendage on brain and other cells. Specific abnormalities of cilium molecules, in turn, increase body weight, in some instances, by affecting the function of receptors for leptin, a hormone that suppresses appetite. The findings, made in mice, suggest that it might be possible to modify obesity through interventions that alter the function of the cilium, according to scientists at Columbia University Medical Center (CUMC).

‘If our findings are confirmed, they could explain how common genetic variants in the gene FTO affect human body weight and lead to obesity,’ said study leader Rudolph L. Leibel, MD, the Christopher J. Murphy Memorial Professor of Diabetes Research, professor of pediatrics and medicine, and co-director of the Naomi Berrie Diabetes Center at CUMC. ‘The better we can understand the molecular machinery of obesity, the better we will be able to manipulate these mechanisms and help people lose weight.’
Since 2007, researchers have known that common variants in the fat mass and obesity-associated protein gene, also known as FTO, are strongly associated with increased body weight in adults. But it was not understood how alterations in FTO might contribute to obesity. ‘Studies have shown that knocking out FTO in mice doesn’t necessarily lead to obesity, and not all humans with FTO variants are obese,’ said Dr. Leibel. ‘Something else is going on at this location that we were missing.’

In experiments with mice, the CUMC team observed that as FTO expression increased or decreased, so did the expression of a nearby gene, RPGRIP1L. RPGRIP1L is known to play a role in regulating the primary cilium. ‘Aberrations in the cilium have been implicated in rare forms of obesity,’ said Dr. Leibel. ‘But it wasn’t clear how this structure might be involved in garden-variety obesity.’

Dr. Leibel and his colleague, George Stratigopoulos, PhD, associate research scientist, hypothesised that common FTO variations in noncoding regions of the gene do not change its primary function, which is to produce an enzyme that modifies DNA and RNA. Instead, they suspected that FTO variations indirectly affect the expression of RPGRIP1L. ‘When Dr. Stratigopoulos analysed the sequence of FTO’s intron—its noncoding, or nonprotein-producing, portion—we found that it serves as a binding site for a protein called CUX1,’ said Dr. Leibel. ‘CUX1 is a transcription factor that modifies the expression of RPGRIP1L.’

Next, Dr. Stratigopoulos set out to determine whether RPGRIP1L plays a role in obesity. He created mice lacking one of their two RPGRIP1L genes, in effect, reducing but not eliminating the gene’s function. (Mice that lack both copies of the gene have several serious defects that would obscure the effects on food intake.) Mice with one copy of RPGRIP1L had a higher food intake, gained significantly more weight, and had a higher percentage of body fat than controls.

In a subsequent experiment, the CUMC team found that RPGRIP1L-deficient mice had impaired leptin signalling. ‘The receptors didn’t convene properly on the cell surface around the base of cilium,’ said Dr. Leibel. ‘RPGRIP1L appears to play a role in getting leptin receptors to form clusters, where they are more efficient in signalling.’

‘Overall,’ said Dr. Leibel, ‘our findings open a window onto the possible role of the primary cilium in common forms of obesity.’ Columbia University Medical Center

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:55Study shows how common obesity gene contributes to weight gain

Tests to diagnose invasive aspergillosis with 100 percent accuracy

, 26 August 2020/in E-News /by 3wmedia

The fungal infection invasive aspergillosis (IA) can be life threatening, especially in patients whose immune systems are weakened by chemotherapy or immunosuppressive drugs. Despite the critical need for early detection, IA remains difficult to diagnose. A study compared three diagnostic tests and found that the combination of nucleic acid sequence-based amplification (NASBA) and real-time quantitative PCR (qPCR) detects aspergillosis with 100% accuracy.

IA is caused by the fungus Aspergillus fumigatus, which is considered by many pathologists to be the world’s most harmful mold. ‘Traditional diagnostic methods, such as culture and histopathology of infected tissues, often fail to detect Aspergillus,’ comments lead investigator Yun Xia, PhD, of the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

In this retrospective study, scientists evaluated the diagnostic performance of two nucleic acid amplification assays (qPCR and NASBA) and one antigen detection method (galactomannan enzyme-linked immunosorbent assay [GM-ELISA]) using blood samples collected from 80 patients at high risk of IA. Of the 80 patients, 42.5% had proven or probable IA. The patients came from intensive care, haematology, neurology, nephrology, geriatrics, and other hospital departments.

The tests were evaluated singly and in combination. Individually, NASBA had the highest sensitivity (76.47%) whereas qPCR offered the highest specificity (89.13%). NASBA also was the test that best indicated that a patient did not have the infection (negative predictive value). NASBA and qPCR each had a high Youden index, a measure of the effectiveness of a diagnostic marker.

Combining the tests improved the outcomes. The combination of NASBA and qPCR led to 100% specificity and 100% positive predictive value (the probability that subjects truly have the infection).

‘Because each test has advantages and disadvantages, a combination of different tests may be able to provide better diagnostic value than is provided by a single test,’ says Dr. Xia. The combination of NASBA and qPCR should be useful in excluding IA in suspect cases, thus reducing both suffering and expense for immunocompromised patients. On the other hand, the combination of NASBA and qPCR could be more suitable for screening patients suspected of infection, because this assay had the highest sensitivity.’

The authors note that NASBA offers the advantages of rapid amplification (90 minutes) and simple operation with low instrument cost compared with qPCR and GM-ELISA. They caution that although GM-ELISA is widely and routinely used for aspergillosis diagnosis, this study indicates that it had low sensitivity (52.94%) with reasonable specificity (80.43%), making it ‘inferior to both NASBA and qPCR.’  EurekAlert

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:43Tests to diagnose invasive aspergillosis with 100 percent accuracy

Newly discovered gene mutation is linked to hereditary deafness

, 26 August 2020/in E-News /by 3wmedia

Researchers led by geneticists at the Miller School have discovered a new gene mutation that causes hearing loss. Their study, which focused on a large Turkish family in which six individuals have been affected by hereditary deafness, identified a mutated form of the gene FAM65B as a cause of sensorineural hearing loss.

The research also demonstrates that FAM65B is a previously unrecognized component of the inner ear that is required for hearing.

“Hearing loss is the most common human sensory problem,” said Tekin. “We hope that identifying a new genetic cause of this disorder will lead to a better understanding of the molecular components of normal hearing.”

Hearing loss, which affects approximately 1 in 500 newborns, most often results from mutations of single genes that perform specific functions in the inner ear, where sound waves are converted to electrical signals. This process originates in the stereocilia — “hairs” projecting from cochlear hair cells that interconnect to form the hair bundle. Most of the approximately 50 previously identified hair bundle proteins are the products of genes that, when mutated, lead to hearing loss.

Researchers in this study, who conducted a genetic analysis of the subject family, identified a mutated form of FAM65B — a protein previously unassociated with hearing — as the cause. Further characterization of the protein product of FAM65B in rodents and zebrafish has confirmed the findings of the family study. Miller School of Medicine

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:50Newly discovered gene mutation is linked to hereditary deafness

Novel analyses improve identification of cancer associated genes from microarray data

, 26 August 2020/in E-News /by 3wmedia

Dartmouth Institute for Quantitative Biomedical Sciences (iQBS) researchers developed a new gene expression analysis approach for identifying cancer genes. The study results challenge the current paradigm of microarray data analysis and suggest that the new method may improve identification of cancer-associated genes.

Typical microarray-based gene expression analyses compare gene expression in adjacent normal and cancerous tissues. In these analyses, genes with strong statistical differences in expression are identified. However, many genes are aberrantly expressed in tumours as a byproduct of tumorigenesis. These ‘passenger’ genes are differentially expressed between normal and tumour tissues, but they are not ‘drivers’ of tumorigenesis. Therefore, better analytical approaches that enrich the list of candidate genes with authentic cancer-associated ‘driver’ genes are needed.

Lead authors of the study, Ivan P. Gorlov, PhD, Associate Professor of Community and Family Medicine and Christopher Amos, PhD, Professor of Community and Family Medicine and Director of the Center for Genomic Medicine described a new method to analyse microarray data. The research team demonstrated that ranking genes based on inter-tumour variation in gene expression outperforms traditional analytical approaches. The results were consistent across four major cancer types: breast, colorectal, lung, and prostate cancer.

The team used text-mining to identify genes known to be associated with breast, colorectal, lung, and prostate cancers. Then, they estimated enrichment factors by determining how frequently those known cancer-associated genes occurred among the top gene candidates identified by different analysis methods. The enrichment factor described how frequently cancer associated genes were identified compared to the frequency of identification that one could expect by pure chance. Across all four cancer types, the new method of selecting candidate genes based on inter-tumour variation in gene expression outperformed the other methods, including the standard method of comparing mean expression in adjacent normal and tumour tissues. Dr. Gorlov and colleagues also used this approach to identify novel cancer-associated genes.

The authors cite tumour heterogeneity as the most likely reason for the success of their variance-based approach. The method is based on the knowledge that different tumours can be driven by different subsets of cancer genes. By identifying genes with high variation in expression between tumours, the method preferentially identifies genes specifically associated with cancer. This same feature, tumour heterogeneity, may reduce the ability to identify critical gene expression changes when comparing mean gene expression in adjacent tumor and normal tissues, as tumors of the same type may have different sets of genes differentially expressed.

The results of the study challenge the model that comparing mean gene expression in adjacent normal and cancer tissues is the best approach to identifying cancer-associated genes. Indeed, the team identified high variation in adjacent ‘normal’ tissue samples, which are typically used as control samples for comparison in analyses based on mean gene expression. The study suggests that methods based on variance may help get the most from existing and future global gene expression studies. Dartmouth Institute for Quantitative Biomedical Sciences

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:12:01Novel analyses improve identification of cancer associated genes from microarray data
Page 129 of 227«‹127128129130131›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
13 November 2025

New Chromsystems Product for Antiepileptic Drugs Testing

11 November 2025

Trusted analytical solutions for reliable results

10 November 2025

Chromsystems | Therapeutic Drug Monitoring by LC-MS/MS

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription