Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

Found: ‘master’ protein in pulmonary fibrosis

, 26 August 2020/in E-News /by 3wmedia

This spring has brought rare but tangible moments of progress against the devastating lung disease idiopathic pulmonary fibrosis (IPF), which afflicts millions of people worldwide. Two drugs recently showed promise in clinical trials, and now a study offers both an unprecedentedly deep explanation of how the disease progresses and introduces another potential therapeutic avenue.
The new study features a central figure: an evolutionarily ancient protein called ‘chitinase 3-like-1’ (CHI3L1). The authors implicate it as the ‘master regulator’ of what appears to be a tragically errant repair response to the mysterious lung injuries that give rise to the disease. In describing how CHI3L1 works in IPF, the research also points to a strategy for treatment.
The report demonstrates that CHI3L1 is produced to help in response to the injury. It feeds back to protect injured cells from dying and simultaneously stimulates tissue repair to patch the damage that has occurred. But the study also shows how this dual role contributes to the ultimate problem. If IPF resulted from a single injury, like a paper cut, CHI3L1 would decrease the injury and cause local scarring while it restored tissue integrity. In that case, the amount of scarring would not be excessive and tissue function would not be significantly altered. But in IPF lungs, cells undergo ongoing injury, so CHI3L1 is chronically elevated and scar tissue accumulates. As CHI3L1 rescues cell after cell, the scarring builds up, eventually compromising the lung’s ability to breathe. In IPF, 70 percent of patients die within five years.
‘The CHI3L1 is doing exactly what it is supposed to do — it is designed to shut off cell death and decrease injury,’ said Dr. Jack A. Elias, a co-senior author of the study and dean of medicine and biological sciences at Brown University. He is joined on the paper by a host of his former colleagues and students at Yale University where the research occurred. ‘But at the same time it is decreasing cell death it is driving the fibrosis. You’ve got this ongoing injury so you’ve got these ongoing attempts to shut off injury which stimulate scarring.’
 
 
They compared tissues and serum from normal patients, outpatients with IPF, and patients with an acute exacerbation (AE) of IPF. In AE, widespread lung injury is superimposed on the pulmonary fibrosis, which frequently occurs before patients die. In lung biopsies and serum, they found that CHI3L1 levels are elevated in both tissue compartments in the outpatients with IPF and that the levels of CHI3L1 correlated with their disease progression. In the patients with AE, elevated levels of CHI3L1 were not noted, showing that the levels of CHI3L1 decrease right before the patients die.
‘This demonstrates that the CHI3L1 plays a key role in controlling lung injury in this setting,’ Elias said.
After documenting that elevated levels of CHI3L1 correlate with ongoing fibrosis and scarring and that a lack of the protein associates with widespread cell death, the team engaged in several manipulations of CHI3L1 in mice to see how levels and the clinical outcomes might be related. (In mice, CHI3L1 is also called BRP-39.)
Scientists can induce an IPF-like response in mice using a drug called bleomycin. In mice given bleomycin, the researchers found that the levels of CHI3L1 declined at first and then surged. At the times when the protein levels were low, cell damage occurred, and when the protein surged, the excessive scarring set in.
In previous research the team had engineered several lines of genetically modified mice. Some were transgenic and can produce CHI3l1 on chemically delivered command. Other mice were engineered to never produce BRP-39 — the mouse version of CHI3L1 — at all.
Using these mice, the researchers found that if they triggered CHI3L1 production early after administering bleomycin, the mice fared well, experiencing less injury, less damage and less scarring than controls. If they waited several days after bleomycin to trigger CHI3L1, the mice fared very poorly and scarring and mortality went up.
Mice who couldn’t produce CHI3L1/BRP-39, had acute lung cell damage, somewhat like AE patients who have a relative deficiency of CHI3L1. However, without CHI3L1 they did not generate much scarring.
All of these findings were supplemented with several other experiments that were designed to learn how CHI3L1 interacts with other cells involved in the tissue repair response in both human and mouse lungs. The experiments, including studies conducted in a bioengineered 3-D model of lung tissue seeded with relevant cells, showed that CHI3L1 regulates a pathway that recruits cells such as macrophages and fibroblasts that produce the scarring, or fibrosis.
In all, the results show that CHI3L1 plays a fundamental role in the course, if not the origin, of IPF. An ongoing buildup of it results in excessive scarring. Too little and cells die much more frequently.
‘To my knowledge this is the first comprehensive paper that’s been able to explain the many facets and presentations of IPF,’ Elias said. ‘It explains and links the injury and the repair responses that are critical in the disease. It also provides an explanation for the slowly progressing patients and the patients that experience acute exacerbations.’ Brown University

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:53Found: ‘master’ protein in pulmonary fibrosis

Test reliably detects inherited immune deficiency in newborns

, 26 August 2020/in E-News /by 3wmedia

A newborn screening test for severe combined immunodeficiency (SCID) reliably identifies infants with this life-threatening inherited condition, leading to prompt treatment and high survival rates, according to a study supported by the National Institutes of Health. Researchers led by Jennifer Puck, M.D., of the University of California, San Francisco, also found that SCID affects approximately 1 in 58,000 newborns, indicating that the disorder is less rare than previously thought. The study was funded in part by NIH’s National Institute of Allergy and Infectious Diseases (NIAID) and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD).

SCID is a group of disorders caused by defects in genes involved in the development and function of T cells and other infection-fighting immune cells. Infants with SCID are highly susceptible to life-threatening infections. SCID is fatal, usually within the first year or two of life, unless affected infants are given immune-restoring treatments such as transplants of blood-forming stem cells or gene therapy. More than 80 percent of affected infants do not have a family history of the condition.

“The results of this study highlight the important role of newborn screening for SCID,” said NIAID Director Anthony S. Fauci, M.D. “The findings demonstrate that detecting SCID before symptoms such as severe infections appear helps ensure that infants with this serious condition receive lifesaving treatments.”

The SCID newborn screening test, originally developed at NIH, measures T cell receptor excision circles (TRECs), a by-product of T-cell development. Infants with SCID have few or no T cells, regardless of the underlying genetic defect, and the absence of TRECs may indicate SCID. The TREC test also may help doctors identify infants with non-SCID T-cell deficiencies. SCID was added in 2010 to the U.S. Department of Health and Human Services’ Recommended Uniform Screening Panel for newborns in the United States. However, the TREC test has not yet been adopted universally. Nearly half of states conduct newborn screening for SCID, and the test is performed for almost two thirds of infants born across the country.

“We have made great strides in our knowledge of SCID and other related immunodeficiencies in a relatively short period of time, thanks to newborn screening,” said Tiina Urv, Ph.D., a program director in the Intellectual and Developmental Disabilities Branch at NICHD. “Such collaborative research efforts could serve as a model for other disorders.” Eunice Kennedy Shriver National Institute of Child Health and Human Development

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:40Test reliably detects inherited immune deficiency in newborns

Crohn’s disease research

, 26 August 2020/in E-News /by 3wmedia

University of Delaware researchers have identified a protein, hiding in plain sight, that acts like a bodyguard to help protect and stabilize another key protein, that when unstable, is involved in Crohn’s disease. The fundamental research points to a possible pathway for developing an effective therapy for the inflammatory bowel disease.

The research was conducted by Catherine Leimkuhler Grimes, assistant professor of chemistry and biochemistry at UD, and Vishnu Mohanan, doctoral student in biological sciences,

As the scientists point out, our immune system provides the first line of defence against invading pathogens, a task even more challenging in the human gut, where over a trillion commensal bacteria live — resident microorganisms that help convert food into protein, vitamins and minerals.

To distinguish “bad” versus “good” bacteria, our bodies rely on a complex network of receptors that can sense patterns that are unique to bacteria, such as small fragments of bacterial cell wall. The receptors recognize and bind to these fragments, triggering an immune response to take out the “bad guys” or control the growth of the “good guys.”

However, when one of these receptors breaks down, or mutates, an abnormal immune response can occur, causing the body to mount an immune response against the “good” bacteria. Chronic inflammatory disorders, such as Crohn’s disease, are hypothesized to arise as a result.

The UD team focused on a protein called NOD2 — nucleotide-binding oligomerisation domain containing protein 2. More than 58 mutations in the NOD2 gene have been linked with various diseases, and 80 percent of these mutations are connected specifically to Crohn’s disease, according to Grimes.

In experiments to unveil NOD2’s signalling mechanisms and where they break down, “we stumbled on this chaperone molecule,” says Mohanan, who was the lead author of the scientific article.

The chaperone molecule was HSP70, which stands for “heat shock protein 70.” It assists with the folding of proteins into their correct three-dimensional shapes, even when cells are under stress from elevated body temperatures, such as a fever.

Grimes said she was a little sceptical at first about pursuing studies with HSP70 because it is a commonly known protein, but she found Mohanan’s initial data intriguing.

“Vishnu found that if we increased the expression level of HSP70, the NOD2 Crohn’s mutants were able to respond to bacterial cell wall fragments. A hallmark of the NOD2 mutations is inability to respond to these fragments. Essentially, Vishnu found a fix for NOD2, and we wanted to determine how we were fixing it.”

In further experiments, Mohanan created a tagged-wild-type NOD2 cell line in which NOD2 levels nearly matched the levels found in nature (versus “super” levels that might stimulate an artificial response) and found that NOD2 became more stabilized and degraded more slowly when treated with HSP70. In fact, HSP70 increased the half-life of NOD2 by more than four hours.

“Basically, HSP70 keeps the protein around — it kind of watches over and protects NOD2, and keeps it from going in the cellular trash can,” Grimes explains.

The researchers tested three human cell lines in their study: kidney cells, colon cells and white blood cells. In the next phase of the study, patient tissue will be examined through a collaboration with Nemours/A.I. duPont Hospital for Children to determine if NOD2 levels can be controlled via HSP70 expression.

“We want to figure out why the mutation in NOD2 results in an increase in inflammation,” says Mohanan. “Right now, we have limited knowledge. Once the signalling mechanism is figured out, we will have the keystone.” University of Delaware

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:48Crohn’s disease research

Study shows how common obesity gene contributes to weight gain

, 26 August 2020/in E-News /by 3wmedia

Researchers have discovered how a gene commonly linked to obesity—FTO—contributes to weight gain. The study shows that variations in FTO indirectly affect the function of the primary cilium, a little-understood hair-like appendage on brain and other cells. Specific abnormalities of cilium molecules, in turn, increase body weight, in some instances, by affecting the function of receptors for leptin, a hormone that suppresses appetite. The findings, made in mice, suggest that it might be possible to modify obesity through interventions that alter the function of the cilium, according to scientists at Columbia University Medical Center (CUMC).

‘If our findings are confirmed, they could explain how common genetic variants in the gene FTO affect human body weight and lead to obesity,’ said study leader Rudolph L. Leibel, MD, the Christopher J. Murphy Memorial Professor of Diabetes Research, professor of pediatrics and medicine, and co-director of the Naomi Berrie Diabetes Center at CUMC. ‘The better we can understand the molecular machinery of obesity, the better we will be able to manipulate these mechanisms and help people lose weight.’
Since 2007, researchers have known that common variants in the fat mass and obesity-associated protein gene, also known as FTO, are strongly associated with increased body weight in adults. But it was not understood how alterations in FTO might contribute to obesity. ‘Studies have shown that knocking out FTO in mice doesn’t necessarily lead to obesity, and not all humans with FTO variants are obese,’ said Dr. Leibel. ‘Something else is going on at this location that we were missing.’

In experiments with mice, the CUMC team observed that as FTO expression increased or decreased, so did the expression of a nearby gene, RPGRIP1L. RPGRIP1L is known to play a role in regulating the primary cilium. ‘Aberrations in the cilium have been implicated in rare forms of obesity,’ said Dr. Leibel. ‘But it wasn’t clear how this structure might be involved in garden-variety obesity.’

Dr. Leibel and his colleague, George Stratigopoulos, PhD, associate research scientist, hypothesised that common FTO variations in noncoding regions of the gene do not change its primary function, which is to produce an enzyme that modifies DNA and RNA. Instead, they suspected that FTO variations indirectly affect the expression of RPGRIP1L. ‘When Dr. Stratigopoulos analysed the sequence of FTO’s intron—its noncoding, or nonprotein-producing, portion—we found that it serves as a binding site for a protein called CUX1,’ said Dr. Leibel. ‘CUX1 is a transcription factor that modifies the expression of RPGRIP1L.’

Next, Dr. Stratigopoulos set out to determine whether RPGRIP1L plays a role in obesity. He created mice lacking one of their two RPGRIP1L genes, in effect, reducing but not eliminating the gene’s function. (Mice that lack both copies of the gene have several serious defects that would obscure the effects on food intake.) Mice with one copy of RPGRIP1L had a higher food intake, gained significantly more weight, and had a higher percentage of body fat than controls.

In a subsequent experiment, the CUMC team found that RPGRIP1L-deficient mice had impaired leptin signalling. ‘The receptors didn’t convene properly on the cell surface around the base of cilium,’ said Dr. Leibel. ‘RPGRIP1L appears to play a role in getting leptin receptors to form clusters, where they are more efficient in signalling.’

‘Overall,’ said Dr. Leibel, ‘our findings open a window onto the possible role of the primary cilium in common forms of obesity.’ Columbia University Medical Center

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:55Study shows how common obesity gene contributes to weight gain

Tests to diagnose invasive aspergillosis with 100 percent accuracy

, 26 August 2020/in E-News /by 3wmedia

The fungal infection invasive aspergillosis (IA) can be life threatening, especially in patients whose immune systems are weakened by chemotherapy or immunosuppressive drugs. Despite the critical need for early detection, IA remains difficult to diagnose. A study compared three diagnostic tests and found that the combination of nucleic acid sequence-based amplification (NASBA) and real-time quantitative PCR (qPCR) detects aspergillosis with 100% accuracy.

IA is caused by the fungus Aspergillus fumigatus, which is considered by many pathologists to be the world’s most harmful mold. ‘Traditional diagnostic methods, such as culture and histopathology of infected tissues, often fail to detect Aspergillus,’ comments lead investigator Yun Xia, PhD, of the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

In this retrospective study, scientists evaluated the diagnostic performance of two nucleic acid amplification assays (qPCR and NASBA) and one antigen detection method (galactomannan enzyme-linked immunosorbent assay [GM-ELISA]) using blood samples collected from 80 patients at high risk of IA. Of the 80 patients, 42.5% had proven or probable IA. The patients came from intensive care, haematology, neurology, nephrology, geriatrics, and other hospital departments.

The tests were evaluated singly and in combination. Individually, NASBA had the highest sensitivity (76.47%) whereas qPCR offered the highest specificity (89.13%). NASBA also was the test that best indicated that a patient did not have the infection (negative predictive value). NASBA and qPCR each had a high Youden index, a measure of the effectiveness of a diagnostic marker.

Combining the tests improved the outcomes. The combination of NASBA and qPCR led to 100% specificity and 100% positive predictive value (the probability that subjects truly have the infection).

‘Because each test has advantages and disadvantages, a combination of different tests may be able to provide better diagnostic value than is provided by a single test,’ says Dr. Xia. The combination of NASBA and qPCR should be useful in excluding IA in suspect cases, thus reducing both suffering and expense for immunocompromised patients. On the other hand, the combination of NASBA and qPCR could be more suitable for screening patients suspected of infection, because this assay had the highest sensitivity.’

The authors note that NASBA offers the advantages of rapid amplification (90 minutes) and simple operation with low instrument cost compared with qPCR and GM-ELISA. They caution that although GM-ELISA is widely and routinely used for aspergillosis diagnosis, this study indicates that it had low sensitivity (52.94%) with reasonable specificity (80.43%), making it ‘inferior to both NASBA and qPCR.’  EurekAlert

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:43Tests to diagnose invasive aspergillosis with 100 percent accuracy

Newly discovered gene mutation is linked to hereditary deafness

, 26 August 2020/in E-News /by 3wmedia

Researchers led by geneticists at the Miller School have discovered a new gene mutation that causes hearing loss. Their study, which focused on a large Turkish family in which six individuals have been affected by hereditary deafness, identified a mutated form of the gene FAM65B as a cause of sensorineural hearing loss.

The research also demonstrates that FAM65B is a previously unrecognized component of the inner ear that is required for hearing.

“Hearing loss is the most common human sensory problem,” said Tekin. “We hope that identifying a new genetic cause of this disorder will lead to a better understanding of the molecular components of normal hearing.”

Hearing loss, which affects approximately 1 in 500 newborns, most often results from mutations of single genes that perform specific functions in the inner ear, where sound waves are converted to electrical signals. This process originates in the stereocilia — “hairs” projecting from cochlear hair cells that interconnect to form the hair bundle. Most of the approximately 50 previously identified hair bundle proteins are the products of genes that, when mutated, lead to hearing loss.

Researchers in this study, who conducted a genetic analysis of the subject family, identified a mutated form of FAM65B — a protein previously unassociated with hearing — as the cause. Further characterization of the protein product of FAM65B in rodents and zebrafish has confirmed the findings of the family study. Miller School of Medicine

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:50Newly discovered gene mutation is linked to hereditary deafness

Novel analyses improve identification of cancer associated genes from microarray data

, 26 August 2020/in E-News /by 3wmedia

Dartmouth Institute for Quantitative Biomedical Sciences (iQBS) researchers developed a new gene expression analysis approach for identifying cancer genes. The study results challenge the current paradigm of microarray data analysis and suggest that the new method may improve identification of cancer-associated genes.

Typical microarray-based gene expression analyses compare gene expression in adjacent normal and cancerous tissues. In these analyses, genes with strong statistical differences in expression are identified. However, many genes are aberrantly expressed in tumours as a byproduct of tumorigenesis. These ‘passenger’ genes are differentially expressed between normal and tumour tissues, but they are not ‘drivers’ of tumorigenesis. Therefore, better analytical approaches that enrich the list of candidate genes with authentic cancer-associated ‘driver’ genes are needed.

Lead authors of the study, Ivan P. Gorlov, PhD, Associate Professor of Community and Family Medicine and Christopher Amos, PhD, Professor of Community and Family Medicine and Director of the Center for Genomic Medicine described a new method to analyse microarray data. The research team demonstrated that ranking genes based on inter-tumour variation in gene expression outperforms traditional analytical approaches. The results were consistent across four major cancer types: breast, colorectal, lung, and prostate cancer.

The team used text-mining to identify genes known to be associated with breast, colorectal, lung, and prostate cancers. Then, they estimated enrichment factors by determining how frequently those known cancer-associated genes occurred among the top gene candidates identified by different analysis methods. The enrichment factor described how frequently cancer associated genes were identified compared to the frequency of identification that one could expect by pure chance. Across all four cancer types, the new method of selecting candidate genes based on inter-tumour variation in gene expression outperformed the other methods, including the standard method of comparing mean expression in adjacent normal and tumour tissues. Dr. Gorlov and colleagues also used this approach to identify novel cancer-associated genes.

The authors cite tumour heterogeneity as the most likely reason for the success of their variance-based approach. The method is based on the knowledge that different tumours can be driven by different subsets of cancer genes. By identifying genes with high variation in expression between tumours, the method preferentially identifies genes specifically associated with cancer. This same feature, tumour heterogeneity, may reduce the ability to identify critical gene expression changes when comparing mean gene expression in adjacent tumor and normal tissues, as tumors of the same type may have different sets of genes differentially expressed.

The results of the study challenge the model that comparing mean gene expression in adjacent normal and cancer tissues is the best approach to identifying cancer-associated genes. Indeed, the team identified high variation in adjacent ‘normal’ tissue samples, which are typically used as control samples for comparison in analyses based on mean gene expression. The study suggests that methods based on variance may help get the most from existing and future global gene expression studies. Dartmouth Institute for Quantitative Biomedical Sciences

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:12:01Novel analyses improve identification of cancer associated genes from microarray data

Study finds blood type and memory loss link

, 26 August 2020/in E-News /by 3wmedia

People with blood type AB may be more likely to develop memory loss in later years than people with other blood types, according to a study published by Kristine Alexander, Ph.D., postdoctoral fellow in medicine, Mary Cushman, M.D., M.Sc., professor of medicine at the University of Vermont College of Medicine, and colleagues.

AB is the least common blood type, found in only about four percent of the U.S. population. The study found that people with AB blood were 82 percent more likely to develop the thinking and memory problems that can lead to dementia than people with other blood types. Previous studies have shown that people with type O blood have a lower risk of heart disease and stroke, factors that can increase the risk of memory loss and dementia.

The study was part of a larger study (the REasons for Geographic And Racial Differences in Stroke, or REGARDS Study) of more than 30,000 people followed for an average of 3.4 years. In those who had no memory or thinking problems at the beginning, the study identified 495 participants who developed thinking and memory problems, or cognitive impairment, during the study. They were compared to 587 people with no cognitive problems.

People with AB blood type made up 6 percent of the group who developed cognitive impairment, which is higher than the 4 percent found in the population.

“Our study looks at blood type and risk of cognitive impairment, but several studies have shown that factors such as high blood pressure, high cholesterol and diabetes increase the risk of cognitive impairment and dementia,” says Alexander. “Blood type is also related to other vascular conditions like stroke, so the findings highlight the connections between vascular issues and brain health. More research is needed to confirm these results.”

In the study, researchers also looked at blood levels of factor VIII, a protein that helps blood to clot. High levels of factor VIII were related to higher risk of cognitive impairment. People in this study with higher levels of factor VIII were 24 percent more likely to develop thinking and memory problems than people with lower levels of the protein. People with AB blood had a higher average level of factor VIII than people with other blood types.

“For stroke, we found that about half of the association of blood type AB with stroke was due to differences between people in levels of clotting Factor VIII, but our current study of cognitive impairment did show this finding,” says Cushman, who adds that the differences in the findings of the two studies suggests that other reasons – not yet understood – are likely playing a role in explaining the impact on of blood type AB on cognitive function. Further research is needed to determine those details. University of Vermont

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:38Study finds blood type and memory loss link

A map for eye disease

, 26 August 2020/in E-News /by 3wmedia

Understanding eye diseases is tricky enough. Knowing what causes them at the molecular level is even more confounding.

Now, University of Iowa researchers have created the most detailed map to date of a region of the human eye long associated with blinding diseases, such as age-related macular degeneration. The high-resolution molecular map catalogues thousands of proteins in the choroid, which supplies blood and oxygen to the outer retina, itself critical in vision. By seeing differences in the abundance of proteins in different areas of the choroid, the researchers can begin to figure out which proteins may be the critical actors in vision loss and eye disease.

“This molecular map now gives us clues why certain areas of the choroid are more sensitive to certain diseases, as well as where to target therapies and why,” says Vinit Mahajan, assistant professor in ophthalmology at the UI and corresponding author on the paper. “Before this, we just didn’t know what was where.”

What vision specialists know is many eye diseases, including age-related macular degeneration (AMD), are caused by inflammation that damages the choroid and the accompanying cellular network known as the retinal pigment epithelium (RPE). Yet they’ve been vexed by the anatomy: Why does it seem that some areas of the choroid-RPE are more susceptible to disease than others, and what is happening at the molecular level? The researchers set about to answer that question with non-diseased eye tissue donated by three deceased older individuals through the Iowa Lions Eye Bank. From there, Mahajan and Jessica Skeie, a post-doctoral researcher in ophthalmology at the UI, created a map that catalogues more than 4,000 unique proteins in each of the three areas of the choroid-RPE: the fovea, macula, and the periphery.

Why that’s important is now the researchers can see which proteins are more abundant in certain areas, and why. One such example is a protein known as CFH, which helps prevent a molecular cascade that can lead to AMD, much like a levee can keep flooding waters at bay. The UI researchers learned, though the map, that CFH is most abundant in the fovea. That helps, because now they know to monitor CFH abundance there; fewer numbers of the protein could mean increased risk for AMD, for instance.

“Now you can see all those differences that you couldn’t see before,” explains Mahajan, whose primary appointment is in the Carver College of Medicine. University of Iowa

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:45A map for eye disease

Involving a genetic health care professional may improve quality, reduce unnecessary testing

, 26 August 2020/in E-News /by 3wmedia

A new Moffitt Cancer Center study shows that counselling from a genetic health care provider before genetic testing educates patients and may help reduce unnecessary procedures.

Up to 10 percent of cancers are inherited, meaning a person was born with an abnormal gene that increases their risk for cancer. ‘Pre-test genetic counselling in which a health care provider takes a thorough family history and discusses the potential risks and benefits of genetic testing is standard of care as recommended by the American Society of Clinical Oncology and National Society of Genetic Counselors,’ said Tuya Pal, M.D., a board-certified geneticist at Moffitt and senior author of the paper.

In the Moffitt study, researchers surveyed 473 patients who had genetic testing for BRCA1 and BRCA2 gene mutations, which are associated with an increased risk of breast and ovarian cancers. Among study participants who saw a board-certified geneticist or genetic counsellor, almost all recalled having a pre-test discussion, compared to only 59 percent of those who did not. These findings suggest large differences in quality of care across providers who order testing.

The researchers also suggest there may be cost-of-care implications when genetic health care providers are involved. ‘Our results suggest that genetic health care providers are less likely to order more expensive comprehensive genetic testing, when less expensive testing may be appropriate,’ said Deborah Cragun, Ph.D., lead study author and post-doctoral fellow at Moffitt. ‘Our study found that in cases where less expensive testing may be appropriate, genetic health care providers ordered comprehensive testing for 9.5 percent of participants, compared to 19.4 percent when tests were ordered by other health care providers. At the time of data collection, comprehensive genetic testing cost approximately $4,000, compared to $400 for the less expensive testing.’

The findings are important, noted researchers, because costs and quality of care are often the focus of policy-level decisions in health care. Moffitt Cancer Center

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:412021-01-08 11:11:53Involving a genetic health care professional may improve quality, reduce unnecessary testing
Page 135 of 227«‹133134135136137›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
13 November 2025

New Chromsystems Product for Antiepileptic Drugs Testing

11 November 2025

Trusted analytical solutions for reliable results

10 November 2025

Chromsystems | Therapeutic Drug Monitoring by LC-MS/MS

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription