Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

Laying siege to beta-amyloid, the key protein in Alzheimer’s disease

, 26 August 2020/in E-News /by 3wmedia

Scientists at IRB Barcelona in collaboration with researchers at the University of Barcelona observe that aggregates of 20 to 100 units of beta-amyloid have a structure that is the most harmful to neurons.

This is the first time that a method allows scientists to monitor aggregation while simultaneously detect a structural pattern responsible for the toxicity of beta-amyloid aggregation.

The researchers state that these studies are a step towards finding a therapeutic target for a disease which, to date, has no treatment.
The peptide —a small protein— beta-amyloid is strongly associated with Alzheimer’s disease; however, researchers are still looking for unequivocal proof that this peptide is the causal agent of the onset and development of the disease. The main obstacle impeding such confirmation is that beta-amyloid is not harmful when found in isolation but only when it aggregates, that is when it self-assembles to form the so-called amyloid fibrils

“We are not dealing with a single target, beta-amyloid alone, but with multiple ones because each aggregate of peptide, which can go from two units to 3,000 is a potential target. Determining the aggregate responsible for neuronal death is extremely complex and is one of the key issues for confirming or rejecting the hypothesis regarding beta-amyloid,” explains Natàlia Carulla, scientist at the Institute for Research in Biomedicine (IRB Barcelona) and principal investigator of the study. In their latest work, Carulla and collaborators describe a technique that has allowed them, for the first time, to distinguish different types of beta-amyloid aggregates formed during aggregation and in parallel to establish which is most toxic. The study provides further evidence in support of the hypothesis that neuronal death is caused by intermediate aggregates of beta-amyloid and reveals that the development of structure within these aggregates determines their ability to cause neuronal death.

The study shows that the most toxic aggregates are those formed by 20 to 100 units of beta-amyloid, known as intermediate aggregates or precursor aggregates of beta-amyloid fibrils. In contrast, the smaller aggregates of beta-amyloid and the amyloid fibrils, which can contain up to 3,000 units of the peptide, do not cause neuronal death. IRB Barcelona

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:35Laying siege to beta-amyloid, the key protein in Alzheimer’s disease

Anticancer virus solution provides an alternative to surgery

, 26 August 2020/in E-News /by 3wmedia

Researchers at Okayama demonstrate that injection of a virus solution followed by tumour removal can eradicate cancer metastasis in lymph nodes without the need for preventative surgery.
While early-stage gastrointestinal cancers can be treated non-surgically, once the cancer has invaded to a particular depth, preventative – ‘prophylactic’ – surgery is routine. The frequency of lymph node metastasis increases significantly once the cancer has penetrated the submucosal layers, and as there is no way of determining whether the cancer has metastasized in the lymph nodes they will be surgically removed just in case. Now researchers at Okayama University and the University of California in San Diego have demonstrated that injection of a viral solution can eradicate lymph node metastasis making prophylactic surgery unnecessary.
To treat early stage cancers a saline solution is injected creating a fluid cushion, which raises and isolates the tumour. The tumour is then readily removed by equipment through a standard endoscopic viewing tube inserted in the gastrointestinal tract. However if the cancer has already penetrated the submucosal layer it will be prone to relapse in the lymphatic system.
Toshiyoshi Fujiwara and his colleagues adapted the standard endoscopic treatment by injecting a solution of Telomelysin – a virus known to kill epithelial and mesenchymal malignant cells – instead of saline solution.  They tested the treatment in a mouse model, injecting green-fluorescent-protein-labelled cancer cells into the submucosal layers of the rectum, which developed lymph node metastasis. Fluorescence imaging showed that cancer cells were successfully eliminated by the treatment with virus solution, in contrast to mice treated with saline solution instead. In addition, treated mice showed no relapse four weeks after the treatment
In their report of the results the researchers conclude, “From a clinical view point, this new, simple, and robust strategy is a more realistic and promising bench-to-bedside translation than prophylactic surgery for ablation of potential lymph node metastases in early gastrointestinal cancer patients.”
Early stage gastrointestinal cancers are defined by the level of the cancer invasion reaching no further than the submucosa. Endoscopic treatment removes these tumours by dissecting the submucosal layers.
For esophageal gastric and colorectal submucosally invaded cancers, the frequency at which the cancer is found to metastasize in the lymph nodes is approximately 10 to 20%. The lymphatic system distributes fluids, proteins, chemicals, cells and drugs. This makes it a major pathway for the spread of metastatic cancers so that cancerous invasion of the lymphatic system is particularly problematic. It is very difficult to determine whether the cancer has metastases in the lymph nodes. As a result lymph node surgery just in case is routine when treating esophageal gastric and colorectal submucosal cancers, even though in many cases it may not have been necessary.
Previous research has demonstrated that certain viruses replicate in cancer cells and break them down, and may be developed for cancer treatments. The researchers further exploited the role of the lymph system in mediating proteins and fluids, a function which makes it more prone to exposure to a virus injected in the surrounding area. They experimented with Telomelysin – a telomerase-dependent, tumour-killing replicating adenoviral agent (OBP-301). The virus is known to kill epithelial and mesenchymal malignant cells.  
The researchers first tested the virus on green-fluorescent-protein-labelled colorectal cancer cell lines with. Using fluorescence imaging, they observed rapid cell death in response to injection with the virus while there was no such response in cell lines treated with mutant strains of the virus that had replication deficiencies.
The researchers demonstrated how their treatment exploited the lymph node function using mouse models injected with red-fluorescent-protein-labelled lymph node metastasized cancer cells. After six days the virus labelled with green fluorescent protein was injected and fluorescence images showed the position of the virus coincided with the metastatic foci in the lymph nodes.

Kikuchi S, Kishimoto H, Tazawa H, Hashimoto Y, Kuroda S, Nishizaki M, Nagasaka T, Shirakawa Y, Kagawa S, Urata Y, Hoffman RM, Fujiwara T: Biological Ablation of Sentinel Lymph Node Metastasis in Submucosally Invaded Early Gastrointestinal Cancer. Mol Ther. 2014 Dec 19.

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:14Anticancer virus solution provides an alternative to surgery

IDT and Ubiquitome partner to develop mobile Ebola test

, 26 August 2020/in E-News /by 3wmedia

Integrated DNA Technologies (IDT) and Ubiquitome announced in early December 2014 a partnership to develop the Ubiquitome Freedom4 Real-Time RT-PCR Ebola Virus Assay for easy use in the field. This rapid test is designed to be run on Ubiquitome’s hand-held, battery powered real-time PCR device, the Freedom4. IDT, a market leader in the manufacture of GMP quality products for use in molecular diagnostic tests, is leveraging its PrimeTime qPCR Assay platform to develop an assay that will provide accurate and consistent test results for Ebola virus disease. Fitting in the palm of a hand, Ubiquitome’s Freedom4 instrument operates on battery power alone for up to six hours and delivers gold-standard real-time PCR performance wherever needed. The platform runs using an iPhone or laptop computer, is housed in a rugged aluminum casing and features a solid state design that includes laser-based optical detection, which is widely recognized as offering the highest performance in real-time PCR. Paul Pickering, Ubiquitome CEO, said “The Ubiquitome Freedom4 Real-Time RT-PCR Ebola Virus Assay, run on the Freedom4, will allow rapid, accurate field testing of Ebola virus disease. This is important because regions affected by this disease are often far from an established laboratory.” Stephen Gunstream, Chief Commercial Officer of IDT added, “The sensitivity and specificity of our PrimeTime qPCR Assays are well established. We are excited about how effectively we can combine IDT’s assay design expertise with Ubiquitome’s Freedom4 instrument to provide a field testing service for Ebola virus disease. This test will enable early detection and help control the spread of this devastating disease.” Testing of the Ubiquitome Freedom4 Real-Time RT-PCR Ebola Virus Assay will be conducted by Battelle in Aberdeen, Maryland, USA.

www.idtdna.com          www.ubiquitomebio.com
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:21IDT and Ubiquitome partner to develop mobile Ebola test

Breast cancer tumour response to neoadjuvant chemotherapy

, 26 August 2020/in E-News /by 3wmedia

A Dartmouth study suggests that it may be possible to use Diffuse Optical Spectroscopic Tomographic imaging (DOST) to predict which patients will best respond to chemotherapy used to shrink breast cancer tumours before surgery. These findings could eliminate delays in effective early treatment for tumours unlikely to respond to neoadjuvant chemotherapy (NAC).

Breast cancer is the most common non-skin cancer in women worldwide, and the second leading cause of women’s cancer mortality in the United States. A common treatment strategy after diagnosis is to shrink breast cancer tumours larger than 3 centimetres with a 6- to 8-month course of NAC prior to surgery. Clinical studies have shown that patients who respond to NAC have longer disease-free survival rates, but only 20 to 30 percent of patients who receive NAC fit this profile.

‘Our work represents the first clinical evidence that tumour total haemoglobin (estimated from DOST images) is different in the women with locally advanced breast cancer who respond to neoadjuvant chemotherapy,’ said lead author Shudong Jiang, associate professor of Engineering at the Thayer School of Engineering at Dartmouth. ‘We were able to predict breast tumour response to NAC based on image data acquired before the initiation of therapy.’
DOST imaging is used to measure tumour tissue for haemoglobin and oxygen saturation levels—key indicators of the presence the tiny blood vessels cancer tumours need to grow. This study suggests that biomarkers obtained through DOST imaging could help physicians determine the best treatment strategy for patients.
‘The implication of this information is that certain tumours are pre-disposed to responding to neoadjuvant chemotherapy, and that this predisposition could be known prior to choosing the therapy,’ says Jiang. ‘The study also could dramatically accelerate future randomized clinical trials on optimal NAC regimes. By using a validated imaging surrogate as an outcome measure, we could potentially reduce the number of patients required, and the length of time they need to be followed.’
Jiang says the next step will be to develop a portable and compact system to more accurately measure changes in the breast prior or/and during neoadjuvant chemotherapy. This system could be integrated into the workflow of clinical oncology practice to maximize patient participation, and determine whether additional prognostic information could be obtained that would influence patient management. Norris Cotton Cancer Center at Dartmouth-Hitchcock

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:28Breast cancer tumour response to neoadjuvant chemotherapy

Evidence that Chronic Fatigue Syndrome is a biological illness

, 26 August 2020/in E-News /by 3wmedia

Researchers at the Center for Infection and Immunity at Columbia University’s Mailman School of Public Health identified distinct immune changes in patients diagnosed with chronic fatigue syndrome, known medically as myalgic encephalomyelitis (ME/CFS) or systemic exertion intolerance disease. The findings could help improve diagnosis and identify treatment options for the disabling disorder, in which symptoms range from extreme fatigue and difficulty concentrating to headaches and muscle pain.

These immune signatures represent the first robust physical evidence that ME/CFS is a biological illness as opposed to a psychological disorder, and the first evidence that the disease has distinct stages.

The researchers used immunoassay testing methods to determine the levels of 51 immune biomarkers in blood plasma samples collected through two multicenter studies that represented a total of 298 ME/CFS patients and 348 healthy controls. They found specific patterns in patients who had the disease three years or less that were not present in controls or in patients who had the disease for more than three years. Short duration patients had increased amounts of many different types of immune molecules called cytokines. The association was unusually strong with a cytokine called interferon gamma that has been linked to the fatigue that follows many viral infections, including Epstein-Barr virus (the cause of infectious mononucleosis). Cytokine levels were not explained by symptom severity.

“We now have evidence confirming what millions of people with this disease already know, that ME/CFS isn’t psychological,” states lead author Mady Hornig, MD, director of translational research at the Center for Infection and Immunity and associate professor of Epidemiology at Columbia’s Mailman School. “Our results should accelerate the process of establishing the diagnosis after individuals first fall ill as well as discovery of new treatment strategies focusing on these early blood markers.” Columbia University’s Mailman School of Public Health

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:16Evidence that Chronic Fatigue Syndrome is a biological illness

Protein elevated in blood predicts post-concussion symptom severity in professional athletes

, 26 August 2020/in E-News /by 3wmedia

New Penn Medicine research has found that elevated levels in the blood of the brain-enriched protein calpain-cleaved αII-spectrin N-terminal fragment, known as SNTF, shortly after sports-related concussion can predict the severity of post-concussion symptoms in professional athletes.

This new study builds on previous research from this group showing that elevated blood levels of SNTF on the day of a mild traumatic brain injury treated in the emergency room predicted those patients who would go on to suffer diffuse axonal injury and long-term cognitive dysfunction.

“We extended this biomarker research to the domain of professional sports to test its merit as an objective and rapid way to determine players’ severity of brain injury,” says lead author, Robert Siman, PhD, Research Professor of Neurosurgery at Penn. “This blood test may aid neurobiologically-informed decisions on suitability for return to play following a sports-related concussion.”

The study, conducted in collaboration with Henrik Zetterberg, MD, PhD and Kai Blennow, MD, PhD, of the Sahgrenska Academy at University of Gothenburg, Sweden, and their colleagues, enrolled 288 players in the top Swedish professional ice hockey league.  Each of the 28 players who suffered a concussion during the first half of the 2012-2013 season received serial blood draws and was evaluated daily for symptom resolution using the latest guidelines for treatment of sports concussions. Eight of the concussed players were symptom-free within a few days of their injury, but 20 of the players had persistent post-concussion symptoms requiring they be withheld from play six days or longer.  An additional 45 players were evaluated during the preseason, 17 of whom were also tested before and after a concussion-free training game.

Compared to those players who were not concussed, or whose concussion symptoms resolved rapidly, the researchers found an increase in the blood SNTF concentration from one hour up to 144 hours post-concussion in those players experiencing persisting post-concussion symptoms.  SNTF is a protein that is present at undetectable levels in healthy human brains, but is produced under conditions where nerve cells are traumatized and begin to die.  Concussions that lead to lasting brain dysfunction cause SNTF to accumulate in vulnerable long axon tracts of the brain, and its blood elevation is a measure of this diffuse axonal injury.

“These results show that SNTF has promise as a blood biomarker for sports-related concussion and beyond. High blood levels of SNTF appear to identify acute brain damage that corresponds with persisting symptoms after concussion.  These observations lend further support to the growing awareness that concussion is not trivial, since it can induce permanent brain damage in some individuals,” agree Siman and senior author, Douglas H. Smith, MD, professor of Neurosurgery and director of the Center for Brain Injury and Repair at Penn. Penn Medicine

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:23Protein elevated in blood predicts post-concussion symptom severity in professional athletes

Human cancer prognosis is related to newly identified immune cell

, 26 August 2020/in E-News /by 3wmedia

A newly discovered population of immune cells in tumours is associated with less severe cancer outcomes in humans, and may have therapeutic potential, according to a new UC San Francisco study of 3,600 human tumours of 12 types, as well as mouse experiments.

Molecules associated with these cells, newly identified by the UCSF researchers, could be the focus of new immunotherapies that are more precisely targeted than current immunotherapies now in clinical trials, said Matthew Krummel, PhD, professor of pathology at UCSF and the leader of the study.

In fact, the UCSF researchers concluded that the presence of these cells may be the reason current immunotherapies aimed at boosting T lymphocyte responses have any effectiveness whatsoever.

Krummel’s lab team depleted the population of these already rare cells in mice and demonstrated that the immune system was then unable to control tumours, even when the mice were given immunotherapeutic treatments.

“We found a rare cell type, present in most tumours — but very sparsely — that confers immunity and thus assists in immune rejection of the tumour,” Krummel said.

Tumours are able to grow large and spread in part because they subvert the immune system. Cancers prevent the activation of T lymphocytes within the immune system that specifically target tumour molecules recognized as abnormal.

Immune cells known as antigen-presenting cells need to activate T lymphocytes to trigger them to attack, but in cancer, cells called tumour-associated macrophages tell T lymphocytes to remain dormant, and also foster the development of blood vessels that feed the growing tumour.

However, the distinct, rare population of cells newly identified by Krummel’s lab team persists in trying to activate tumour-targeting T lymphocytes, apparently with enough success despite their scarcity to make a difference in cancer outcomes. Krummel calls the cells antigen-presenting CD103+ dendritic cells, and they make up fewer than 1 percent of all antigen-presenting cells, he said.

The researchers found specific molecules on the cells that serve as a signature for their identification, and molecules that might be targeted to boost the cells’ power to activate T lymphocytes.

“Patients who have the signature of these cells live consistently longer than those with weak signatures,” Krummel said.

“These antigen-presenting CD103+ dendritic cells are an important but previously unrecognized ally in immunity to cancer, and we believe that we can learn to manipulate their numbers for new cancer immunotherapies.

“We have identified proteins that we plan to target in order to enhance the good cells, and conversely, we think we can treat molecules on the surface of the bad cells as targets to eliminate those cells.”

The association of the signature for antigen-presenting CD103+ dendritic cells with better outcomes was especially strong in head and neck cancers and in breast cancers, Krummel said.

The strength of the association between the CD103+ cell signature and cancer outcomes raises the prospect that researchers might even be able to detect cancer early via an immune response. “We want to find genes that are only present in immune cells in cancer, and not in people without cancer,” Krummel said. University of California – San Francisco

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:31Human cancer prognosis is related to newly identified immune cell

Genetic test for inherited kidney diseases

, 26 August 2020/in E-News /by 3wmedia

A new test from Washington University’s Genomic Pathology Services will help physicians quickly zero in on genetic mutations that may be contributing to kidney disease.
Many kidney disorders are difficult to diagnose. To address this problem, scientists and clinicians have developed a diagnostic test that identifies genetic changes linked to inherited kidney disorders. This testing is now available nationwide through Genomic Pathology Services (GPS) at Washington University School of Medicine in St. Louis.

“For many kidney diseases, diagnosis can be an odyssey in which you sequence one gene after another over a long period of time to learn what’s going wrong and what the best options are for treatment,” said GPS chief medical officer and Washington University pathologist Jonathan Heusel, MD, PhD. “It makes more sense to screen all the possible contributing genes at once with a single test and consider options for treatment.”
To make this possible, the GPS team developed the test with kidney disease specialists, including Joseph Gaut, MD, PhD, a renal pathologist.

The test employs next-generation sequencing technology to decode genes associated with kidney disease. Using software developed at the university, clinical genomics specialists analyse and interpret the observed genetic alterations to identify disease-related genetic changes, or variants. They then must determine whether a given variant poses clinical risks based on available medical knowledge.

“The variants have to be evaluated on a case-by-case basis, which can be time-consuming and labour-intensive,” Heusel said.

GPS continues to update the kidney test as new links between kidney problems and DNA are identified.

“We stay abreast of the literature, and as new genes become clinically meaningful, we will incorporate those into the test,” said Catherine Cottrell, PhD, medical director for GPS.

The kidney test will check for:
•          Alport syndrome, which is characterized by progressive loss of kidney function, hearing loss and eye abnormalities;
•          Nephrotic syndrome, which includes symptoms such as protein in the urine, low blood-protein levels, high levels of cholesterol and triglycerides, and swelling;
•          Metabolic disorders associated with renal disease and including other systemic abnormalities such as diabetes, amyloidosis and others;
•          Complement (immune system) defects related to kidney disease, including atypical hemolytic uremic syndrome. Washington University

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:12Genetic test for inherited kidney diseases

Novel breast cancer gene found

, 26 August 2020/in E-News /by 3wmedia

A new study identifies a gene that is especially active in aggressive subtypes of breast cancer. The research suggests that an overactive BCL11A gene drives triple-negative breast cancer development and progression.

The research, which was done in human cells and in mice, provides new routes to explore targeted treatments for this aggressive tumour type.

There are many types of breast cancers that respond differently to treatments and have different prognoses. Approximately one in five patients is affected by triple-negative breast cancer; these cancers lack three receptor proteins that respond to hormone therapies used for other subtypes of breast cancer. In recent years it has become apparent that the majority of triple-negative tumours are of the basal-like subtype.

Although new treatments are being explored, the prognosis for triple-negative cancer is poorer than for other types. To date, only a handful of genomic aberrations in genes have been associated with the development of triple-negative breast cancer.

The team looked at breast cancers from almost 3000 patients. Their search had a particular focus: they examined changes to genes that affect the behaviour of stem cells and developing tissues, because other work they have done suggests that such genes, when mutated, can often drive cancer development. Among these was BCL11A.

‘Our understanding of genes that drive stem cell development led us to search for consequences when these genes go wrong,’ says Dr Pentao Liu, senior author on the study, from the Wellcome Trust Sanger Institute. ‘BCL11A activity stood out because it is so active in triple-negative cancers.

‘It had all the hallmarks of a novel breast cancer gene.’

Higher activity of the BCL11A gene was found in approximately eight out of ten patients with basal-like breast cancer and was associated with a more advanced grade of tumour. In cases where additional copies of the BCL11A gene were created in the cancer, the prospects for survival of the patient were diminished.

‘Our gene studies in human cells clearly marked BCL11A as a novel driver for triple-negative breast cancers,’ says Dr Walid Khaled, joint first author on the study from the Wellcome Trust Sanger Institute and University of Cambridge. ‘We also showed that adding an active human BCL11A gene to human or mouse breast cells in the lab drove them to behave as cancer cells. Wellcome Trust Sanger Institute

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:19Novel breast cancer gene found

Defective NPC1L1 gene found to protect against heart disease

, 26 August 2020/in E-News /by 3wmedia

By combing through the DNA of more than 100,000 people, researchers at Broad Institute, Massachusetts General Hospital, and elsewhere have identified rare, protective genetic mutations that lower the levels of LDL cholesterol — the so-called “bad” cholesterol — in the blood. The researchers’ findings reveal that these naturally occurring mutations also reduce a person’s risk of coronary heart disease by about 50 percent. Remarkably, the mutations disrupt a gene called Niemann-Pick C1-Like 1 (NPC1L1) — the molecular target of the FDA-approved drug ezetimibe, often used as a treatment for high LDL.

“Protective mutations like the one we’ve just identified for heart disease are a treasure trove for understanding human biology,” said Sekar Kathiresan, a senior author of the study, Broad associate member, and director of preventive cardiology at Massachusetts General Hospital. “They can teach us about the underlying causes of disease and point to important drug targets.”

Over the past several years, evidence has been mounting that certain loss-of-function mutations — mutations that reduce or completely eliminate a gene’s ability to work — can, at the same time, protect against disease. With this latest discovery, the list now stands at four genes that have been found to offer protective effects against either heart or metabolic disease. (The genes PCSK9, AP0C3, and now NPC1L1 have been found to protect against heart disease, and SLC30A8 has been shown to protect against type 2 diabetes.)

The scientific community is interested in these protective mutations not only because of what they can reveal about the biological basis of disease, but also for their ability to suggest potential paths toward new therapeutics. From a pharmaceutical perspective, it is much more feasible to develop a drug that disables, rather than activates, a gene.

Kathiresan’s long-standing interest in the genetics of blood cholesterol and heart disease first led him to uncover rare mutations in the NPC1L1 gene in just a handful of patients. He wondered if other patients carried similar mutations, so he set off on a massive hunt.

With the combined expertise of Broad Institute’s Genomics Platform, led by Stacey Gabriel, and major support from the National Human Genome Research Institute, Kathiresan and his colleagues sequenced the exomes (the protein-coding portions of the genome) of over 20,000 people of European, African, or South Asian ancestry. They discovered 15 distinct mutations in NPC1L1, all of which serve to inactivate or dampen gene activity. Roughly 1 in 650 people carries one of these inactivating NPC1L1 mutations.

“When it comes to rare variant studies, there is simply no substitute for extremely large sample sizes,” said co-author Gabriel, director of Broad Institute’s Genomics Platform. “This has become crystal clear through our work on NPC1L1 as well as several other similar projects here at the Broad. We now know the right path to get statistically robust results, and that’s the path we are on.”

After defining the mutational landscape of NPC1L1 in the initial study group of 20,000 people, Kathiresan and his colleagues correlated those mutations with LDL levels. The researchers examined the genomes of another 91,000 people and found that those with inactivating mutations in NPC1L1 tended to have lower LDL levels than those without such mutations. The reductions averaged about 12mg/dL, a 10 percent drop that is similar to what is seen in patients receiving ezetimibe therapy.

Individuals who carry inactivating NPC1L1 mutations also have a lower risk of coronary heart disease — roughly half the risk compared to those individuals without those mutations. Broad Institute

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:212021-01-08 11:11:26Defective NPC1L1 gene found to protect against heart disease
Page 141 of 227«‹139140141142143›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
13 November 2025

New Chromsystems Product for Antiepileptic Drugs Testing

11 November 2025

Trusted analytical solutions for reliable results

10 November 2025

Chromsystems | Therapeutic Drug Monitoring by LC-MS/MS

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription