Scientists of the Comprehensive Pneumology Center (CPC) at the Helmholtz Zentrum München have identified a new mechanism which contributes to the development of idiopathic pulmonary fibrosis (IPF). They showed that the pathological changes of lung tissue are accompanied by an increase in protein turnover by the central protein degradation machinery of the cell – the proteasome.
Idiopathic pulmonary fibrosis is a very aggressive form of pulmonary fibrosis and has a particularly poor prognosis. This fatal disease, for which so far no causal therapies exist, is characterized by a massive deposition of connective and scar tissue in the lung, which leads to a progressive loss of lung function and ultimately death. Connective tissue is mainly produced by myofibroblasts. The research group led by PD Dr. Silke Meiners of the Institute of Lung Biology and the CPC showed now for the first time that the activation of these myofibroblasts depends on increased protein turnover by the 26S proteasome.
In the recently published study, the Helmholtz scientists were able to demonstrate an activation of the 26S proteasome during the transformation of normal fibroblasts into myofibroblasts both in vitro and in vivo using two different experimental models of pulmonary fibrosis. Moreover, increased protein turnover was also detected in fibrotic lung tissue of IPF patients. “Conversely, we were able to show that targeted inhibition of the 26S proteasome prevents the differentiation of primary human lung fibroblasts into myofibroblasts, confirming the essential role of enhanced proteasomal protein degradation for this pathological process,” said Silke Meiners.
“Understanding the mechanisms that lead to a disease such as IPF helps us identify innovative approaches that allow therapeutic intervention,” comments Professor Oliver Eickelberg, director of the Institute of Lung Biology and scientific director of the CPC. In further studies, the Helmholtz scientists want to test the therapeutic use of substances which specifically inhibit the 26S proteasome, but do not affect other proteasome complexes in the cell.
Helmholtz Zentrum München
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:34:012021-01-08 11:10:44Increased protein turnover contributes to the development of pulmonary fibrosis
New research by an international team including Keck Medicine of USC scientists is bringing the origins of ovarian cancer into sharper focus.
The study highlights the discovery of three genetic variants associated with mucinous ovarian carcinomas (MOCs), offering the first evidence of genetic susceptibility in this type of ovarian cancer. The research also suggests a link between common pathways of development between MOCs and colorectal cancer and for the first time identifies a gene called HOXD9, which turns genes on and off, and provides clues about the development of MOCs.
‘It remains a mystery where these cancers come from,’ said Simon Gayther, Ph.D., professor in preventive medicine, Keck School of Medicine of USC, corresponding author of the international genome-wide association study (GWAS). ‘By finding these genetic markers, we begin to understand more about the biology of the disease itself. This study tells us more about the biology of ovarian cancer from the early development stage than most research has.’
Ovarian cancer is the fourth leading cause of cancer in American women and seventh most common cancer in women throughout the world (World Health Organization). In 2015, more than 14,000 American women will die of ovarian cancer, according to the American Cancer Society.
Most ovarian cancers have low survival rates, typically because of the misunderstanding of symptoms and discovery of the cancer in later, less treatable stages. ‘Although MOCs are a less common type of ovarian cancer with generally good prognosis when diagnosed in early stages, they are twice as likely to be resistant to treatment at later stages,’ said Andrew Berchuck, M.D., director of gynecologic oncology at Duke University Cancer Institute, and senior author of the study. ‘Our results will contribute to the identification of women at greatest risk of developing the disease with the long-term goal of prevention.’
The association analysis was based on 1,644 women diagnosed with MOC and more than 21,000 women without ovarian cancer. The research was conducted as part of the Collaborative Oncological Gene-environment Study (COGS), launched in 2009 with the goal of determining risks of breast, ovarian and prostate cancer.
EurekAlert
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:34:012021-01-08 11:10:52Scientists find genetic variants key to understanding origins of ovarian cancer
With more than 200 million global users of statins, these medications are the very definition of ‘blockbuster.’ By stopping a substance the body uses to make cholesterol, statins can help stave off heart attacks and strokes — the top two causes of death worldwide. But in a significant percent of patients — up to 30 percent by some reports — statins can also eat away muscle tissue, causing weakness, muscle pain and in rare cases, potentially deadly kidney and liver damage.
And the problem could grow larger. Under the most recent heart disease prevention guidelines issued by the American Heart Association and American College of Cardiology, the potential number of candidates for statin therapy in the US jumped from 43 million to 56 million.
‘As doctors follow the current guidelines, we expect that nearly half of Americans ages 40 to 75 and most men over 60 may be prescribed a statin,’ said Joseph Kitzmiller, MD, PhD an associate director of the Center for Pharmacogenomics at The Ohio State University Wexner Medical Center. ‘We currently have a limited ability to predict clinical outcomes and potential side effects for any of those individual patients — many of whom will be on a statin for the rest of their lives. In general and for most patients, statins are largely beneficial. Unfortunately, not all patients benefit and some are harmed by statins.’
Kitzmiller, who has devoted his career to untangling the many ways that genetics influence how patients respond to their medications, thinks that statin dosage recommendations need also to consider common genetic variants the affect drug exposure.
‘The muscle toxicity associated with statins is largely about exposure, and exposure is significantly affected by a patient’s genetics,’ Kitzmiller explained. ‘If you give two people 20 milligrams of a statin, and one of them has a polymorphism, or gene variation that changes the way the body processes that statin, it may be as though you’ve given them two or three times as much medication.’
Kitzmiller is team, which is primarily studying simvastatin, have already identified a gene variation that decreases statin metabolism — making people more susceptible to adverse events.
‘For our patients carrying this genetic variant, simvastatin doesn’t break down as much in the liver. This means more of the drug is in their bloodstream, increasing their exposure and potential for muscle toxicity,’ said Kitzmiller. ‘For these people, a lower dose of simvastatin could potentially deliver the same benefits while causing fewer side effects.’
Kitzmiller also found that a patient’s likelihood for carrying a genetic polymorphism depends on their race. Recent work by his research team suggests that the effect size also varies significantly across racial groups. One genetic variant resulted in a nearly 3-fold increase in simvastatin concentrations for African-Americans but only a modest increase for Caucasians.
‘That can have incredible clinical significance, especially since African-Americans often suffer higher rates of drug adverse outcomes and higher disease mortality rates despite receiving similar or even identical treatment,’ said Kitzmiller, who is also an associate professor in the Department of Pharmacology at Ohio State’s College of Medicine.
His team has also recently developed a blood test that can simultaneously measure the quantities of three different types of statins and their metabolites, which indicates how much of a medication the body has metabolized. This type of tool is essential to help scientists establish connections between genetic profiles and the variation in how statins are absorbed, transported, distributed and excreted. Kitzmiller is in the process of developing a multigene test that could tell clinicians if their patients have any of the genetic culprits that are likely to lead to muscle problems or other side effects from statins. He hopes to bring this test to clinical trials later this year.
Science Daily
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:34:012021-01-08 11:11:01Genome library, blood test aim to minimize statin side effects, maximize benefits
Practically everyone gets fatter as they get older, but some people can blame their genes for the extra padding. Researchers have shown that two different mutations in a gene called ankyrin-B cause cells to suck up glucose faster than normal, fattening them up and eventually triggering the type of diabetes linked to obesity.
The more severe of the two mutations, called R1788W, is carried by nearly one million Americans. The milder mutation, known as L1622I, is shared by seven percent of the African American population and is about as common as the trait for sickle cell anaemia.
The findings, which were generated in mice, could help identify at-risk individuals who might be able to tip the scales back in their favour by eating better and exercising more.
“This is one of the first examples of a susceptibility gene that would only be manifested through a modern lifestyle,” said Vann Bennett, M.D., Ph.D., senior author of the study and George Barth Geller Professor of Biochemistry, Cell Biology, and Neurobiology at Duke University School of Medicine. “The obesity epidemic really took off in the 1980’s, when sugary sodas and French fries became popular. It’s not like we suddenly changed genetically in 1980, but rather we have carried susceptibility genes that were exacerbated by this new diet. We think our findings are just the beginning, and that there are going to be many genes like this.’
Bennett, who is also an investigator with the Howard Hughes Medical Institute, discovered ankyrin-B more than thirty years ago. He found that ankyrin-B acts as a kind of protein anchor, tethering important proteins to the inside of the cell’s plasma membrane. Since his initial discovery, Bennett and other researchers have implicated defects in ankyrin-B in a wide variety of human afflictions, including irregular heartbeat, autism, muscular dystrophy, aging, and, more recently, diabetes.
Diabetes is quickly becoming one of the greatest threats to public health, as waistlines expand around the world and here in the United States. If the current trends continue, one in three Americans will have diabetes by 2050. Patients with type 1 diabetes do not make enough insulin, the hormone that helps process the glucose that builds up in the bloodstream after a meal. Patients with type 2 diabetes, the form linked to obesity, make insulin but become resistant to its effects.
Several years ago, the Bennett laboratory found evidence that ankyrin-B mutations might play a role in insulin secretion and metabolism. Since then, several studies have uncovered rare ankyrin-B variants that are associated with type 2 diabetes. One mutation, called R1788W, was more common in Caucasians and Hispanics. Another, called L1622I, was found exclusively in African-Americans, a group known to be at a particularly high risk of diabetes. But it was still unclear how these changes in the genetic code could set a course for diabetes.
To get at that answer, Bennett’s MD/PhD student Jane Healy created mouse models that carried these same human genetic variants. She and her colleagues found that animals with two copies of the R1788W mutation made less insulin than normal mice. Despite this shortcoming, their blood glucose levels were normal. So the researchers performed the rodent equivalent of a glucose tolerance test –- commonly used to screen for type 2 diabetes in people — to determine how quickly glucose was cleared from the bloodstream in the mutant mice. To their surprise, the mutant mice metabolized glucose more quickly than normal mice.
“We thought that the main problem in these mice would be with the beta cells that produced and secreted insulin,’ said Healy, co-author of the study and a former trainee in Bennett’s laboratory. “Instead, our most significant finding lay with the target cells, which took up much more glucose than expected.”
Glucose doesn’t enter cells and tissues all on its own, but instead has to rely on a second molecule, called GLUT4 transporter, to gain access. Normally, GLUT4 hangs out in the cell, like a hostess waiting for party guests to arrive. When insulin is present it acts as a kind of doorbell, alerting GLUT4 to spring into action and open the door to let glucose into the cell. When insulin goes away, the GLUT4 transporters close the door, turn around, and go back into the middle of the cell.
However, postdoctoral fellow Damaris Lorenzo, Ph.D., found that wasn’t the case with the mutant mice. After conducting a number of biochemistry experiments, Lorenzo ddiscovered that the mice had lots of GLUT4 on the surface of their muscle and fat cells even when there wasn’t any insulin around. That meant that glucose could flow in without necessarily having to bother with the doorbell.
This open door policy was an advantage when they were young, because it protected the animals from low insulin levels. But when the mice got older — or switched to a particularly high-fat diet — it made the mice fatter and, eventually, led them to become insulin resistant.
The researchers believe that long ago, the R1788W mutation — and the milder L1622I mutation — may have provided an evolutionary advantage. Aging hunter-gatherer types, who weren’t as effective at chasing down their next meal, needed to gain as much fat as possible to avoid starvation. Now that high-fat, high-calorie foods are plentiful in much of the world, these variants put people at increased risk for modern afflictions like obesity and diabetes.
Duke University
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:34:012021-01-08 11:10:47Gene fuels age-related obesity and diabetes
In a report of a proof-of-principle study of patients with colon and other cancers for whom standard therapies failed, researchers at the Johns Hopkins Kimmel Cancer Center say that mistakes in so-called mismatch repair genes, first identified by Johns Hopkins and other scientists two decades ago, may accurately predict who will respond to certain immunotherapy drugs known as PD-1 inhibitors. Such drugs aim to disarm systems developed by cancer cells to evade detection and destruction by immune system cells.
“This study gives us a solid clue about how immunotherapy may work in cancer and how to guide immunotherapy treatment decisions based on the genetic signatures of a cancer rather than class of cells or organ of origin,” says Luis Diaz Jr., M.D., an oncologist at the Johns Hopkins Kimmel Cancer Center.
“Defects in mismatch repair genes are found in a small percentage of many cancer types, and this type of biomarker for immunotherapy response could apply to tumours containing errors in other DNA repair genes, as well,” says Dung Le, M.D., an oncologist at the Johns Hopkins Kimmel Cancer Center. “Using a predictive biomarker can help us direct the use of immunotherapy drugs to patients who are more likely to respond, avoiding giving people expensive and time-consuming treatments that are not likely to work or delaying the use of other treatments.”
John Hopkins Medicine
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:34:012021-01-08 11:10:55Genetic biomarker may predict cancer patients’ response to immunotherapy drug
Building on their discovery of a gene linked to eating disorders in humans, a team of researchers at the University of Iowa has now shown that loss of the gene in mice leads to several behavioural abnormalities that resemble behaviours seen in people with anorexia nervosa.
The team, led by Michael Lutter, MD, PhD, assistant professor of psychiatry in the UI Carver College of Medicine, found that mice that lack the oestrogen-related receptor alpha (ESRRA) gene are less motivated to seek out high-fat food when they are hungry and have abnormal social interactions. The effect was stronger in female mice, which also showed increased obsessive-compulsive-like behaviours.
The study also shows that ESRRA levels are controlled by energy status in the mice. Restricting calorie intake to 60 percent of normal over several days significantly increased levels of ESRRA in the brains of normal mice.
“Decreased calorie intake usually motivates animals, including humans, to seek out high-calorie food. These findings suggest that loss of ESRRA activity may disrupt that response,” Lutter says.
Anorexia nervosa and bulimia nervosa are common and severe mental illnesses. Lutter notes that although 50 to 70 percent of the risk of getting an eating disorder is inherited, identifying the genes that mediate this risk has proven difficult. Learn more about the treatment of eating disorders at UI Hospitals and Clinics.
ESRRA is a transcription factor—a gene that turns on other genes. Lutter and his colleagues previously found that a mutation that reduces ESRRA activity is associated with an increased risk for eating disorders in human patients. Although ESRRA is expressed in many brain regions that are disrupted in anorexia, almost nothing was known about its function in the brain. In the new study Lutter’s team manipulated ESRRA in mice to investigate the gene’s role in behaviour.
University of Iowa Hospitals and Clinics
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:34:012021-01-08 11:11:09Advances in understanding of eating disorders
After generating new brain tumour models, Cedars-Sinai scientists in the Board of Governors Regenerative Medicine Institute identified the role of a family of genes underlying tumour growth in a wide spectrum of high grade brain tumours.
‘With these new genetic findings, our group of researchers plan to develop targeted therapeutics that we hope will one day be used treat patients with high grade brain tumours and increase their survival,’ said Joshua Breunig, PhD, a research scientist in the Brain Program at the Cedars-Sinai Board of Governors Regenerative Medicine Institute and lead author of the research study published in the journal Cell Reports.
High grade brain tumours, known as gliomas, are difficult to treat with only a single digit five-year survival rate. Most patients treated for primary gliomas develop into secondary gliomas, which are almost always fatal.
‘Any given tumour can harbour a variety of different combinations of mutations,’ said Moise Danielpour, MD, Vera and Paul Guerin Family Chair in Pediatric Neurosurgery, director of the Pediatric Neurosurgery Program and the Center for Pediatric Neurosciences in the Maxine Dunitz Children’s Health Center and last author on the study. ‘Despite advances in radiation and chemotherapy, there are currently no effective curative regimens for treatment for these diverse tumours.’
Researchers first modelled high grade brain tumours from resident stem cells inside the brain, using a cutting edge method of rapid modelling that can create up to five distinct tumour models within 45 minutes.
After effectively modelling high grade brain tumours, researchers identified the Ets family of genes as contributors to glioma brain tumours. These Ets factors function to regulate the behaviour of tumour cells by controlling expression of genes necessary for tumour growth and cell fate. When expression of the Ets genes is blocked, researchers can identify and strategize novel treatment therapies.
‘The ability to rapidly model unique combinations of driver mutations from a patient’s tumour enhances our quest to create patient-specific animal models of human brain tumours,’ added Danielpour.
Immediate next steps involve testing the function of each individual Ets factor to determine their specific role in tumour progression and recurrence after treatment.
Cedars-Sinai
Chemists at Caltech have developed a new sensitive technique capable of detecting colorectal cancer in tissue samples—a method that could one day be used in clinical settings for the early diagnosis of colorectal cancer.
Colorectal cancer is the third most prevalent cancer worldwide and is estimated to cause about 700,000 deaths every year. Metastasis due to late detection is one of the major causes of mortality from this disease; therefore, a sensitive and early indicator could be a critical tool for physicians and patients.
A paper describing the new detection technique by Caltech graduate student Ariel Furst (PhD ’15) and her adviser, Jacqueline K. Barton, the Arthur and Marian Hanisch Memorial Professor of Chemistry, are the paper’s authors.
‘Currently, the average biopsy size required for a colorectal biopsy is about 300 milligrams,’ says Furst. ‘With our experimental setup, we require only about 500 micrograms of tissue, which could be taken with a syringe biopsy versus a punch biopsy. So it would be much less invasive.’ One microgram is one thousandth of a milligram.
The researchers zeroed in on the activity of a protein called DNMT1 as a possible indicator of a cancerous transformation. DNMT1 is a methyltransferase, an enzyme responsible for DNA methylation—the addition of a methyl group to one of DNA’s bases. This essential and normal process is a genetic editing technique that primarily turns genes off but that has also recently been identified as an early indicator of cancer, especially the development of tumours, if the process goes awry.
When all is working well, DNMT1 maintains the normal methylation pattern set in the embryonic stages, copying that pattern from the parent DNA strand to the daughter strand. But sometimes DNMT1 goes haywire, and methylation goes into overdrive, causing what is called hypermethylation. Hypermethylation can lead to the repression of genes that typically do beneficial things, like suppress the growth of tumours or express proteins that repair damaged DNA, and that, in turn, can lead to cancer.
Building on previous work in Barton’s group, Furst and Barton devised an electrochemical platform to measure the activity of DNMT1 in crude tissue samples—those that contain all of the material from a tissue, not just DNA or RNA, for example. Fundamentally, the design of this platform is based on the concept of DNA-mediated charge transport—the idea that DNA can behave like a wire, allowing electrons to flow through it and that the conductivity of that DNA wire is extremely sensitive to mistakes in the DNA itself.
In the present study, Furst and Barton started with two arrays of gold electrodes—one atop the other—embedded in Teflon blocks and separated by a thin spacer that formed a well for solution. They attached strands of DNA to the lower electrodes, then added the broken-down contents of a tissue sample to the solution well. After allowing time for any DNMT1 in the tissue sample to methylate the DNA, they added a restriction enzyme that severed the DNA if no methylation had occurred—i.e., if DNMT1 was inactive. When they applied a current to the lower electrodes, the samples with DNMT1 activity passed the current clear through to the upper electrodes, where the activity could be measured.
‘No methylation means cutting, which means the signal turns off,’ explains Furst. ‘If the DNMT1 is active, the signal remains on. So we call this a signal-on assay for methylation activity. But beyond on or off, it also allows us to measure the amount of activity.”
Using the new setup, the researchers measured DNMT1 activity in 10 pairs of human tissue samples, each composed of a colorectal tumour sample and an adjacent healthy tissue from the same patient. When they compared the samples within each pair, they consistently found significantly higher DNMT1 activity, hypermethylation, in the tumorous tissue. Notably, they found little correlation between the amount of DNMT1 in the samples and the presence of cancer—the correlation was with activity.
‘The assay provides a reliable and sensitive measure of hypermethylation,’ says Barton, also the chair of the Division of Chemistry and Chemical Engineering. ‘It looks like hypermethylation is good indicator of tumourigenesis, so this technique could provide a useful route to early detection of cancer when hypermethylation is involved.’
Caltech
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:34:012021-01-08 11:10:50Earlier, easier detection of colorectal cancer
The over-active immune cells responsible for asthma depend on the gene BCL11B to develop into mature cells, according to a study. The identification of this gene’s role could help in the search for asthma therapies.
Innate lymphoid cell 2 (ILC2), one of a recently discovered class of innate immune cells, is responsible for regenerating respiratory tissues following influenza virus infection. However, an excess of active ILC2 cells can cause lung inflammation, leading to asthma. Researchers hope that targeting BCL11B will enable them to regulate the creation of ILC2s.
‘Before now, asthma treatment has focussed on treating symptoms,’ says Professor Gordon Dougan, a senior author and group leader at the Wellcome Trust Sanger Institute. ‘Now that we have joined the dots between the development of ILC2 cells and the expression of BCL11B, we can begin looking for drug targets that will tackle asthma’s root cause.’
In previous research, it has been found that deleting both copies of the Bcl11b gene in a mouse embryo will cause the animal to die at birth. To observe the reason for this, researchers treated normal mice with Tamoxifen to disable the Bcl11b gene. Three weeks after treatment, these mice were found to have just 6 per cent of the normal number of ILC2 cells because no new ILC2 cells were developed from the progenitor cells in the blood. The treated mice became extremely vulnerable to influenza infection.
‘ These innate immune cells are essential in the fight against infection but having too many can cause serious problems ‘
Scientists also observed mice with just one copy of the Bcl11b gene, rather than the normal two copies. They were surprised to find that reducing Bcl11b expression led to significantly higher numbers of mature ILC2 cells than were found in normal, wild-type, mice. This indicates that the activity of the gene may supress the production of mature cells as well as helping early cells to develop.
‘These innate immune cells are essential in the fight against infection but having too many can cause serious problems,’ says Dr Pentao Liu, a corresponding author from the Sanger Institute. ‘BCL11B has to be there to help ILC2 progenitor cells to reach maturity but it must also be active to suppress the over-creation of mature cells. Our focus must now be on finding a way to manipulate gene expression to boost or reduce cell populations as required.’
Sanger Institute
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:34:012021-01-08 11:10:58Identification of gene’s role in asthma could lead to therapy
Researchers sequenced the genomes of members of 13 families severely affected by autism and compared the sequences to those of healthy controls.
They identified genetic variants that had never before been linked to autism.
One affected gene, CTNND2, plays a critical role in brain development and regulates how many other genes function.
Using a novel approach that homes in on rare families severely affected by autism, a Johns Hopkins-led team of researchers has identified a new genetic cause of the disease. The rare genetic variant offers important insights into the root causes of autism, the researchers say. And, they suggest, their unconventional method can be used to identify other genetic causes of autism and other complex genetic conditions.
In recent years, falling costs for genetic testing, together with powerful new means of storing and analysing massive amounts of data, have ushered in the era of the genomewide association and sequencing studies. These studies typically compare genetic sequencing data from thousands of people with and without a given disease to map the locations of genetic variants that contribute to the disease. While genome-wide association studies have linked many genes to particular diseases, their results have so far failed to lead to predictive genetic tests for common conditions, such as Alzheimer’s, autism or schizophrenia.
“In genetics, we all believe that you have to sequence endlessly before you can find anything,” says Aravinda Chakravarti, Ph.D., a professor in the Johns Hopkins University School of Medicine’s McKusick-Nathans Institute of Genetic Medicine. “I think whom you sequence is as important — if not more so — than how many people are sequenced.”
With that idea, Chakravarti and his collaborators identified families in which more than one female has autism spectrum disorder, a condition first described at Johns Hopkins in 1943. For reasons that are not understood, girls are far less likely than boys to have autism, but when girls do have the condition, their symptoms tend to be severe. Chakravarti reasoned that females with autism, particularly those with a close female relative who is also affected, must carry very potent genetic variants for the disease, and he wanted to find out what those were.
The research team compared the gene sequences of autistic members of 13 such families to the gene sequences of people from a public database. They found four potential culprit genes and focused on one, CTNND2, because it fell in a region of the genome known to be associated with another intellectual disability. When they studied the gene’s effects in zebrafish, mice and cadaveric human brains, the research group found that the protein it makes affects how many other genes are regulated. The CTNND2 protein was found at far higher levels in foetal brains than in adult brains or other tissues, Chakravarti says, so it likely plays a key role in brain development.
While autism-causing variants in CTNND2 are very rare, Chakravarti says, the finding provides a window into the general biology of autism. “To devise new therapies, we need to have a good understanding of how the disease comes about in the first place,” he says. “Genetics is a crucial way of doing that.”
John Hopkins Medicine
We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
Essential Website Cookies
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.
Google Analytics Cookies
These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
Other external services
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.
Privacy Beleid
U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.