EKF Diagnostics subsidiary, Selah Genomics, has announced a major, four-way collaboration with Greenville Health System (GHS, South Carolina), DecisionQ Corporation (Virginia), and BD (Becton Dickinson and Company, New Jersey). Expected to last 18 months, the collaboration aims to unite classic clinical annotations with proprietary next generation sequencing (NGS) technology and artificial intelligence-based decision support algorithms in order to improve clinical decision support in the treatment of colon cancer patients. More than eight out of ten US patients are treated in the community, and as many as 60 percent of all patients with solid tumours do not respond to first-line treatment. This results in further treatment cycles, higher cost, elevated toxicity and, perhaps most importantly, lost time. A tool that significantly improves the prognostication for patients by bringing centre of excellence expertise to any clinical setting is therefore highly desirable. Using its PrecisionPath NGS technology, Selah Genomics will first determine the genetic profiles of tumour samples provided by the Institute for Translational Oncology Research, which is part of GHS’s Cancer Institute. The samples, from colon cancer patients with known outcomes, will be provided with full clinical annotation. DecisionQ will employ its advanced machine-learning platform to integrate genetic profile data with clinical annotations to produce a model that will improve clinical decisions related to the treatment of colon cancer patients. The research project is being funded in part by BD in return for the first opportunity to license the technology should the collaboration be a success. After the initial collaboration, a clinical trial is planned to validate the research and affirm the effectiveness of the new system as a clinical decision support tool for the community-based setting.
www.ekfdiagnostics.com www.selahgenomics.com
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:34:212021-01-08 11:11:13Four-way collaboration aims to improve clinical decision-making in the treatment of colon cancer
By looking at the expression levels of downstream genes of the regulators in breast cancer, investigators at Dartmouth Hitchcock’s Norris Cotton Cancer Center (NCCC), led by Chao Cheng, PhD, have identified a gene signature in E2F4 that is predictive of oestrogen receptor positive (ER+) breast cancer. The findings define a new opportunity for personalizing medicine for women whose Oncotype DX assay results classify them as of ‘intermediate-risk for recurrence.’
Until now, there has been no standard of care for those with intermediate risk. Results at NCCC support reclassifying 20-30% of those patients as ‘high-risk for recurrence,’ indicating they should receive aggressive follow-up treatment.
‘Our data-driven approach to designing an effective prognostic genomic signature for E2F4 activity in ER+ breast cancer patients gave us the essential information to develop what will be a simple clinical test to aid physicians in selecting the most effective treatment regimens for each patient,’ reported Cheng. ‘Furthermore, our approach is highly flexible, and because of the widespread essentiality of E2F4 in many types of cancer, it will be of great utility in solving many biomedical questions.’
With the goal to design an accurate and quick genomic test to measure the activity levels of the regulators associated with E2F4, Cheng’s team looked to the aberrant behaviour of transcription factors as a way to track and predict the root cause of all cancers – dysregulated gene expression that leads to uncontrollable cell proliferation, tumour genesis, and ultimately metastases.
The target genes were identified by chromatin immunoprecipitation sequencing (ChIP-seq) and researchers compared the regulatory activity score (RAS) of E2F4 in cancer tissues to determine the correlation with activity and patient survival. The prognostic signature for E2F4 was significantly predictive of patient outcome in breast cancer regardless of treatment status and the states of many other clinical and pathological variables.
Cheng explained the translational use of the E2F4 signature, ‘By developing a flexible, reproducible, and predictive test, we are providing physicians working in many areas of cancer with the information they need to tailor treatment regimens to specific individual patients. This is the essence of personalized medicine: the right treatment for the right patient at the right time.’
Norris Cotton Cancer Center
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:34:212021-01-08 11:11:20Prognostic test for E2F4 in breast cancer that will be valuable in other cancers
Scientists have identified a genetic mutation in about 20 percent of colorectal and endometrial cancers that had been overlooked in recent large, comprehensive gene searches. With this discovery, the altered gene, called RNF43, now ranks as one of the most common mutations in the two cancer types.
The investigators from Dana-Farber Cancer Institute and the Broad Institute of MIT and Harvard said the mutated gene helps control an important cell-signalling pathway, Wnt, that has been implicated in many forms of cancer. They suggest that having a mutation in RNF43 may serve as a biomarker that identifies patients with colorectal and endometrial cancer who could benefit from precision cancer drugs that target the Wnt pathway, although no such drugs have yet been approved.
“Tumours that have this mutation may be telling us that they are dependent on the Wnt signalling pathway, and they will be uniquely sensitive to drugs that inhibit this pathway,” said Charles Fuchs, MD, MPH, an author of the paper and director of the Center for Gastrointestinal Cancer at Dana-Farber. He is also affiliated with Brigham and Women’s Hospital and the Harvard School of Public Health.
In pre-clinical cancer models, tumours with RNF43 mutations have been found to be sensitive to new Wnt pathway inhibitors that are now in clinical trials in humans, according to Marios Giannakis, MD, PhD, who is an attending physician at Dana-Farber and is also a conducting research at the Broad Institute.
The researchers were surprised to find RNF43 mutations in such a significant proportion of colorectal and endometrial cancers because they had not been detected in recent comprehensive searches of tumor DNA conducted by scientists of The Cancer Genome Atlas (TGCA) project.
Authors of the new study believe computer algorithms used by TCGA to parse data from DNA sequencing of tumors may have interpreted the “signal” of the RNF45 mutation as an artifact, and discarded it, much as a legitimate email will sometimes be trapped in a junk filter.
“These mutations occur in repetitive regions of the genome where you often have errors in DNA sequencing, so past algorithms may have been more likely to assume that the RNF43 mutation was an artifact of the sequencing process,” explained Eran Hodis, an MD/PhD student at Harvard Medical School and MIT and also affiliated with the Broad and Dana-Farber. Giannakis and Hodis are co-first authors on the new report.
Other frequently mutated genes in colorectal cancer include APC (75 percent), P53 (50 percent), and KRAS (40 percent).
The new evidence for RNF43 mutations first came from analysis of tumour samples of colorectal cancer that were obtained from two large cohort studies – the Nurses’ Health Study, which has been following 121,000 healthy women since 1976, and the Health Professionals Follow-up Study, which includes 52,000 men enrolled in 1986. About 10 years ago, Fuchs, along with Dana-Farber pathologist Shuji Ogino, MD, PhD, MS, began collecting and studying gastrointestinal tumour samples that had been taken from men and women in the studies who developed cancer. Because these specimens are accompanied by a wealth of data about the patients’ lifestyle, medical history, and other factors, Fuchs calls this collection of tumour samples “a gold mine.”
For the new study, 185 colorectal cancer specimens from this collection were analyzed by whole-exome DNA sequencing at the Broad Institute under the leadership of Levi Garraway, MD, PhD, who is affiliated with Dana-Farber, the Broad, and Brigham and Women’s Hospital, and is corresponding author of the report. The RNF43 mutation was identified in 18.9 percent of the colorectal tumors.
This surprising result prompted the investigators to re-analyse 222 colorectal cancer samples from TCGA project and found the RNF43 mutation in 17.6 percent. The researchers, noting that endometrial cancer is dependent on abnormal Wnt signalling, then re-analysed 248 DNA samples from endometrial cancer that had been previously published by TCGA scientists. They found a strikingly similar proportion – 18.1 percent – of RNF43 mutations in those cancers.
The study authors noted that the discovery of such a significant cancer mutation that hadn’t been picked up in the previous gene hunts shows that carrying out these comprehensive genomic searches continues to have value.
Dana-Farber Cancer Institute
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:34:212021-01-08 11:11:27Unsuspected gene found frequently mutated in colorectal, endometrial cancers
Scientists at The University of Texas MD Anderson Cancer Center may have discovered why some brain cancer patients develop resistance to standard treatments including radiation and the chemotherapy agent temozolomide.
Simply put, it’s all in their DNA, and it could open up new avenues for treating certain kinds of brain cancer.
DNA, the body’s essential storehouse for genetic information. In the case of glioblastoma, the most common and aggressive type of glioma or brain cancer, it can also allow the disease to progress more quickly when it is “enhanced,” allowing damaged or mutated cancer cells to repair themselves.
“A major obstacle to effective treatment is acquired resistance to treatment,” said Wei Zhang, Ph.D., professor of Pathology. “Enhanced DNA repair can allow these cancer cells to survive, contributing to resistance and tumour recurrence. We have identified Aktr3 as having the ability to robustly stimulate glioma progression.”
Akts are proteins known as kinases that regulate cell signalling. They’re involved in many bodily processes such as cell growth, cell death and tumour growth. Akts are thought to contribute to the development and progression of many cancers including prostate, breast, liver, colorectal and others. One form of this protein, Akt3, appears to be especially prevalent in the brain.
Zhang’s findings describe his team’s study results showing how Akt3 activates key DNA repair pathways.
In Zhang’s research, he reveals that Akt3 is tied to DNA’s “repair panel,” somehow boosting activation of DNA repair proteins, leading to increased DNA repair, and subsequently to cancer treatment resistance.
“This activation led to enhanced survival of brain tumour cells following radiation or treatment with temozolomide,” said Zhang. “Our work has potentially broad application to multiple cancer types in which Akt3 is expressed. Blocking this pathway may help prevent or alleviate therapeutic resistance resulting from enhanced DNA repair.”
MD Anderson Cancer Center
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:34:212021-01-08 11:11:16Why some brain cancers resist treatment
After mining the genetic records of thousands of breast cancer patients, researchers from the Johns Hopkins Kimmel Cancer Center have identified a gene whose presence may explain why some breast cancers are resistant to tamoxifen, a widely used hormone treatment generally used after surgery, radiation and other chemotherapy.
The gene, called MACROD2, might also be useful in screening for some aggressive forms of breast cancers, and, someday, offering a new target for therapy, says Ben Ho Park, M.D., Ph.D., an associate professor of oncology in the Kimmel Cancer Center’s Breast Cancer Program and a member of the research team.
The drug tamoxifen is used to treat oestrogen receptor-positive breast cancers. Cells in this type of breast cancer produce protein receptors in their nuclei which bind to and grow in response to the hormone oestrogen. Tamoxifen generally blocks the binding process of the oestrogen-receptor, but some oestrogen receptor-positive cancers are resistant or become resistant to tamoxifen therapy, finding ways to elude its effects. MACROD2 appears to code for a biological path to tamoxifen resistance by diverting the drug from its customary blocking process to a different way of latching onto breast cancer cell receptors, causing cancer cell growth rather than suppression, according to a report by Park and his colleagues.
Specifically, the team’s experiments found that when the gene is overexpressed in breast cancer cells–producing more of its protein product than normal–the cells become resistant to tamoxifen.
One piece of evidence for the gene’s impact was demonstrated when the Johns Hopkins scientists blocked MACROD2’s impact in breast cancer cell cultures by using an RNA molecule that binds to the gene to ‘silence,’ or turn off, the gene’s expression. But the technique only partially restored the cells’ sensitivity to tamoxifen.
To conduct the study, the scientists examined two well-known databases of breast cancer patients’ genetic information, The Cancer Genome Atlas and the Molecular Taxonomy of Breast Cancer International Consortium study. Patients who had MACROD2 overexpressed in primary breast cancers at the original breast cancer site had significantly worse survival rates than those who did not, according to an analysis of the patient databases.
With this in mind, the Johns Hopkins scientists suggest that clinicians may be able to look at MACROD2 activity to help them identify aggressive breast cancers at early stages of growth.
The team’s analysis also found that MACROD2 overexpression was present in the majority of metastases in patients with tamoxifen-resistant tumours and in tumour cells that had spread from their original site in the breast. The latter finding, says Park, suggests that tamoxifen resistance caused by the gene might be a process that develops over time as women take the drug.
Finding a small group of a patient’s cancer cells that overexpress MACROD2, he explained, means those cells are likely to be the ‘survivors’ of early treatment with tamoxifen that go on to multiply and cause metastatic tumours. ‘The resultant cells–or the vast majority of them–are now all overexpressing MACROD2, and are the cells that are aggressive and will cause trouble,’ he adds.
Park and his team cautioned that there may be other genetic factors that control tamoxifen resistance, and that nothing in their study should suggest that tamoxifen use should be avoided.
EurekAlert
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:34:212021-01-08 11:11:23Scientists link gene to tamoxifen-resistant breast cancers
Researchers at the University of Connecticut have found a new way to identify protein mutations in cancer cells. The novel method is being used to develop personalized vaccines to treat patients with ovarian cancer.
“This has the potential to dramatically change how we treat cancer,” says Dr. Pramod Srivastava, director of the Carole and Ray Neag Comprehensive Cancer Center at UConn Health and one of the principal investigators on the study. “This research will serve as the basis for the first ever genomics-driven personalised medicine clinical trial in immunotherapy of ovarian cancer, and will begin at UConn Health this fall,” Srivastava says.
Dr. Angela Kueck, a gynecological oncologist at UConn Health, will run the initial clinical study, once it is approved by the FDA. The research team will sequence DNA from the tumours of 15 to 20 women with ovarian cancer, and use that information to make a personalized vaccine for each woman.
The researchers focused their clinical trial on patients with ovarian cancer because the disease usually responds well to surgery and chemotherapy in the short term, but often returns lethally within a year or two. That gives researchers the perfect window to prepare and administer the new therapeutic vaccines, and also means they may be able to tell within two years or so whether the vaccine made a difference. If the personalized vaccines prove to be safe and feasible, they’ll design a Phase II trial to test its clinical effectiveness by determining whether they prolong patients’ lives.
In order for the immune system to attack cancers, it first has to recognize them. Every cell in the body has a sequence of proteins on its exterior that acts like an ID card or secret handshake, confirming that it’s one of the good guys. These protein sequences, called epitopes, are what the immune system ‘sees’ when it looks at a cell. Cancerous cells have epitopes, too. Since cancer cells originate from the body itself, their epitopes are very similar to those of healthy cells, and the immune system doesn’t recognize them as bad actors that must be destroyed.
But just as even the best spy occasionally slips up on the details, cancer cell epitopes have tiny differences or mistakes that could give them away, if only the immune system knew what to look for.
“We want to break the immune system’s ignorance,” Srivastava says. For example, there could be 1,000 subtle changes in the cancer cell epitopes, but only 10 are “real,” meaning significant to the immune system. To find the real, important differences, Mandoiu, the bioinformatics engineer, took DNA sequences from skin tumours in mice and compared them with DNA from the mice’s healthy tissue.
Previous researchers had done this but looked at how strongly the immune system cells bound to the cancer’s epitopes. This works when making vaccines against viruses, but not for cancers. Instead, Srivastava’s team came up with a novel measure: they looked at how different the cancer epitopes were from the mice’s normal epitopes. And it worked. When mice were inoculated with vaccines made of the cancer epitopes differing the most from normal tissue, they were very resistant to skin cancer.
Theoretically, this approach could work for other cancers, although the research has yet to be done.
University of Connecticut
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:34:212021-01-08 11:11:30Researchers develop personalized ovarian cancer vaccines
For some children with autism, the ‘Tooth Fairy’ lives in San Diego and wears a white coat. And the Tooth Fairy may offer an answer to what causes their autism, without painful blood draws or skin biopsies.
Alysson Muotri, associate professor of paediatrics and cellular molecular medicine at the University of California, San Diego, created this inventive project in 2012. He realized that rather than force children to undergo upsetting procedures, parents could simply mail one of their child’s baby teeth, which contain enough genetic information to eliminate the need for an in-person visit.
“We announced the project on social networks like Facebook,” Muorti says. “News spread fast.”
The project has roughly 3,500 registered families and 300 teeth so far, and researchers have found five autism candidate genes from the 20 or so cell lines they have sequenced. Several of those genes have never been implicated in autism before.
“We’re finding lots of new genes and sometimes we have no idea what they do, so the next step is to test whether or not those genes are important,” Muotri says. “This type of study may reveal novel pathways in autism and open up the possibility for personalized treatment.”
Autism’s cause is clear in a subset of cases, but the majority of cases are sporadic, meaning they arise from an unidentified combination of genetic and environmental factors.
“Every sporadic individual will likely carry several mutations that probably contribute to a certain extent to the disease, so it is really hard to model that complex phenotype,” Muotri says.
After receiving a tooth, the researchers extract cells from the dental pulp and sequence the whole genome to search for mutations associated with sporadic autism. They then use these dental cells to create induced pluripotent stem (iPS) cells, which can be coaxed into becoming neurons. Muotri says he and his colleagues are the first to use iPS-cell-derived human neurons to model sporadic autism.
Simons Foundation Autism Research Institute
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:34:212021-01-08 11:11:18‘Tooth Fairy’ works magic to unearth new autism genes
A new bloodstream infection test created by UC Irvine researchers can speed up diagnosis times with unprecedented accuracy, allowing physicians to treat patients with potentially deadly ailments more promptly and effectively.
The UCI team, led by Weian Zhao, assistant professor of pharmaceutical sciences, developed a new technology called Integrated Comprehensive Droplet Digital Detection. In as little as 90 minutes, IC 3D can detect bacteria in milliliters of blood with single-cell sensitivity; no cell culture is needed.
“We are extremely excited about this technology because it addresses a long-standing unmet medical need in the field,” Zhao said. “As a platform technology, it may have many applications in detecting extremely low-abundance biomarkers in other areas, such as cancers, HIV and, most notably, Ebola.”
Bloodstream infections are a major cause of illness and death. In particular, infections associated with antimicrobial-resistant pathogens are a growing health problem in the U.S. and worldwide. According to the Centers for Disease Control & Prevention, more than 2 million people a year globally get antibiotic-resistant blood infections, with about 23,000 deaths. The extremely high mortality rate for blood infections is due, in part, to the inability to rapidly diagnose and treat patients in the early stages.
Recent molecular diagnosis methods, including polymerase chain reaction, can reduce the assay time to hours but are often not sensitive enough to detect bacteria that occur at low concentrations in blood, as is common in patients with blood infections.
The IC 3D technology differs from other diagnostic techniques in that it converts blood samples directly into billions of very small droplets. Fluorescent DNA sensor solution infused into the droplets detects those with bacterial markers, lighting them up with an intense fluorescent signal. Zhao said that separating the samples into so many small drops minimizes the interference of other components in blood, making it possible to directly detect target bacteria without the purification typically required in conventional assays.
To identify bacteria-containing droplets among billions of others in a timely fashion, the team incorporated a three-dimensional particle counter developed by UCI biomedical engineer Enrico Gratton and his colleagues that tags fluorescent particles within several minutes.
“The IC 3D instrument is designed to read a large volume in each measurement, to speed up diagnosis,” Gratton said. “Importantly, using this technique, we can detect a positive hit with very high confidence.”
University of California, Irvine
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:34:212021-01-08 11:11:25Test to rapidly diagnose bloodstream infection
A new genetic finding from Duke Medicine suggests that some people who are prone to hostility, anxiety and depression might also be hard-wired to gain weight when exposed to chronic stress, leading to diabetes and heart disease.
An estimated 13 percent of people, all of whom are Caucasian, might carry the genetic susceptibility, and knowing this could help them reduce heart disease with simple interventions such as a healthy diet, exercise and stress management.
“Genetic susceptibility, psychosocial stress and metabolic factors act in combination to increase the risk of cardiovascular disease,” said Elizabeth Hauser, Ph.D. director of Computational Biology at the Duke Molecular Physiology Institute.
Hauser and colleagues analysed genome-wide association data from nearly 6,000 people enrolled in the Multi-Ethnic Study of Atherosclerosis (MESA). The MESA study began in 2000 to better understand how heart disease starts, compiling the participants’ genetic makeup as well as physical traits such as hip circumference, body mass index, cholesterol readings, glucose levels, blood pressure and other measures.
In the Duke analysis, the researchers first pinpointed a strong correlation between participants who reported high levels of chronic life stress factors and increased central obesity, as measured by hip circumference.
They then tested genetic variations across the genome to see which ones, in combination with stress, seemed to have the biggest influence on hip circumference. It turns out that variations called single-nucleotide polymorphisms (SNPs) in the EBF1 gene showed a strong relationship with hip circumference, depending on levels of chronic psychosocial stress. What’s more, among those with this particular genotype, hips grew wider as stress levels increased.
“With further analysis, we found a significant pathway from high chronic life stress to wide hip circumference, to high blood glucose and diabetes, to increased cardiovascular disease, notably atherosclerosis,” said Abanish Singh, Ph.D., a researcher in computational biology at Duke and the study’s lead author. “But we found this only in people who were carriers of the EBF1 single-nucleotide polymorphism, and this was limited to participants who were white.”
The researchers reproduced their findings using data from another study, the Framingham Offspring Cohort.
“These findings suggest that a stress reduction intervention, along with diet and exercise, could reduce the risk of cardiovascular disease and may be most effective in individuals with this specific genotype,” said Redford Williams, M.D. one of the study’s senior authors and director of Duke’s Behavioral Medicine Research Center.
Duke Medicine
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:34:212021-01-08 11:11:35Gene interacts with stress and leads to heart disease in some people
Beckman Coulter Diagnostics has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for the Access 25(OH) Vitamin D Total assay. Offering state-of-the-art performance, the new assay is an important addition to the company’s bone metabolism assay menu and is available for use on its Access 2 and UniCel DxI series of immunoassay systems. “FDA clearance of our 25(OH) Vitamin D Total assay allows us to provide laboratories with the tools needed to confidently diagnose and manage vitamin D deficiency-related diseases,” said Arnd Kaldowski, president, Beckman Coulter Diagnostics. “The new assay delivers increased accuracy in patient results through traceability to the gold standard 25(OH) vitamin D reference measurement procedure (RMP) from Ghent University and equimolar detection of 25(OH) vitamin D2 and 25(OH) vitamin D3.” The Ghent RMP is the reference procedure utilized by the Vitamin D Standardization Program (VDSP), an international collaboration established by the Office of Dietary Supplements at the National Institutes of Health, with the goal of promoting standardized laboratory measurements of 25(OH) vitamin D around the world. The new assay also provides excellent stability, greater ease-of-use and convenient storage through innovative new packaging designed to prevent light-induced reagent degradation.
www.beckmancoulter.com
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:34:212021-01-08 11:11:13Beckman Coulter vitamin D assay standardized to reference measurement procedure from Ghent University
We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
Essential Website Cookies
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.
Google Analytics Cookies
These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
Other external services
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.
Privacy Beleid
U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.