Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

Non-invasive prenatal testing may also detect some maternal cancers

, 26 August 2020/in E-News /by 3wmedia

A study shows that genetic test results, as revealed by non-invasive prenatal testing for foetal chromosome abnormalities, may also detect underlying conditions in the mother, including cancer. The study reports on a case series of eight women who had abnormal non-invasive prenatal testing results. While their foetuses had normal chromosomes, retrospective genomic analysis showed that the abnormal findings were due to a variety of undiagnosed cancers in the mothers.

A team of scientists and clinicians, led by Diana W. Bianchi, MD, Executive Director of the Mother Infant Research Institute at Tufts Medical Center, reports the results of their DNA sequencing analysis. Their findings demonstrate that previously undetected maternal cancers may provide a biological explanation for some prenatal screening results that differ from results of prenatal diagnostic tests.

Non-invasive prenatal screening is a recent clinical advance that provides pregnant women with information about possible chromosomal abnormalities, such as Down syndrome, in their foetuses. The screening test, which can be offered as early as the tenth week of pregnancy, analyses fragments of placental and maternal DNA that circulate in the maternal plasma. In women with cancer, the plasma sample also contains cancer DNA.

Diagnosis of cancer during pregnancy is relatively uncommon, with an incidence of about 1 in 1,000 women. Cancer detected during pregnancy most often occurs in the breast, cervix, ovary and colon, as well as melanoma, lymphoma and leukaemia. “This study provides one explanation for when non-invasive prenatal testing results are different from the foetal karyotype. It highlights the need to perform a diagnostic procedure to determine true foetal karyotype whenever non-invasive prenatal testing suggests chromosomal abnormalities,” said Dr. Bianchi, an international expert on non-invasive prenatal testing.

The cases in this study came from a larger group of 125,426 samples submitted from asymptomatic pregnant women who underwent non-invasive prenatal testing for foetal chromosomal abnormalities between 2012 and 2014. Of these, 3757 cases were positive for one or more abnormalities in the number of chromosomes 13, 18, 21, X or Y.  The women’s physicians later reported ten cases of cancer to the laboratory that originally conducted the non-invasive prenatal testing. The study analysed eight of the ten cases in depth. All of the women had abnormal non-invasive prenatal test results, and most frequently, more than one chromosomal abnormality was detected, which is a very unusual result. Cancer was diagnosed during pregnancy or postpartum in these women at an average of 16 weeks following the initial non-invasive prenatal testing.

Some women were tested more than once, and some were tested both during pregnancy and after. One patient had testing after treatment for colorectal cancer, and the abnormal pattern was no longer evident, suggesting a response to treatment. “Non-invasive prenatal testing results may lead to findings of an underlying maternal condition, which, in these cases, was due to cancer,” said Dr. Bianchi. “The take-home message is that women should be aware of this possibility when they seek testing. More research needs to be done to further study this occurrence to help guide physicians on how to counsel women and manage their follow-up care.” Tufts Medical Center

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:10:47Non-invasive prenatal testing may also detect some maternal cancers

Treatment for genetically caused emphysema is effective

, 26 August 2020/in E-News /by 3wmedia

A landmark clinical study provides convincing evidence that a frequently overlooked therapy for genetically-caused emphysema is effective and slows the progression of lung disease.

Alpha-1 antitrypsin deficiency is an inherited disorder that can cause emphysema even without exposure to tobacco smoke.  Alpha-1 antitrypsin (AAT) is a protein made in the liver that protects the lungs. With this disorder, the AAT protein builds up in liver cells and doesn’t reach the lungs to protect them. Augmentation therapy involves regular infusions of purified AAT protein to raise the level of the protein in the blood and lungs. Although the therapy has been available for more than 25 years, it has seen limited use because doctors have been unsure that it works.

The study, ‘Intravenous augmentation treatment and lung density in severe α1 antitrypsin deficiency (RAPID): a randomised, double-blind, placebo-controlled trail,’ will change how clinicians understand this treatment and encourage them to consider its early use before the condition causes severe emphysema.

By using CT scans to measure the lung density of patients in the trial, the researchers were able to overcome some of the challenges that have been associated with studying the effectiveness of the treatment.  ‘This treatment has now been studied in our centre using the most sensitive measure of lung structure – a radiologic measurement of lung density –  allowing us to detect changes far earlier than can be seen with standard breathing tests,’ said Dr. Kenneth Chapman, Director of the Asthma and Airways Centre at Toronto Western Hospital and the Canadian research lead for the multicentre trial. ‘We can now say with certainty that augmentation therapy is effective and should be given to patients with emphysema caused by this deficiency.’

According to the Canadian Medical Association Journal, up to five per cent of people with chronic obstructive pulmonary disease (COPD) are thought to have alpha-1 antitrypsin deficiency, yet only four to five per cent of those with a deficiency have been identified.  Even when the deficiency is diagnosed, there has typically been a delay of five to 10 years before this specific genetic problem has been identified as the cause of respiratory problems.

‘Augmentation therapy not only preserves lung structure, but likely adds years of life,’ said Dr. Chapman. ‘Patients with this condition need access to timely diagnosis and treatments to ensure they receive the best possible care’.  Dr. Chapman added that this treatment is used only for this specific type of emphysema and is not of benefit to those with more common types of emphysema, chronic bronchitis or COPD. University Health Network

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:10:55Treatment for genetically caused emphysema is effective

Researchers lead collaborative charge to uncover genetic diversity of pancreatic cancer

, 26 August 2020/in E-News /by 3wmedia

A genetic analysis led by UT Southwestern Medical Center researchers suggests that most pancreatic cancers harbour genetic alterations that could be targeted by existing drugs, using their genetic features as a roadmap for treatment. The findings support a precision approach to treating pancreatic cancer, the fourth most deadly cancer for both men and women.

A comprehensive DNA sequencing of pancreatic cancer cases revealed not only a plethora of damaged genes, but potential diagnostic biomarkers that could help identify those with longer or shorter survival, and provide opportunity for new therapeutic interventions.

“We identified a wealth of genetic diversity, including multiple mutated genes that were previously unknown to pancreatic cancer − an important step in gaining a better understanding of this difficult and particularly deadly disease,” said lead author Dr. Agnieszka Witkiewicz, Associate Professor of Pathology and a member of the Harold C. Simmons Comprehensive Cancer Center at UT Southwestern. “Importantly, the team was able to identify several genes that may be able to help us to predict outcomes in certain circumstances or serve as good candidates for therapeutic efforts.”

Researchers have long hoped that genetic analysis would provide insight into the biology of pancreatic cancer and define new targets for more effective treatment. Achieving this goal has been hampered by the technical difficulty of isolating pure cancer cells out of the tumour tissue that contains both tumour cells as well as normal cells. The new study overcame this limitation by selectively dissecting cancer cells from pieces of tumour tissue. This method was applied to specifically determine the genetic features of 109 different tumours. 

The data showed that the genetic architecture of pancreatic cancer is complex, and each patient’s tumour was found to be unique. The genetic features illuminated ways in which the disease arises, defined events associated with survival, and yielded potential targets for therapeutic intervention.

“While we suspect that genetics can be used as the basis of targeted treatments, this point will only be proven through extensive research and clinical studies, hopefully leading to improved outcomes for patients,” said senior author Dr. Erik Knudsen,  Professor of Pathology, and member of the Simmons Cancer Center who holds the Dr. Charles T. Ashworth Professorship in Pathology. “I am considerably more optimistic of the utility of a genetically targeted therapy for pancreatic cancer today than when we began this work.”

Pancreatic cancer is particularly difficult to treat, and is often diagnosed at a late stage when it is no longer amenable to surgical removal. Chemotherapy has a modest effect, and unfortunately the disease progresses in the vast majority of cases. Therefore, new therapeutic regimens are urgently needed.  UT Southwestern Medical Center

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:11:09Researchers lead collaborative charge to uncover genetic diversity of pancreatic cancer

Protein may trigger cancer cell’s metabolism

, 26 August 2020/in E-News /by 3wmedia

Research led by Maria Clara Franco of the Burnett School of Biomedical Sciences has implications for the treatment of cancer and neurodegenerative diseases.

New research from the University of Central Florida has shed light on the workings of a particular protein found in the human body that could have future implications for the treatment of cancer and neurodegenerative conditions.

Previous research by Maria C. Franco and Alvaro Estevez of the Burnett School of Biomedical Sciences at UCF’s College of Medicine showed that a modified version of a protein known as “heat shock protein 90” or Hsp90 is a trigger for killing cells in the nervous system in neurodegenerative disorders.

Now, Franco’s latest findings show that Hsp90 doesn’t treat all cells the same. In fact, the same protein that kills some cells may help cancer cells.

“We have found a protein that is modified only in pathological conditions,” said Franco, an assistant scientist at the Burnett School who led the research team. “In the nervous system, it is toxic to the cells that are affected by neurodegenerative diseases, while in tumour cells it may actually be acting as a pro-survival agent. In both cases, targeting this oxidized protein may be a potential therapeutic alternative.”

Hsp90 is one of the most studied proteins in terms of potential cancer-fighting drugs, but progress has been slow. Franco’s work provides more clarity on the complex nature of the protein’s impact on cells.

Her research team discovered that a nitration of Hsp90 limits oxygen to the cell’s mitochondria, decreasing its energy production. It sounds like a death knell for the cell, but the reduction of oxygen consumption may actually help the cancerous cells by increasing their resistance to hypoxia since these cells rely on other energy sources.

Franco has been studying the role of Hsp90 and other oxidized proteins in the regulation of cellular metabolism for the past eight years, with the goal of identifying new targets for drugs to combat tumour cells. She is eager to find ways to combat tumour cells while keeping healthy cells intact. University of Central Florida

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:10:42Protein may trigger cancer cell’s metabolism

A microRNA may provide therapy against pancreatic cancer

, 26 August 2020/in E-News /by 3wmedia

Indiana University cancer researchers found that a particular microRNA may be a potent therapeutic agent against pancreatic cancer.

Led by Janaiah Kota, Ph.D., assistant professor of medical and molecular genetics at the IU School of Medicine and a researcher at the Indiana University Melvin and Bren Simon Cancer Center, the researchers found that restoring missing microRNA-29 (miR-29) in pancreatic cancer stromal cells reduced the viability and growth of the cancerous cells.

A thick fibrotic shell around the cancer cells is known as ‘stroma,’ which protects the pancreatic cancer cells from anticancer drugs such as chemotherapy.

‘We found that the loss of miR-29 is a common phenomenon of pancreatic cancer stromal cells, and that by restoring it, the stromal accumulation and cancer growth was reduced,’ Kota said. ‘The use of miR-29 as a therapeutic agent may be more effective in targeting reactive stroma, as a single miRNA regulates the expression of several genes associated with disease mechanisms.’

‘In healthy cells and tissues, a single miRNA controls the expression of hundreds of genes, and any alterations in their normal expression leads to abnormal overexpression of bad genes that are favourable for the growth of cancer cells and are harmful to normal cells,’ Kota explained.

Kota and his colleagues were studying the role of small non-coding RNAs called miRNAs in molecular mechanisms associated with pancreatic cancer stroma to evaluate their use for therapeutic intervention in pancreatic cancer. They found that there is loss of miR-29 in stroma of the pancreatic tumours compared to the healthy pancreas. The researchers expected its expression in stromal cells would restore normal function of stromal cells and reduce the abundance of fibrotic stromal proteins. However, they were surprised that when they co-cultured miR-29 overexpressing stromal cells with cancer cells, it also reduced the viability and growth of cancer cells for unknown factors.

They are currently performing additional studies to understand the molecular mechanisms associated with the effect of miR-29 overexpression in stromal cells on cancer cells as well as in preclinical animal models.

‘This is a novel approach that has the potential to overcome the problems associated with current anti-stromal drugs and that could lead to improved therapeutic strategies, enhanced drug delivery to the tumour bed, and, in the future, improved patient survival,’ said Murray Korc, M.D., the Myles Brand professor of cancer research at the IU School of Medicine and a researcher at the IU Simon Cancer Center. Korc is also director of the Pancreatic Cancer Signature Center.

The need for new therapies for pancreatic cancer patients is great as only 7 percent of people with the disease survive more than five years after diagnosis. According to the National Cancer Institute, there will be an estimated 48,960 new cases of pancreatic cancer and 40,560 deaths from the disease in 2015. Indiana University

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:10:50A microRNA may provide therapy against pancreatic cancer

Thermometer-like device could help diagnose heart attacks

, 26 August 2020/in E-News /by 3wmedia

Diagnosing a heart attack can require multiple tests using expensive equipment. But not everyone has access to such techniques, especially in remote or low-income areas. Now scientists have developed a simple, thermometer-like device that could help doctors diagnose heart attacks with minimal materials and cost.

Sangmin Jeon and colleagues note that one way to tell whether someone has had a heart attack involves measuring the level of a protein called troponin in the person’s blood. The protein’s concentration rises when blood is cut off from the heart, and the muscle is damaged. Today, detecting troponin requires bulky, expensive instruments and is often not practical for point-of-care use or in low-income areas. Yet three-quarters of the deaths related to cardiovascular disease occur in low- and middle-income countries. Early diagnosis could help curb these numbers, so Jeon’s team set out to make a sensitive, more accessible test.

Inspired by the simplicity of alcohol and mercury thermometers, the researchers created a similarly straightforward way to detect troponin. It involves a few easy steps, a glass vial, specialized nanoparticles, a drop of ink and a skinny tube. When human serum with troponin — even at a minute concentration — is mixed with the nanoparticles and put in the vial, the ink climbs up a protruding tube and can be read with the naked eye, just like a thermometer. American Chemical Society

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:10:58Thermometer-like device could help diagnose heart attacks

Switch that may tame most aggressive breast cancers

, 26 August 2020/in E-News /by 3wmedia

Australian researchers have found that so-called ‘triple-negative breast cancers’ are two distinct diseases that likely originate from different cell types. This helps explain why survival prospects for women with the diagnosis tend to be either very good or very bad.

The Sydney-based research team has found a gene that drives the aggressive disease, and hopes to find a way to ‘switch it off’. The aggressive form of triple-negative breast cancer appears to arise from stem cells, while the more benign form appears to arise from specialised cells.

Stem cells have many of the same features as cancers. They are plastic and flexible, and have the ability to proliferate and spread into other tissues – deadly traits in cancers.

Previous studies have shown that breast stem cells are needed for breast growth and development during puberty and pregnancy, although how they evolve from stem cells into specialist cells has been unclear.

The new study has shown that a gene known as ‘inhibitor of differentiation’ (ID4) determines whether a stem cell remains a stem cell, or whether it differentiates into a specialist cell.

Notably, when the high levels of ID4 in a stem cell are ‘switched off’, other genes that drive cell specialisation are ‘switched on’.

Drs Alex Swarbrick and Simon Junankar from Sydney’s Garvan Institute of Medical Research spearheaded this large interdisciplinary study, which links the development of the mammary gland in mice with human breast cancer. Its main finding, that ID4 not only ‘marks’, but appears to control, the highly aggressive form of triple negative breast cancer.

“We found that ID4 is produced at high levels in roughly half of all triple negative breast cancers, and that these cancers have a particularly poor prognosis,” said project leader Dr Alex Swarbrick.

“We also showed that if you block the ID4 gene in experimental models of triple negative breast cancer, the tumour cells stop dividing.” Garvan Institute of Medical Research

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:11:11Switch that may tame most aggressive breast cancers

Study identifies ‘major player’ in skin cancer genes

, 26 August 2020/in E-News /by 3wmedia

A multidisciplinary team at Yale, led by Yale Cancer Center members, has defined a subgroup of genetic mutations that are present in a significant number of melanoma skin cancer cases. Their findings shed light on an important mutation in this deadly disease, and may lead to more targeted anti-cancer therapies.

The role of mutations in numerous genes and genomic changes in the development of melanoma — a skin cancer with over 70,000 new cases reported in the United States each year — is well established and continues to be the focus of intense research. Yet in approximately 30% of melanoma cases the genetic abnormalities are unclear. To deepen understanding of melanoma mutations, the Yale team conducted a comprehensive analysis using whole-exome sequencing of more than 200 melanoma samples from patients with the disease.

The multidisciplinary team — drawing on their expertise in genetics, cancer, computational biology, pharmacology, and other disciplines — also tested the response of tumour cells with specific mutations to anti-cancer drugs.

The researchers confirmed that a gene known as NF1 is a “major player” in the development of skin cancer. “The key finding is that roughly 45% of melanomas that do not harbour the known BRAF or NRAS mutations display loss of NF1 function, which leads to activation of the same cancer-causing pathway,” said Dr. Michael Krauthammer, associate professor of pathology and the study’s corresponding author.

Additionally, researchers observed that melanoma patients with the NF1 mutation were older and had a greater number of mutations in the tumours. These include mutations in the same pathway, collectively known as RASopathy genes.

Yet mutations in NF1 are not sufficient to cause skin cancer, said Ruth Halaban, senior research scientist in dermatology, a member of Yale Cancer Center, and lead author of the study. “Loss of NF1 requires more accompanying changes to make a tumour,” she explained. “Our study identified changes in about 100 genes that are present only in the malignant cells and are likely to be causative. This panel of genes can now be used in precision medicine to diagnose malignant lesions and can be applied to personalized cancer treatment.”

By testing the response of the melanoma samples to two cancer drugs, the researchers also determined that, in addition to loss of NF1, multiple factors need to be tested to predict the response to the drugs. “It opens the door to more research,” said Halaban, who is also principal investigator at Yale SPORE in Skin Cancer.
Yale University

Study identifies ‘major player’ in skin cancer genes
A multidisciplinary team at Yale, led by Yale Cancer Center members, has defined a subgroup of genetic mutations that are present in a significant number of melanoma skin cancer cases. Their findings shed light on an important mutation in this deadly disease, and may lead to more targeted anti-cancer therapies.

The role of mutations in numerous genes and genomic changes in the development of melanoma — a skin cancer with over 70,000 new cases reported in the United States each year — is well established and continues to be the focus of intense research. Yet in approximately 30% of melanoma cases the genetic abnormalities are unclear. To deepen understanding of melanoma mutations, the Yale team conducted a comprehensive analysis using whole-exome sequencing of more than 200 melanoma samples from patients with the disease.

The multidisciplinary team — drawing on their expertise in genetics, cancer, computational biology, pharmacology, and other disciplines — also tested the response of tumour cells with specific mutations to anti-cancer drugs.

The researchers confirmed that a gene known as NF1 is a “major player” in the development of skin cancer. “The key finding is that roughly 45% of melanomas that do not harbour the known BRAF or NRAS mutations display loss of NF1 function, which leads to activation of the same cancer-causing pathway,” said Dr. Michael Krauthammer, associate professor of pathology and the study’s corresponding author.

Additionally, researchers observed that melanoma patients with the NF1 mutation were older and had a greater number of mutations in the tumours. These include mutations in the same pathway, collectively known as RASopathy genes.

Yet mutations in NF1 are not sufficient to cause skin cancer, said Ruth Halaban, senior research scientist in dermatology, a member of Yale Cancer Center, and lead author of the study. “Loss of NF1 requires more accompanying changes to make a tumour,” she explained. “Our study identified changes in about 100 genes that are present only in the malignant cells and are likely to be causative. This panel of genes can now be used in precision medicine to diagnose malignant lesions and can be applied to personalized cancer treatment.”

By testing the response of the melanoma samples to two cancer drugs, the researchers also determined that, in addition to loss of NF1, multiple factors need to be tested to predict the response to the drugs. “It opens the door to more research,” said Halaban, who is also principal investigator at Yale SPORE in Skin Cancer. Yale University

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:10:45Study identifies ‘major player’ in skin cancer genes

New vaccine against HPV infections can prevent 90% of conditions caused by HPV

, 26 August 2020/in E-News /by 3wmedia

A new vaccine against HPV infections has the potential to prevent 90 per cent of all of the conditions triggered by the human papillomavirus. These are the findings of a randomized, controlled, international study involving a new, 9-component vaccine against HPV used on more than 14,000 young women aged between 16 and 26 years. The study was led by Elmar Joura from the University Department of Gynecology at the MedUni Vienna. The study has now been published in the “New England Journal of Medicine”.

Nine sub-types of the human papillomavirus are responsible for 85 per cent of pre-cancerous cells of the cervix. The new, highly effective vaccine now means that these can largely be prevented. The new vaccine is 20 per cent more effective against cervical cancer than the previous 4-component vaccine, up to 30 per cent more effective against the early stages of cervical cancer and up to five to 15 per cent more effective against other types of cancer (such as vaginal or anal carcinoma).

Human papillomaviruses (HPV) infect epithelial cells in the skin and mucosal tissue and can cause tumour-like growth. Some of these viruses also develop malignant tumours, especially cervical cancer in women. Men too can develop cancer caused by HPV infections, however. Over a hundred HPV sub-types have now been identified.

In Austria, up to 400 women a year develop invasive cervical cancer. In more than 90 per cent of the cases human papillomaviruses are responsible. According to Statistik Austria, around 150 to 180 women die from the condition. In Austria, around 6,000 women are admitted to hospital every year for treatment of the early stages of cervical cancer.
The paper has also been featured in the New England Journal of Medicine’s editorial, which is a major honour. “This issue of the journal reports on a milestone in research into cancers associated with the human papillomavirus (HPV)”, it says.

There has been a quadruple HPV vaccine since 2006 which protects against the most dangerous oncogenic HPV strains that cause cervical cancer and other types of cancer in the genital and throat area, but which also cause genital warts. The MedUni Vienna takes its responsibility in this area very seriously, and has not only initiated an HPV action day but has also provided a reasonably priced vaccination campaign for employees and students.

A 9-Valent HPV Vaccine against Infection and Intraepithelial Neoplasia in Women. E. A. Joura, A. Giuliano, et al. N Engl J Med 2015;372:711-23.

Medical University of Viennahttp://tinyurl.com/nb3n4xu

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:10:53New vaccine against HPV infections can prevent 90% of conditions caused by HPV

New Hope for more effective treatments for patients with HER2+ breast cancer

, 26 August 2020/in E-News /by 3wmedia

This month in Breast Cancer Research and Treatment, Khalil and his colleagues at Case Western Reserve University proved the power of persistence; from a pool of more than 30,000 possibilities, they found 38 genes and molecules that most likely trigger HER2+ cancer cells to spread.

By narrowing what was once an overwhelming range of potential culprits to a relatively manageable number, Khalil and his team dramatically increased the chances of identifying successful treatment approaches to this particularly pernicious form of breast cancer. The HER2+ subtype accounts for approximately 20 to 30 percent of early-stage breast cancer diagnoses, which are estimated to be more than 200,000 new breast cancer diagnoses each year in this country, leading to approximately 40,000 deaths annually. Several cancer chemotherapy drugs do work well at early stages of the disease — destroying 95 to 98 percent of the cancer cells in HER2+ tumors.

“Eventually though, many of these patients develop resistance to the drugs, and the 2 to 5 percent of the remaining breast cancer cells begin to grow and cause tumours again,” said Khalil, assistant professor in the Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine. “We want to develop a strategy to target the genes responsible for enhancing HER2 oncogenic activity and increase the chances of eliminating the tumour entirely at the early stages of the disease.”

In this study, Khalil, also a member of the Case Comprehensive Cancer Center, and colleagues chose an innovative approach that went beyond merely comparing gene expression in normal and in HER2+ cancer-affected breast tissue. Other scientists tried such a straightforward comparison but found themselves swamped by hundreds and even thousands of gene expression differences. Instead, Khalil designed a study where the offending genes would stand out. He and colleagues compared gene expression differences among HER2+ breast cancer tissues of uncontrolled HER2 activity with those having greatly diminished HER2 activity. Ultimately their work revealed 35 genes and three long intervening noncoding RNA (lincRNAs) molecules were most associated with the active HER2+ cells.

To obtain special breast cancer tissues in HER2-active and HER2-diminished states, Khalil collaborated with oncologist Lyndsay Harris, MD, who had served as correlative science principal investigator for a clinical trial of the drug trastuzumab, which involved Brown University, Yale University and Cedars-Sinai. Harris, now professor of medicine, CWRU School of Medicine, and director of the Breast Cancer Program, University Hospitals Seidman Cancer Center, obtained the preserved HER2+ breast cancer tissues for Khalil’s study from two intervals — before and then during the trastuzumab clinical trial. The drug works by disrupting HER2 activity, which in turn prevents this recalcitrant protein from launching uncontrolled cell growth.

From this collection of HER2+ breast cancer tissue, Khalil and colleagues got to work on determining which genes and other genetic components stood out. First, they applied RNA sequencing and then compared the sequences in tissues collected before trastuzumab curtailed HER2 activity with those collected later when HER2 activity declined sharply. Next, investigators grew the HER2+ breast cancer tissue cells in the laboratory and examined genes prominent in the cell culture (in vitro) model of the disease. Forty-four genes stood out during this portion of the investigation. Finally, Khalil and colleagues obtained publically available RNA-sequence data sets comparing HER2+ breast cancer with matched normal tissue and found that 35 of those 44 genes passed through this third filter.

“In our investigation, we essentially went from thousands of genes and narrowed it down to 35 genes,” Khalil said. “A lot of those genes made sense in terms of carcinogenesis. When they become upregulated because of increased HER2 activity, many of these genes are involved in increased transcription and increased cell proliferation, which are hallmarks of cancer cells.”

The investigators applied the same comparative analysis — RNA sequencing, growing cells in culture and inhibiting HER2 protein — to observe the role of lincRNAs. Khalil and colleagues only discovered this special group of RNA genes in humans in 2009, and scientists now are slowly unraveling the mystery of lincRNAs. For this study, investigators uncovered three standout lincRNAs that are modulated in activity when subjected to increased HER2 activity.

“For the first time, we have shown that these lincRNAs can also contribute to this HER2+ breast cancers,” Khalil said. “So we added another layer of complexity to the disease with lincRNAs. However, these lincRNAs could potentially open the door for RNA-based therapeutics in HER2+ breast cancer, a therapeutic strategy that has great potential but has not been fully tested in the clinic yet.” Case Comprehensive Cancer Center

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:11:02New Hope for more effective treatments for patients with HER2+ breast cancer
Page 150 of 227«‹148149150151152›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
13 November 2025

New Chromsystems Product for Antiepileptic Drugs Testing

11 November 2025

Trusted analytical solutions for reliable results

10 November 2025

Chromsystems | Therapeutic Drug Monitoring by LC-MS/MS

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription