Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

Connecting the dots of our genome

, 26 August 2020/in E-News /by 3wmedia

One of the central questions in human biology is to understand how our genes determine which diseases we get and how severe they might be. Knowing just the DNA sequence, or the blueprint, is not enough. We must figure out how proteins, the genes’ products, work too.

Now an international team of researchers, jointly led by Dr. Fritz Roth (at Mount Sinai Hospital’s Lunenfeld-Tanenbaum Research Institute and the Donnelly Centre of the University of Toronto), and Dr. Marc Vidal (with the Dana-Farber Cancer Institute and Harvard Medical School in Boston), have produced the largest ever map of human protein interactions. This publicly available resource will be invaluable to anyone trying to understand complex genetic traits and develop new disease therapies.

“It is realistic to think that many of the people reading this will have their genomes sequenced within their lifetimes. The next challenge is to figure out what their genomes mean,” says Dr. Roth. “You cannot figure out how the car works based on the parts list. You have to know how they fit together.”

This is because genes do not do the work in a cell. Rather, the work is usually done by the proteins that genes provide the plans for. Some pairs of proteins stick together, or ‘interact’ when they are in close contact with each other. These interactions underlie all of cell’s biology and mediate processes such as gene expression, cell metabolism, and transporting other molecules within a cell.

Having a detailed map of protein interactions bring us one step closer to understanding the relationship between our genes (genotype) and our physiology in health and disease (phenotype).

Drs. Roth and Vidal, and their colleagues, analysed direct interactions in pairwise combinations between 13,000 proteins. Out of 85 million possible interactions they found 14,000 directly-interacting protein pairs. This more than doubles the previous set of known interactions, making it the largest ever experimentally determined human protein interaction map.

“We’ve managed to peer into the car and connect a fraction of the parts,” says Dr. Roth.

The study reveals several important findings. The new map can be used to identify novel genes involved in diseases. If a novel protein, which we know nothing about, interacts with a known protein that has a role in a disease, then the novel protein is highly likely to be involved in that same disease. Dr. Roth and colleagues illustrate this point by identifying a novel cancer gene STAT3 based on its interactions with known cancer genes. Their finding was confirmed when STAT3 subsequently became included into the cancer gene database based on independent evidence.
 Further unbiased analyses identified 100 strong cancer candidate genes, 60 of which were connected to known cancer molecular pathways. Some of these genes are completely novel. This shows the potential of the human interaction map in revealing new disease genes and promising therapeutic targets.

Mapping all human protein interactions is a colossal task and will require several different approaches. This is because not every method can find every protein interaction. Dr. Roth estimates that they found, using a yeast two hybrid method, 5-10% of all protein interactions, a substantial increase from their previous paper that reported 1% of interactions.

“Although much sweat and some tears were put into analysing this new map, it is clear that we have only scratched the surface of what these interactions can tell us about human disease. It is personally very exciting to anticipate the discoveries to come, as it passes from our hands into the research community,” says Dr. Roth. Lunenfeld-Tanenbaum Research Institute

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:24Connecting the dots of our genome

New at-risk group identified for gastrointestinal stromal tumours

, 26 August 2020/in E-News /by 3wmedia

Researchers at the University of California, San Diego School of Medicine have, for the first time, clearly defined the epidemiology of gastrointestinal stromal tumours (GIST), which occur primarily in the lining of the stomach and small intestine. One key finding: Patients of Asian descent, who have not previously been identified as an at-risk population, are 1.5 times more likely than other patient groups to be diagnosed with this type of tumour.

 “Previous journal articles never clearly differentiated GIST from several other tumours, even though they have different biologies,” said Jason Sicklick, MD, assistant professor of surgery and a surgical oncologist at UC San Diego Health System. “This study more clearly identifies at-risk populations in the United States as well as incidence rates, survival trends and risk factors for the disease.”

Prior to 2001, GIST-specific histology codes were not used in medical coding, which meant that a variety of tumour types, such as leiomyoma and leiomyosarcoma, spindle cell, myofibroblastic, desmoid and KIT-positive metastatic melanomas were all lumped into one category. Sicklick and his team have used a new generation of precise pathologic diagnostic codes to better define the incidence and distribution of GIST among different patient groups.

The research team from UC San Diego Moores Cancer Center found that the overall incidence rate was 6.8 cases per million people and that the rate rose from 2001 to 2011. During the study period, the median age of GIST diagnosis was 64 years old. GISTs were more common in men.

“Contradicting prior reports we see a definite survival disparity, particularly among patients of African-American descent,” said Sicklick.

Persons of African-American or Asian/Pacific Islander descent were 2.1 and 1.5 times more likely to develop GIST than Caucasians, respectively.

“Further studies are needed to understand why these groups are at-risk as it could carry important diagnostic, prognostic and therapeutic implications throughout the United States,” said James Murphy, MD, assistant professor of radiation oncology at UC San Diego School of Medicine and a radiation oncologist at UC San Diego Health System. University of California – San Diego

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:34New at-risk group identified for gastrointestinal stromal tumours

HORIBA Medical and NOEMALIFE signed a worldwide distribution agreement for a dedicated version of the Halia middleware.

, 26 August 2020/in E-News /by 3wmedia

HORIBA Medical and NoemaLife announced in January a non-exclusive agreement, for the worldwide distribution of Halia, the web-based Laboratory Automation System by NoemaLife which allows central management of all pre-analytical, analytical and post-analytical instruments, making it possible to connect multiple sites, multiple Laboratory Information Systems and multiple instruments of various disciplines of the laboratory. “The addition of Halia to HORIBA Medical ’s Hematology product line makes it possible for a wide range of clinical laboratories to realize efficiencies resulting from a powerful yet very user friendly data management. NoemaLife is pleased to serve as HORIBA Medical‘s middleware provider in this effort” said Piero Tassoni, Diagnostic Marketing & Alliance Director NoemaLife, “HORIBA Medical equips more than 30,000 laboratories throughout the world, distributed in 110 countries in 5 continents. Not only we are proud to work with a partner who holds world records in its industry, but we are confident that this agreement has huge potential.” The specific version of the Halia middleware distributed by HORIBA Medical will soon integrate all the Hematology Expert validation station features that HORIBA Medical so far proposed exclusively in its “ABX Pentra ML” Work Station, the all-in-one validation system entirely dedicated to whole blood. “Halia is an important evolution to our hematology solution’s offer” said Olivier Pou, Corporate Marketing Director, HORIBA Medical. “The addition of a specific version of the Halia middleware to our product offer makes it possible for HORIBA Medical to provide a complete solution to our worldwide base of customers around the hematology expertise but also to facilitate the integrated management of hematology within the global IVD laboratory”.

www.horiba.com
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:12HORIBA Medical and NOEMALIFE signed a worldwide distribution agreement for a dedicated version of the Halia middleware.

Researchers identify key substance that protects against pre-term birth

, 26 August 2020/in E-News /by 3wmedia

Researchers at UT Southwestern Medical Center have identified hyaluronon (HA) as a critical substance made by the body that protects against premature births caused by infection. Pre-term birth from infection is the leading cause of infant mortality in many countries according to the World Health Organization. The findings of the study are the first to identify the specific role that HA plays in the reproductive tract.

Dr. Yucel Akgul, first author and senior author Dr. Mala Mahendroo
“We found that HA is required to allow the epithelial lining of the reproductive tract to serve as the first line of defence against bacterial infections,” said senior author Dr. Mala Mahendroo, an Associate Professor in the Department of Obstetrics and Gynecology’s Cecil H. and Ida Green Center for Reproductive Biology Sciences. “Because of this action, HA offers cervical protection against the bacterial infections that cause 25 to 40 percent of pre-term births in women.”

Hyaluronon is a natural substance found in many tissues, and is both a lubricant and a beneficial component of eyes, joints, and skin. It has long been thought to play an essential role in increasing the cervix’s flexibility during the birth process; however, the study, which was conducted using mouse models, showed that HA is not essential for increased cervical pliability during late pregnancy. Rather, the substance plays an important barrier role in epithelial cells of the lower reproductive tract and in so doing protects against infection-related pre-term birth. The World Health Organization estimates that 1.09 million children under age 5 die from direct complications of being born prematurely, meaning before the 37th week of pregnancy.

Previous studies by UT Southwestern reproductive biology researchers showed that HA is present in both the cervix and cervical mucus of pregnant women. Next steps include determining the mechanism by which HA affects cervical protection against infection.

“This study demonstrates that HA plays a crucial role in the epithelial barrier as well as the cervix’s mucus,” said Dr. Yucel Akgul, first author of the study and research scientist in the Department of Obstetrics and Gynecology. “Our next step is to identify exactly how HA protects the cervix, which can have important clinical implications in the effort to reduce infection-mediated pre-term labour.” UT Southmwestern Medical Center

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:20Researchers identify key substance that protects against pre-term birth

Synthetic lethality offers a new approach to kill tumour cells

, 26 August 2020/in E-News /by 3wmedia

The scientific community has made significant strides in recent years in identifying important genetic contributors to malignancy and developing therapeutic agents that target altered genes and proteins.  A recent approach to treat cancer called synthetic lethality takes advantage of genetic alterations in cancer cells that make them more susceptible to certain drugs. Alan F. List, MD, president and CEO of Moffitt Cancer Center, co-authored an article on synthetic lethality.

“Genetic alterations in cancer in humans may involve gene inactivation, amplification or inactivation,” said List.  These changes are not present in non-malignant cells. Common chemotherapeutic agents aggressively kill tumour cells irrespective of genetic alterations.  They also have a negative impact on normal cells and can cause significant side effects. Synthetic lethality harnesses the genetic differences between tumour cells and normal cells to minimize the effects on normal cells, and maximize a drug’s effects on cancer cells.

Synthetic lethality can target a variety of cellular defects, including alterations in DNA repair, cell-cycle control and metabolism.  This approach can also be used to target interactions between tumour cells and surrounding normal cells that promote tumour survival and oncogenes that drive tumorigenesis that are difficult to target directly.  Many of the synthetic lethal drugs and targets have been identified in large-scale drug screens of the entire human genome.

An example of synthetic lethality is the recent approach being investigated to treat breast cancer patients with BRCA1 and BRCA2 mutations. BRCA1 plays an important role is repairing damaged DNA.  Women who have mutations in BRCA1 or BRCA2 have an increased risk of developing breast and ovarian cancer because their cells cannot properly repair DNA. This suggests that BRCA mutated breast cancer cells may be more susceptible to drugs that target DNA.  Laboratory studies have confirmed this hypothesis by showing that agents that target another DNA repair protein called PARP significantly kill BRCA mutated cells. Several PARP inhibitors are now being investigated in clinical trials in breast cancer patients, and early results are promising.

“The goal of current anticancer approaches is to offer individualized and highly selective therapy. The treatment model for many anticancer approaches has been expanded, with movement away from dose-intensive, non-targeted cytotoxic agents to combination chemoimmunotherapy, new therapeutic combinations and targeted agents,” said List. Synthetic lethality approaches may provide an additional avenue for individualized patient treatment. Moffitt Cancer Center

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:27Synthetic lethality offers a new approach to kill tumour cells

Determining effectiveness of Huntington’s disease treatments

, 26 August 2020/in E-News /by 3wmedia

A new genetic discovery in the field of Huntington’s disease (HD) could mean a more effective way in determining severity of this neurological disease when using specific treatments. This study may provide insight for treatments that would be effective in slowing down or postponing the death of neurons for people who carry the HD gene mutation, but who do not yet show symptoms of the disease.

The work was led by researchers at Boston University School of Medicine (BUSM) and currently appears in BMC Medical Genomics.

HD is a fatal, inherited neurological disease that usually manifests between 30 and 50 years of age. The disease is caused by a genetic defect that is passed from parent to child in the huntingtin gene. Having too many repeated elements in the gene sequence causes the disease and an increasing number of repeats leads to earlier onset and increased severity of the disease.

The researchers studied the brains of people who died from HD and those who died of other, non-neurological diseases and identified a very specific genetic signal that strongly correlates disease severity and extent of neuronal, or brain cell death. The genetic signal, also called a microRNA, silences certain genes in the DNA. Genes that lead to the toxic effects of the huntingtin gene may be silenced by these microRNAs, in particular the miR-10b-5p microRNA.

‘The findings that we found most interesting were the microRNAs that reflect the extent of the neuron death in the brain, since it is this process that causes the debilitating symptoms of the disease and eventually leads to the death of the individual,’ explained senior author Richard H. Myers, PhD, Director of the Genome Science Institute at BUSM.

According to the researchers these findings may represent a more effective way to tell whether or not HD treatments may be slowing down the pace of the death of brain cells. ‘If miR-10b-5p measurements can provide a faster and more effective way to determine whether or not a specific treatment is protecting brain neurons, it may be possible to study more potential treatments for HD more quickly. Equally importantly, it may become feasible to perform these trials in people who are HD gene carriers, but who do not yet show symptoms, by giving evidence for which trials may postpone onset and provide more healthy years of life,’ added Myers.

These findings also suggest that other microRNAs may also be important markers of severity for other neurological diseases such as Parkinson’s disease and Alzheimer’s disease. Further research is already being conducted in Parkinson’s Disease by Myers and his colleagues. EurekAlert

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:15Determining effectiveness of Huntington’s disease treatments

New test uses the unique genetics of women to uncover a devastating neurologic disorder

, 26 August 2020/in E-News /by 3wmedia

Using a basic genetic difference between men and women, the Translational Genomics Research Institute (TGen) has uncovered a way to track down the source of a neurological disorder in a young girl.

TGen’s discovery relies on a simple genetic fact: Men have one X and one Y chromosome, while women have two X chromosomes. This women-only factor was leveraged by TGen investigators to develop a highly accurate method of tracking down a previously unrecognized disorder of the X-chromosome. 

The study was of a pre-teen girl, who went years with an undiagnosed neurobehavioral condition.

TGen’s findings were made within its Dorrance Center for Rare Childhood Disorders, where investigators and clinicians apply the latest tools of genomic medicine to provide answers for parents seeking to identify the disease or disorder affecting their child.

The scientists sequenced, or spelled out in order, the complete genetic codes of DNA and RNA of the girl. Because girls inherit an X chromosome from each of their parents (boys inherit a Y chromosome from their father), they also sequenced her mother and father. On average, about half of all X chromosomes active in a female come from the mother and the other half from the father.

‘We now have the tools to significantly accelerate the diagnostic process, reducing the need for children to undergo multiple tests that can be emotionally and physically taxing for the entire family,’ said Dr. David Craig, TGen’s Deputy Director of Bioinformatics, Co-Director of the Dorrance Center and the paper’s senior author.

Sequencing would reveal the proportion of X chromosomes, and if disproportionate, whether the more abundant of the two were damaged in some way, which often leads to X-linked genetic conditions.

‘At the time of enrollment, we suspected the girl had a complex neurobehavioral condition, based on her attention deficit, and delays in development and learning,’ said Dr. Vinodh Narayanan, Medical Director of the Dorrance Center. ‘Her brain MRI scans were normal. We needed to find out more – at the genetic level – about what might be causing her disorder.’

By sequencing the DNA and RNA, TGen investigators were able to precisely identify which cells contained active X chromosomes from the girl’s mother, which contained active X chromosomes from the father, in what proportions, and whether they were associated with any known disorders.

They discovered that the X chromosome from the father contained a segment shown to be associated with neurobehavioral conditions. Interestingly, however, the proportion of X chromosomes active in the girl’s cells skewed toward the normal X inherited from her mother. This skewing may have led to a milder, harder to diagnose condition undetected by conventional methods.

‘This study shows the power sequencing holds when scanning for potential disease causing and disease-modifying genetic variations,’ said Dr. Matt Huentelman, the other Co-Director of the Dorrance Center and an author of the paper. TGen

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:22New test uses the unique genetics of women to uncover a devastating neurologic disorder

Circulating tumour cells provide genomic snapshot of breast cancer

, 26 August 2020/in E-News /by 3wmedia

Tumour cells isolated from the blood of patients with triple negative breast cancer reveal similar cancer-driving mutations as those detected from standard biopsy, suggesting that circulating cells could one day replace tissue biopsies
The genetic fingerprint of a metastatic cancer is constantly changing, which means that the therapy that may have stopped a patient’s cancer growth today, won’t necessarily work tomorrow. Although doctors can continue to biopsy the cancer during the course of the treatment and send samples for genomic analysis, not all patients can receive repeat biopsies. Taking biopsies from metastatic cancer patients is an invasive procedure that it is frequently impossible due to the lack of accessible lesions.  Research suggest that tumour cells circulating in the blood of metastatic patients could give as accurate a genomic read-out as tumour biopsies.

“Counting the number of circulating tumour cells (CTCs) can tell us whether a patient’s cancer is aggressive, or whether it is stable and responding to therapy,” says the article’s first author Sandra V. Fernandez, Ph.D., assistant professor of Medical Oncology at Thomas Jefferson University. “Our work suggests that these cancer cells in the blood also accurately reflect the genetic status of the parent tumour or its metastases, potentially giving us a new and easy to source of genomic information to guide treatment.”

First discovered for their diagnostic potential in 2004, circulating tumour cells are beginning to be used in the clinic to help guide treatment decisions and track a patient’s progress as the cancer progresses. Although other studies have pooled the collected CTCs and compared their collective genetic signature to that of the primary tumour, this is the first study to look at the genomic signature of individual tumour cells in circulation. In order to isolate single tumour cells from the blood, the authors used a new technology, DEPArrayTM , in their laboratory.
The researchers compared tissue biopsies surgically removed from two patients with inflammatory breast cancer with circulating tumour cells (CTCs). Breast tissue samples from both patients showed a specific mutation in a region of a cancer-driving gene, p53. The authors studied this mutation in several CTCs isolated from both patients. They found that in several of the CTCs collected, the mutations matched with the tumour biopsy, however in one patient, some of circulating tumour cells had an additional mutation. “Since inflammatory breast cancer is a very rapidly changing disease, we think this additional mutation may have been acquired after the original surgical biopsy was taken,” said Dr. Fernandez. In the case where an additional p53 mutation was found, the blood to isolate CTCs were drawn one year later than the breast tissue biopsy was taken.
Although further work analyzing a greater number of genes and samples is needed, the work shows that CTCs offer the possibility of capturing the most current genomic information in an easy-to-obtain sample such as blood, thus helping guide treatment decisions. It also suggests that it may be necessary to test more than one cell for the most accurate reading, as the CTC population appears to be heterogenous. Thomas Jefferson University (TJU)

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:29Circulating tumour cells provide genomic snapshot of breast cancer

Sequencing genetic duplications could aid clinical interpretation

, 26 August 2020/in E-News /by 3wmedia

Copy number variations (deletions or duplications of large chunks of the genome) are a major cause of birth defects, intellectual disability, autism spectrum disorder and other developmental disorders. Still, geneticists can definitively say how a CNV, once discovered in someone’s DNA, leads to one of these conditions in just a fraction of cases.

To aid in the interpretation of CNVs, researchers at Emory University School of Medicine have completed detailed maps of 184 duplications found in the genomes of individuals referred for genetic testing.

‘Ours is the first study to investigate a large cohort of clinically relevant duplications throughout the genome,’ says senior author Katie Rudd, PhD, assistant professor of human genetics at Emory University School of Medicine. ‘These new data could help geneticists explain CNV test results to referring doctors and parents, and also reveal mechanisms of how duplications form in the first place.’

Despite advances in ‘next generation’ DNA sequencing, the first step for patients who are referred to a clinical geneticist is currently a microarray. This is a scan using many probes across the genome, testing if someone’s DNA has one, two, three or more copies of the DNA corresponding to the probe. (Two is the baseline.) From this scan, geneticists will have a ballpark estimate of where a deletion or duplication starts and ends, but won’t know the breakpoints exactly.

‘In a few years, advances in sequencing will make it possible to routinely capture data on copy number variation and breakpoints at the same time,’ Rudd says. ‘But for now, we have to do this extra step.’

In addition, in comparison with deletions, duplications are more complicated. The extra DNA has to land somewhere, sometimes resulting in the disruption or warped regulation of nearby genes, which make it more difficult to pinpoint particular genes responsible for the individual’s medical condition.

Most healthy people have a deletion or duplication of at least 100 kilobases in size. The individuals in the study were referred for clinical microarray testing with indications including intellectual disability, developmental delay, autism spectrum disorders, congenital anomalies, and dysmorphic features. Their CNVs were larger, with an average size of more than 500 kilobases.

Rudd’s team examined 184 duplications, and found that most are in tandem (head-to-tail) orientation and adjacent to the duplicated area. Most of the CNVs in the study were inherited from a parent. The researchers also found examples where a duplicated gene inserted into and disrupted another gene on a different chromosome.

In a few cases, a duplicated gene was fused together with another gene. This is a phenomenon often seen in cancer cells, where a DNA rearrangement leads to an abnormal activation of a growth- or survival-promoting gene. In these cases, the fusions were present in all cells in the body and not related to cancer, but could be responsible for the patient’s condition.

‘These fusion genes are intriguing but we don’t know, just from looking at the DNA, if the gene is expressed,’ Rudd says. ‘These findings could be the starting point for follow-up investigation.’ Emory University School of Medicine

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:17Sequencing genetic duplications could aid clinical interpretation

New computer model predicts gut metabolites to better understand gastrointestinal disease

, 26 August 2020/in E-News /by 3wmedia

Tufts University School of Engineering researchers and collaborators from Texas A&M University have published the first research to use computational modelling to predict and identify the metabolic products of gastrointestinal (GI) tract microorganisms. Understanding these metabolic products, or metabolites, could influence how clinicians diagnose and treat GI diseases, as well as many other metabolic and neurological diseases increasingly associated with compromised GI function.

The human GI tract is colonized by billions of bacteria and other microorganisms, belonging to hundreds of species that are collectively termed ‘microbiota.’ Disruptions in the microbiota composition, and subsequently the metabolites derived from the microbiota, are increasingly correlated not only to GI diseases such as inflammatory bowel disease (IBD) and colitis, but also to insulin resistance and Type 2 diabetes.

‘There is increasing evidence that microbiota-derived metabolites play a significant role in modulating physiological functions of the gut,’ said Professor Kyongbum Lee, senior author on the paper and chair of the Department of Chemical and Biological Engineering in Tuft School of Engineering. ‘Emerging links between the GI tract microbiota and many other parts of the body, including the brain, suggest the tantalizing possibility to influence even cognition and behaviour through relatively benign interventions involving diets or probiotics.’

However, to date, only a handful of metabolites principally produced by microbiota—rather than the host organism itself—have been identified. Identifying microbiota-derived metabolites and understanding their effects on specific host functions could open up new avenues of basic and clinical research to develop safe, targeted therapies involving molecules that, by definition, constitute the natural chemical makeup of the host.

‘Current methods of identifying and quantifying these metabolites are unable to distinguish whether the metabolites are produced by the host or the microbiota,’ said Lee.

The newly reported approach models the microbiome as a single, complex network of reactions. By using computational algorithms for network analysis, virtual pathways can be constructed to determine possible metabolic products. Then, these products can be parsed into host-derived or microbiota-derived metabolites.

The research team focused on aromatic amino acids (AAAs) because their metabolites are involved in many of the more than 2,400 distinct reactions expressed in the microbiota as a whole.

‘In addition, we studied AAA-derived metabolites because AAAs can give rise to a variety of bioactive chemicals, such as salicylic acid, an anti-inflammatory compound, and serotonin, which is a neurotransmitter, obviously important in proper brain function,’ said Lee.

Work previously published in the Proceedings of the National Academy of Sciences from Lee’s collaborator Arul Jayaraman, professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University who holds a master’s from Tufts School of Engineering, had already demonstrated that indole, a bacterial metabolite derived from the aromatic amino acid tryptophan, caused an anti-inflammatory response in the gut and increased resistance to pathogen colonization that could lead to infection

The algorithmic model in the research published today predicted 49 different metabolites would appear as exclusive to the microbiota. In vivo tests on mice then confirmed the presence of more than half of the predicted metabolites, including two novel metabolites, which play a role in the pathways that regulate microbiota metabolism as well as host immune function.

Next steps for the team include identifying microbiota metabolites whose levels are either significantly elevated or depleted during diseases such as IBD or cancer, to find disease-specific markers and explore possible roles for these metabolites in disease progression.

‘Ultimately, the goal is to apply our models to arrive at a mechanistic understanding of the roles microbiota products may play in human physiology, and in turn, diagnose and treat disease,’ said Lee. ‘I think the potential for impact is immense.’ Tufts University

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:25New computer model predicts gut metabolites to better understand gastrointestinal disease
Page 141 of 228«‹139140141142143›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
15 December 2025

WERFEN APPLAUDS SIGNIFICANT PUBLICATION URGING ACTION ON THE RISKS OF UNDETECTED HEMOLYSIS

13 December 2025

Indero validates three-day gene expression method

12 December 2025

Johnson & Johnson acquires Halda Therapeutics for $3.05 billion

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription