Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

Researchers help discover genetic key to food allergy condition

, 26 August 2020/in E-News /by 3wmedia

A recent breakthrough in understanding the cause of a rare, hard-to-treat allergic disorder has been made by a group of research institutions that include the University of Arkansas for Medical Sciences (UAMS) and the Arkansas Children’s Hospital Research Institute (ACHRI).

The discovery could lead to new targeted therapies for eosinophilic eophagitis (EoE). The allergic/immune condition causes inflammation of the oesophagus, usually from consuming foods such as dairy products, eggs, soy and wheat.

The condition can cause infants and toddlers to refuse food and hinder their development. Older children may have recurring abdominal pain, vomiting and trouble swallowing, while teenagers and adults typically have difficulty swallowing. Food may also become stuck in the inflamed oesophagus, creating a medical emergency.

Existing treatments for EoE are limited to prescribing long-term restrictive diets and steroid sprays to swallow.

“We hope this discovery will open the door to some additional treatment options,” said Stacie Jones, M.D., a professor in the departments of Pediatrics and Physiology & Biophysics in the UAMS College of Medicine. She is also section chief of Allergy & Immunology and leads the allergy research team ACHRI.

The study found that EoE is triggered by the interaction between epithelial cells, which help form the lining of the oesophagus, and a gene called CAPN14. It also identified a marker that can be used to measure the activity of the disease, said UAMS’ Robert Pesek, M.D., an author on the study and an assistant professor in the Department of Pediatrics in the UAMS College of Medicine. 

“Currently, the only tool we have for measuring that is endoscopy, and that becomes impractical for repeated use on children,” Pesek said.

Although new treatments have yet to be realized, UAMS’ participation in EoE and other food allergy research gives Arkansas patients access to cutting-edge research and treatment expertise not available anywhere else in the state. University of Arkansas for Medical Sciences

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:38Researchers help discover genetic key to food allergy condition

Study finds some aggressive tumours silence genes that fight cancer

, 26 August 2020/in E-News /by 3wmedia

A study led by Yale Cancer Center may provide clues to how some aggressive cancers turn off, or silence, genes critical to suppressing tumours. The findings suggest that this gene silencing process could be interrupted to increase the chances that aggressive tumours will respond to treatment.

As cancer develops, it often outstrips its blood supply and receives less oxygen than normal tissue. This low-oxygen environment, called hypoxia, is associated with aggressive tumours of all types that are more likely to progress despite chemotherapy and radiation therapy.

The study, which used colon cancer tissue, found that hypoxia also triggers the silencing of a critical tumour-suppressing gene called MLH1.

The team also identified an enzyme, LSD1 (lysine specific demethylase), associated with MLH1 that could be a target to reverse or block the silencing process. Since LSDI is an enzyme, it is possible to target it with small molecules to inhibit its activity.

“We’ve long known that hypoxic tumours are associated with worse prognoses, but the idea that hypoxic tumours could silence genes was an unexpected finding,” said senior author Dr. Peter M. Glazer, the Robert H. Hunter Professor and chair of therapeutic radiology, and professor of genetics at Yale School of Medicine. “Now that we know how big a role hypoxia plays, we have a new and clinically-relevant path to explore in terms of circumventing this process. The next step is to determine how hypoxia affects other tumor-suppressing genes.” Yale School of Medicine

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:46Study finds some aggressive tumours silence genes that fight cancer

Scientists take totally tubular journey through brain cells

, 26 August 2020/in E-News /by 3wmedia

In a new study, scientists at the National Institutes of Health took a molecular-level journey into microtubules, the hollow cylinders inside brain cells that act as skeletons and internal highways. They watched how a protein called tubulin acetyltransferase (TAT) labels the inside of microtubules. The results answer long-standing questions about how TAT tagging works and offer clues as to why it is important for brain health.
Microtubules are constantly tagged by proteins in the cell to designate them for specialized functions, in the same way that roads are labelled for fast or slow traffic or for maintenance. TAT coats specific locations inside the microtubules with a chemical called an acetyl group. How the various labels are added to the cellular microtubule network remains a mystery. Recent findings suggested that problems with tagging microtubules may lead to some forms of cancer and nervous system disorders, including Alzheimer’s disease, and have been linked to a rare blinding disorder and Joubert Syndrome, an uncommon brain development disorder.
‘This is the first time anyone has been able to peer inside microtubules and catch TAT in action,’ said Antonina Roll-Mecak, Ph.D., an investigator at the NIH’s National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, Maryland, and the leader of the study.
Microtubules are found in all of the body’s cells. They are assembled like building blocks, using a protein called tubulin. Microtubules are constructed first by aligning tubulin building blocks into long strings. Then the strings align themselves side by side to form a sheet. Eventually the sheet grows wide enough that it closes up into a cylinder. TAT then bonds an acetyl group to alpha tubulin, a subunit of the tubulin protein.
Some microtubules are short-lived and can rapidly change lengths by adding or removing tubulin pieces along one end, whereas others remain unchanged for longer times. Recognising the difference may help cells function properly. For example, cells may send cargo along stable microtubules and avoid ones that are being rebuilt. Cells appear to use a variety of chemical labels to describe the stability of microtubules.
‘Our study uncovers how TAT may help cells distinguish between stable microtubules and ones that are under construction,’ said Dr. Roll-Mecak. According to Dr. Roll-Mecak, high levels of microtubule tagging are unique to nerve cells and may be the reason that they have complex shapes allowing them to make elaborate connections in the brain.
For decades scientists knew that the insides of long-lived microtubules were often tagged with acetyl groups by TAT. Changes in acetylation may influence the health of nerve cells. Some studies have shown that blocking this form of microtubule tagging leads to nerve defects, brain abnormalities or degeneration of nerve fibres. Since the discovery of microtubule acetylation, scientists have been puzzled about how TAT accesses the inside of the microtubules and how the tagging reaction happens.
To watch TAT at work, Dr. Roll-Mecak and her colleagues took high resolution movies of individual TAT molecules interacting with microtubules in real time. They saw that TAT surfs through the inside of microtubules and although it can find acetylation sites quickly, the process of adding the tag occurs very slowly.
In general, tagging reactions work like keys fitting into locks: the better the key fits, the faster the lock can open. Similarly, the rate of the reactions is determined by how well TAT molecules fit around tagging sites.
Dr. Roll-Mecak’s team investigated this idea by using a technique called X-ray crystallography to look at how atoms on TAT molecules interact with acetylation sites on tubulin molecules. Their results suggested that TAT fit poorly around the sites.
‘It looks as though TAT can easily journey through microtubules spotting acetylation sites but may only label those that are stable for longer periods of time,’ said Dr. Roll-Mecak.
This may help cells identify the microtubules they need to rapidly change shapes or send cargo to other places. Further studies may help researchers understand how microtubule tagging influences nerve cells in health and disease. National Institute of Neurological Disorders and Stroke

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:53Scientists take totally tubular journey through brain cells

Faster, cheaper tests for sickle cell

, 26 August 2020/in E-News /by 3wmedia

Newly developed test can identify sickle cell disease in minutes and could be used in rural clinics around the globe
Within minutes after birth, every child in the U.S. undergoes a battery of tests designed to diagnose a host of conditions, including sickle cell disease. Thousands of children born in the developing world, however, aren’t so lucky, meaning many suffer and die from the disease each year.

A.J. Kumar hopes to put a halt to at least some of those deaths.

A Post-Doctoral Fellow in Chemistry and Chemical Biology working in the lab of George Whitesides, the Woodford L. and Ann A. Flowers University Professor, Kumar and colleagues, including other co-authors, have developed a new test for sickle cell disease that provides results in just 12 minutes and costs as little as 50 cents – far faster and cheaper than other tests.

‘The tests we have today work great, they have a very high sensitivity,’ Kumar said. ‘But the equipment needed to run them costs in the tens of thousands of dollars, and they take hours to run. That’s not amenable to rural clinics, or even some cities where the medical infrastructure isn’t up to the standards we see in the U.S. That’s where having a rapid, low-cost test becomes important and this paper shows such a test can potentially work.’

When run against more than 50 clinical samples – 26 positive and 26 negative – the new test showed good sensitivity and specificity for the disease, Kumar said, so the early evidence is promising, but additional testing will be needed to determine whether the test is truly accurate enough to use in the field.

The test designed by Kumar is deceptively simple, and works by connecting two ideas scientists have understood for decades.

The first is the notion that blood cells affected by the disease are denser than normal cells, and the second is that many polymers, when mixed in water, automatically separate into layers ordered by density.

Conventional methods to separate cells by density relied on layering liquids with different density by hand. The insight, arrived at by Charles Mace (now at Tufts) and Kumar, was that the self-forming layers could be used to separate cells, such as red blood cells, by density.

‘When you mix the polymers with water, they separate just like oil and water,’ he said. ‘Even if you mix it up, it will still come back to those layers.’

It wasn’t until a chance meeting with Dr. Thomas Stossel, however, that Kumar believed the technology might have a real impact on sickle cell disease.

‘Initially, we started off working on malaria, because we thought when parasites invaded the cells, it would change their density,’ he said. ‘But when I met Tom Stossel on a panel at the Harvard Medical School, he said, ‘You need to work on sickle cell.’ He’s a haematologist by training and has been working with a non-profit in Zambia for the past decade, so he’s seen the need and the lack of a diagnostic tool.’

When Kumar and colleagues ran tests with infected blood, their results were unmistakable. While healthy red blood cells settled in the tubes at specific levels, the dense cells from blood infected with sickle cell settled in a band significantly lower. The band of red cells could clearly be seen by eye.

Just showing that the test worked, however, wasn’t enough.

‘We wanted to make the test as simple as possible,’ Kumar explained. ‘The idea was to make it something you could run from just a finger prick. Because these gradients assemble on their own, that meant we could make them in whatever volume we wanted, even a small capillary tube.’

The design the team eventually settled on is barely larger than a toothpick. In the field, Kumar said, running the test is as simple as uncapping the tube, pricking a patient’s finger and allowing the blood to wick into the tube.

While further study is needed to determine how accurate and effective the test may be, Kumar said stopping even a few sickle-cell-related deaths would EurekAlert

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:41Faster, cheaper tests for sickle cell

Danish DNA could be key to happiness

, 26 August 2020/in E-News /by 3wmedia

Genetics could be the key to explaining nation’s levels of happiness, according to research from the University of Warwick.

Economists at the University’s Centre for Competitive Advantage in the Global Economy (CAGE) have looked at why certain countries top the world happiness rankings. In particular they have found the closer a nation is to the genetic makeup of Denmark, the happier that country is. The research could help to solve the puzzle of why a country like Denmark so regularly tops the world happiness rankings.

Dr Eugenio Proto and Professor Andrew Oswald found three forms of evidence for a link between genetic makeup and a nation’s happiness.

Firstly they used data on 131 countries from a number of international surveys including the Gallup World Poll, World Value Survey and the European Quality of Life Surveys. The researchers linked cross-national data on genetic distance and well-being.

Dr Proto said: “The results were surprising, we found that the greater a nation’s genetic distance from Denmark, the lower the reported wellbeing of that nation. Our research adjusts for many other influences including Gross Domestic Product, culture, religion and the strength of the welfare state and geography.

The second form of evidence looked at existing research suggesting an association between mental wellbeing and a mutation of the gene that influences the reuptake of serotonin, which is believed to be linked to human mood.

Dr Proto added: “We looked at existing research which suggested that the long and short variants of this gene are correlated with different probabilities of clinical depression, although this link is still highly debated. The short version has been associated with higher scores on neuroticism and lower life satisfaction. Intriguingly, among the 30 nations included in the study, it is Denmark and the Netherlands that appear to have the lowest percentage of people with this short version.”

The final form of evidence looked at whether the link between genetics and happiness also held true across generations, continents and the Atlantic Ocean.

Professor Oswald said: “We used data on the reported wellbeing of Americans and then looked at which part of the world their ancestors had come from. The evidence revealed that there is an unexplained positive correlation between the happiness today of some nations and the observed happiness of Americans whose ancestors came from these nations, even after controlling for personal income and religion.” University of Warwick

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:48Danish DNA could be key to happiness

New stem cell research points to early indicators of schizophrenia

, 26 August 2020/in E-News /by 3wmedia

Using new stem cell technology, scientists at the Salk Institute have shown that neurons generated from the skin cells of people with schizophrenia behave strangely in early developmental stages, providing a hint as to ways to detect and potentially treat the disease early.
The findings of the study support the theory that the neurological dysfunction that eventually causes schizophrenia may begin in the brains of babies still in the womb.
‘This study aims to investigate the earliest detectable changes in the brain that lead to schizophrenia,’ says Fred H. Gage, Salk professor of genetics. ‘We were surprised at how early in the developmental process that defects in neural function could be detected.’
Currently, over 1.1 percent of the world’s population has schizophrenia, with an estimated three million cases in the United States alone. The economic cost is high: in 2002, Americans spent nearly $63 billion on treatment and managing disability. The emotional cost is higher still: 10 percent of those with schizophrenia are driven to commit suicide by the burden of coping with the disease.
Although schizophrenia is a devastating disease, scientists still know very little about its underlying causes, and it is still unknown which cells in the brain are affected and how. Previously, scientists had only been able to study schizophrenia by examining the brains of patients after death, but age, stress, medication or drug abuse had often altered or damaged the brains of these patients, making it difficult to pinpoint the disease’s origins.
The Salk scientists were able to avoid this hurdle by using stem cell technologies. They took skin cells from patients, coaxed the cells to revert back to an earlier stem cell form and then prompted them to grow into very early-stage neurons (dubbed neural progenitor cells or NPCs). These NPCs are similar to the cells in the brain of a developing fetus.
The researchers generated NPCs from the skin cells of four patients with schizophrenia and six people without the disease. They tested the cells in two types of assays: in one test, they looked at how far the cells moved and interacted with particular surfaces; in the other test, they looked at stress in the cells by imaging mitochondria, which are tiny organelles that generate energy for the cells.
On both tests, the Salk team found that NPCs from people with schizophrenia differed in significant ways from those taken from unaffected people.
In particular, cells predisposed to schizophrenia showed unusual activity in two major classes of proteins: those involved in adhesion and connectivity, and those involved in oxidative stress. Neural cells from patients with schizophrenia tended to have aberrant migration (which may result in the poor connectivity seen later in the brain) and increased levels of oxidative stress (which can lead to cell death).
These findings are consistent with a prevailing theory that events occurring during pregnancy can contribute to schizophrenia, even though the disease doesn’t manifest until early adulthood. Past studies suggest that mothers who experience infection, malnutrition or extreme stress during pregnancy are at a higher risk of having children with schizophrenia. The reason for this is unknown, but both genetic and environmental factors likely play a role. Salk Institute for Biological Studies

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:56New stem cell research points to early indicators of schizophrenia

Work could lead to earlier diagnosis, treatment of mental diseases

, 26 August 2020/in E-News /by 3wmedia

A computer science and engineering associate professor and her doctoral student graduate are using a genetic computer network inference model that eventually could predict whether a person will suffer from bipolar disorder, schizophrenia or another mental illness.

The findings are detailed in the paper “Inference of SNP-Gene Regulatory Networks by Integrating Gene Expressions and Genetic Perturbations,” which was recently published. The principal investigators were Jean Gao, an associate professor of computer science and engineering, and Dong-Chul Kim, who recently earned his doctorate in computer science and engineering from UT Arlington.

“We looked for the differences between our genetic computer network and the brain patterns of 130 patients from the University of Illinois,” Gao said. “This work could lead to earlier diagnosis in the future and treatment for those patients suffering from bipolar disorder or schizophrenia. Early diagnosis allows doctors to provide timely treatments that may speed up aid to help affected patients.”

The UT Arlington researchers teamed with Jiao Wang of the Beijing Genomics Institute at Wuhan, China; and Chunyu Liu, visiting associate professor at the University of Illinois Department of Psychiatry, on the project.

Gao said the findings also could lead to more individualized drug therapies for those patients in the early stages of mental illnesses.

“Our work will allow doctors to analyse a patient’s genetic pattern and apply the appropriate levels of personalized therapy based on patient-specific data,” Gao said.

One key to the research is designing single nucleotide polymorphism or SNP networks, researchers said.

“SNPs are regulators of genes,” said Kim, who joins the University of Texas-Pan American this fall as an assistant professor. “Those SNPs visualize how individual genes will act. It gives us more of a complete picture.” UT Arlington

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:43Work could lead to earlier diagnosis, treatment of mental diseases

Finding the Achilles’ heel of ovarian tumour growth

, 26 August 2020/in E-News /by 3wmedia

A team of scientists, led by principal investigator David D. Schlaepfer, PhD, professor in the Department of Reproductive Medicine at the University of California, San Diego School of Medicine report that small molecule inhibitors to a protein called focal adhesion kinase (FAK) selectively prevent the growth of ovarian cancer cells as tumour spheroids.

Ovarian cancer is a leading cause of female cancer death in the United States. On average, more than 21,000 women are diagnosed with ovarian cancer each year and 14,270 die. Many women achieve remission, but cancer recurrence rates exceed 75 percent, prompting the need for new treatments.
“Ovarian cancer spreads within a women’s peritoneal space through a unique mechanism that involves the survival of small clusters of tumour cells termed spheroids,” said Schlaepfer. “Our studies show that FAK signalling functions at the centre of a tumour cell survival signalling network.”
In the first study, published in Gynecologic Oncology, first author Nina Shah, MD, a gynaecological oncology fellow in the Department of Reproductive Medicine, found that ovarian tumour cells with low levels of a tumour suppressor protein, called merlin, displayed heightened sensitivity to FAK inhibitor growth cessation.
“With FAK inhibitor clinical trials already testing a similar linkage in mesothelioma (a rare cancer that affects the protective lining of many internal organs), our results support the hypothesis that protein biomarkers such as merlin may identify those patients who may best respond to FAK inhibitor therapy,” said Schlaepfer.
In the second study in Molecular Cancer Therapeutics, first author Isabelle Tancioni PhD, an assistant project scientist at UC San Diego Moores Cancer Center discovered that a network of signals generated by osteopontin – a beta-5 integrin receptor used in cell-to-cell signalling – and FAK control ovarian cancer spheroid growth. High levels of beta-5 integrin and FAK expression are associated with a poor prognosis for some ovarian cancer patients. “Thus, high levels of beta-5 integrin may serve as a novel biomarker for ovarian carcinoma cells that possess active FAK signalling,” said Schlaepfer.
Schlaepfer noted that tumour recurrence and metastasis are responsible for the majority of ovarian cancer-related deaths and said the new findings support on going clinical trials of FAK inhibitors as new agents in the fight to prevent ovarian cancer progression. University of California – San Diego

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:51Finding the Achilles’ heel of ovarian tumour growth

Transcription factor called SLUG helps determines type of breast cancer

, 26 August 2020/in E-News /by 3wmedia

During breast-tissue development, a transcription factor called SLUG plays a role in regulating stem cell function and determines whether breast cells will mature into luminal or basal cells.

Studying factors, such as SLUG, that regulate stem-cell activity and breast-cell identity are important for understanding how breast tumours arise and develop into different subtypes. Ultimately, this knowledge may help the development of novel therapies targeted to specific breast-tumour subtypes.

Background: Stem cells are immature cells that can differentiate, or develop, into different cell types. Stem cells are important for replenishing cells in many tissues throughout the body. Defects that affect stem-cell activity can lead to cancer because mutations in these cells can cause uncontrollable growth. Some transcription factors regulate the differentiation or ‘programming’ of breast stem cells into the more mature cells of the breast tissue. Abnormal expression of these transcription factors can change the normal programming of cells, which can lead to imbalances in cell types and the over-production of cells with enhanced properties of stem cells.

Breast tissue has two main types of cells: luminal cells and basal cells. Transcription factors, like SLUG, help control whether cells are programmed to become luminal cells or basal cells during normal breast development. In cancer, transcription factors can become deregulated, influencing what type of breast tumour will form. In aggressive basal-type breast tumours, SLUG is often over-expressed.

Previous work led by Charlotte Kuperwasser, principal investigator and senior author, determined that some common forms of breast cancer originate from luminal cells, whereas rare forms of breast cancer originate from basal cells. This difference in origins suggests that genes that affect the ability of a cell to become luminal or basal may also affect the formation of breast tumours. Because SLUG can regulate breast-cell differentiation, Kuperwasser’s team investigated SLUG’s role in breast-cell differentiation and tumor growth.

The research team reduced the expression of the SLUG gene in human-derived breast cells and then used cell-sorting techniques to separate the cells into groups of luminal, basal, and stem cells. Next, they used mathematical modelling to measure the rate and frequency that each of the three cell types changed into another cell type. By comparing the rates between control cells and cells in which SLUG was reduced, the team was able to determine the role of SLUG in luminal-, basal-, and stem-cell transitions.

To test the result of their mathematical model, the research team examined and compared breast-tissue samples from mice in two groups: a control group with normal SLUG and an experimental group that did not express SLUG. Mammary glands from the experimental and control groups were analyzed for changes in structure, the amount and distribution of luminal and basal cells in the gland, and whether these cells had stem-cell activity.

The SLUG-deficient mice exhibited defects in breast-cell differentiation. The mammary glands of these mice had too many luminal cells and defective basal cells that had luminal-cell characteristics. The control group of normal mice had a normal ratio of luminal to basal cells.

The SLUG-deficient mice showed defects in stem-cell function: Specifically, tumour formation and tissue regeneration was inhibited, an indication of defective stem cells, suggesting that SLUG was necessary to maintain normal luminal and basal cells within the mammary gland.

Additionally, SLUG-deficient cells when transplanted could not regenerate the mammary gland of the mouse, suggesting that SLUG is necessary for mammary stem-cell function. Tumour formation was also inhibited in SLUG-deficient mice, suggesting that SLUG may affect stem-cell activity necessary for tumour formation. Tufts University

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:12:01Transcription factor called SLUG helps determines type of breast cancer

New blood test could offer more tailored treatment of ovarian cancer

, 26 August 2020/in E-News /by 3wmedia

A new blood test allowing doctors to predict which ovarian cancer patients will respond to particular types of treatment is a step closer following a new study by Manchester scientists.
Researchers from The University of Manchester and The Christie NHS Foundation Trust – both part of Manchester Cancer Research Centre – say the test could be developed and used in hospitals within the next few years.

It would mean medics could see which patients could benefit from blood vessel-targeting drugs – such as bevacizumab – in addition to conventional therapy. Meanwhilehile others who are not going to benefit would be spared the time and side effects associated with having the drug.  The test would also help to reduce the cost to the NHS.

Ovarian cancer has seen little increase in survival rates over the last few decades and scientists are seeking new treatment strategies to improve the standard approach of surgery and chemotherapy.

A recent advance has been to target the development of new blood vessels within the tumour – preventing the cancer from receiving the nutrients it needs to grow.

Bevacizumab, one of the blood vessel-targeting drugs, has shown significant but modest improvements in patient survival so doctors are seeking ways to predict which patients are most likely to gain an advantage from this type of drug.

The research team looked at blood samples from patients enrolled in an international trial of bevacizumab. These patients received either standard chemotherapy treatment alone or chemotherapy plus the blood vessel-targeting drug.

Professor Gordon Jayson, Professor of Medical Oncology at The University of Manchester and Honorary Consultant at The Christie who jointly led the study, said: ‘We are keen to identify predictive biomarkers – measures that can indicate how well a patient will respond to treatment – so we can better target these drugs to patients most likely to benefit.
‘We investigated levels of a range of proteins in patients’ pre-treatment blood samples to see if any were associated with improved survival.’

The findings show that two particular proteins – Ang1 and Tie2 – could be used in combination to predict patient response. Patients with high levels of Ang1 and low levels of Tie2 were most likely to benefit from bevacizumab. Both these proteins are involved in controlling the formation of new blood vessels. Conversely, they found that patients with high levels of both proteins did not benefit from the additional drug.

Study co-author Professor Caroline Dive, from the Cancer Research UK Manchester Institute based at The University of Manchester, added: ‘We will now look to further explore the potential of using a blood test to personalise treatment for ovarian cancer patients. Moving towards a more individualised treatment plan specific for each patient and their particular tumour is key to improving outcomes for patients while sparing those unlikely to benefit from potential side effects of therapy.’ University of Manchester

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:38New blood test could offer more tailored treatment of ovarian cancer
Page 132 of 228«‹130131132133134›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
15 December 2025

WERFEN APPLAUDS SIGNIFICANT PUBLICATION URGING ACTION ON THE RISKS OF UNDETECTED HEMOLYSIS

13 December 2025

Indero validates three-day gene expression method

12 December 2025

Johnson & Johnson acquires Halda Therapeutics for $3.05 billion

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription