Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

Multiple pathways progressing to Alzheimer’s disease

, 26 August 2020/in E-News /by 3wmedia

The amyloid cascade hypothesis of Alzheimer’s disease (AD) posits that sticky aggregations or plaques of amyloid-beta peptides accumulate over time in the brain, triggering a series of events that ultimately result in the full-blown neurodegenerative disorder. The hypothesis has been a major driver of AD research for more than 20 years. 

However, in a new study researchers at University of California, San Diego School of Medicine and Veterans Affairs San Diego Healthcare System suggest the picture is not so clear-cut, reporting that early indicators or biomarkers of AD development are not fixed in a specific sequence.

“Our current ability to identify early stages of AD is limited by the focus on amyloid accumulation and the expectation that biomarkers follow the same timeline for all individuals,” said Emily C. Edmonds, PhD, a senior postdoctoral fellow in the Department of Psychiatry and first author of the study.

But, Edmonds said, “AD is complex in the sense that there may be different neurobiological pathways leading to expression of the disease. Our findings suggest that the number of abnormal biomarkers and cognitive markers an individual possesses, without regard to the temporal sequence, is most predictive of future decline.”

“Preclinical AD” is a very early stage of AD prior to the appearance of diagnosable symptoms. Current National Institute of Aging-Alzheimer’s Association (NIA-AA) criteria for preclinical AD describe a disease progression that begins with accumulation of amyloid-beta, leading to neurodegeneration, cognitive decline and, eventually, diagnosable AD.

In their study, researchers classified 570 cognitively normal participants in the Alzheimer’s Disease Neuroimaging Initiative according to NIA-AA criteria, and then separately examined the participants based upon the presence and number of abnormal biological and cognitive markers associated with preclinical AD. They found that neurodegeneration alone was 2.5 times more common than amyloid accumulation alone at baseline measurements.

They then examined only those participants who progressed to a diagnosis of mild cognitive impairment, which is an at-risk cognitive state of AD. They found that it was most common to show neurodegeneration as the first sign of early AD, and equally common to show amyloid accumulation or subtle cognitive decline as the first sign.

Edmonds said that the findings underscore the need to improve identification of persons at risk for AD through the use of multiple, diverse assessment tools. This includes sensitive learning and memory tests capable of reliably identifying cognitive changes at the earliest stages.

“At present, it is much more common for assessment of cognition to be based on insensitive screening measures or reports of cognitive problems by patients or their family members,” said Edmonds. “These blunt screening tools can be very unreliable, which might explain why cognitive decline has traditionally been viewed as occurring later in the disease process. The integration of sensitive neuropsychological measures with assessment of biomarkers of AD can enhance our ability to more accurately identify individuals who are at risk for future progression to AD.” University of California – San Diego

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:10:50Multiple pathways progressing to Alzheimer’s disease

Chameleon proteins make individual cells visible

, 26 August 2020/in E-News /by 3wmedia

Researchers discovered a new mechanism of how fluorescent proteins can change colour. It enables the microscopic visualization of individual cells in their three-dimensional environment in living organisms.

Researchers at ETH Zurich’s Department of Biosystems Science and Engineering in Basel have developed a new microscopy technique that enables for the first time to selectively visualize individual cells within the complex, three-dimensional tissue of a living organism. The researchers have thus succeeded in capturing spectacular microscopic images, such as in the nervous system of a zebrafish larva, a preferred model organism for research. Motor neurons in the spinal cord can be seen in the researchers’ images; at the same time, a single neuron with all its extensions is highlighted in another colour.
An observation by William Dempsey, post-doc in the group of ETH professor Periklis Pantazis, led to the new application. He worked with a special class of fluorescent proteins that change colour when irradiated with laser light of a specific wavelength. One such ‘chameleon protein’ is called Dendra 2, which normally emits green light when illuminated with blue light. The emission of Dendra 2 is however shifted into the red when it is irradiated by intensive violet or ultraviolet (UV) laser light.

Dempsey and Pantazis specifically discovered that when Dendra 2 is irradiated by both a blue and a red laser at the same time, the protein’s colour can also change to red. For this dual-colour illumination low intensity laser light is sufficient. In contrast to high intensity violet or UV irradiation it does not damage living cells.

ETH professor Pantazis and his colleagues then had an idea of how this finding could be deployed in light microscopy. Fluorescent proteins can be used to make whole cells, precise cell structures or single molecules visible. For the first time, the ETH researcher’s discovery permits a single cell or group of molecules located within a desirable part of a living organism to be highlighted with one colour, while all the other cells or molecules remain visible with another colour.

The research group showed that when used individually, two different laser beams cannot change a chameleon protein’s colour. But when the two beams are combined and directed in a way that they meet at a certain point on the object, then the proteins in focus change colour. In contrast, the proteins that are not activated at the same time by the two lasers retain their original colour.
The researchers have developed a simple and inexpensive colour filter, which can be used with the conventional confocal laser microscopes that are found in many biomedical research institutes. When mounted between the laser source and object, the filter divides the laser light into separate blue and red beams that are directed on to a small focal point on the object.

In the case of the zebrafish larva, which is transparent and therefore well suited for microscopy, the ETH researchers used Dendra 2 to colour neurons. They then focused the combined laser beam’s focal point on the cell body of a single neuron in a live, anesthetized zebrafish. The local Dendra 2 molecules became red, spread throughout the entire cell and dyed the cell extensions. All other cells, even in the immediate vicinity of the targeted cell, remained green.
The ability to make individual neurons visible could be of great importance, for example, in the precise mapping of the brain, according to Pantazis. Since the method is suitable for individual cell targeting in living organisms, it could also be used to examine dynamic processes; for example, what happens to individual cells or a group of molecules when researchers treat an organism with active pharmaceutical ingredients. Embryo development could also be examined in more detail. “Our method allows for a three-dimensional analysis in an elegant manner,” explains Pantazis. “This is a very nice example of how you can take a result from basic research and use it to provide a solution for a technically challenging issue.” Pantazis hopes the technique will be used more broadly in biomedical research in the future and is in talks with microscope manufacturers to implement this technology.
wavelength of light. ETH Zurich

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:10:58Chameleon proteins make individual cells visible

Genetic mutation helps explain why, in rare cases, flu can kill

, 26 August 2020/in E-News /by 3wmedia

Nobody likes getting the flu, but for some people, fluids and rest aren’t enough. A small number of children who catch the influenza virus fall so ill they end up in the hospital — perhaps needing ventilators to breathe — even while their family and friends recover easily. New research by Rockefeller University scientists, helps explain why: a rare genetic mutation.

The researchers scrutinized blood and tissue samples from a young girl who, at the age of two-and-a-half, developed acute respiratory distress syndrome after catching the flu, and ended up fighting for her life in the hospital. Years after her ordeal, which she survived, scientists led by Jean-Laurent Casanova discovered that it could be explained by a rare mutation she carries that prevented her from producing a protein, interferon, that helps fight off the virus.

“This is the first example of a common, isolated and life-threatening infection of childhood that is shown to be also a genetic disease,” says Casanova. The good news from these results, however, is that clinicians have a new treatment option for children who mysteriously develop severe cases of the flu. “This finding suggests that one could treat severe flu of childhood with interferon, which is commercially available,” says Casanova, who is professor and head of the St. Giles Laboratory of Human Genetics of Infectious Disease at Rockefeller, as well as a Howard Hughes Medical Institute investigator.

The fact that a child’s genes could affect the severity of her illness wasn’t a surprise to the members of Casanova’s lab, who have been studying this phenomenon for decades. For instance, they have discovered genetic differences that help explain why the herpes simplex virus — which causes innocuous cold sores in most people — can, in rare cases, lead to potentially fatal infections that spread to the brain.

Turning their attention to influenza, Michael J. Ciancanelli, a research associate and senior member of Casanova’s lab, and his colleagues sequenced all genes in the genomes of the young girl who survived her dangerous bout of the flu and her parents, looking for mutations that might explain her vulnerability. Knowing how rare her reaction to the flu was, they narrowed their search to mutations that were unique to her, then focused only on those that affected the immune system.

What emerged from their work was the finding that the girl had inherited two differently mutated copies of the gene IRF7, which encodes a protein that amplifies the production of interferon, a critical part of the body’s response to viral infections. “No other mutations could have explained her reaction to the influenza virus,” says Ciancanelli. “Each mutation is very uncommon and thus the likelihood of carrying two damaged copies of the gene is extremely rare.”

Indeed, when they infected a sample of her blood cells that normally produce interferon —plasmacytoid dendritic cells — the researchers measured no interferon. In contrast, blood cells from her parents, who each carried only one mutated version of the gene, produced healthy amounts of interferon when exposed to influenza. “That really was definitive proof that a single, non-mutated copy of this gene is enough to allow people to mount a response to the virus,” says Ciancanelli. Rockefeller Hospital

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:11:11Genetic mutation helps explain why, in rare cases, flu can kill

Increased protein turnover contributes to the development of pulmonary fibrosis

, 26 August 2020/in E-News /by 3wmedia

Scientists of the Comprehensive Pneumology Center (CPC) at the Helmholtz Zentrum München have identified a new mechanism which contributes to the development of idiopathic pulmonary fibrosis (IPF). They showed that the pathological changes of lung tissue are accompanied by an increase in protein turnover by the central protein degradation machinery of the cell – the proteasome.

Idiopathic pulmonary fibrosis is a very aggressive form of pulmonary fibrosis and has a particularly poor prognosis. This fatal disease, for which so far no causal therapies exist, is characterized by a massive deposition of connective and scar tissue in the lung, which leads to a progressive loss of lung function and ultimately death. Connective tissue is mainly produced by myofibroblasts. The research group led by PD Dr. Silke Meiners of the Institute of Lung Biology and the CPC showed now for the first time that the activation of these myofibroblasts depends on increased protein turnover by the 26S proteasome.

In the recently published study, the Helmholtz scientists were able to demonstrate an activation of the 26S proteasome during the transformation of normal fibroblasts into myofibroblasts both in vitro and in vivo using two different experimental models of pulmonary fibrosis. Moreover, increased protein turnover was also detected in fibrotic lung tissue of IPF patients. “Conversely, we were able to show that targeted inhibition of the 26S proteasome prevents the differentiation of primary human lung fibroblasts into myofibroblasts, confirming the essential role of enhanced proteasomal protein degradation for this pathological process,” said Silke Meiners.

“Understanding the mechanisms that lead to a disease such as IPF helps us identify innovative approaches that allow therapeutic intervention,” comments Professor Oliver Eickelberg, director of the Institute of Lung Biology and scientific director of the CPC. In further studies, the Helmholtz scientists want to test the therapeutic use of substances which specifically inhibit the 26S proteasome, but do not affect other proteasome complexes in the cell. Helmholtz Zentrum München

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:10:44Increased protein turnover contributes to the development of pulmonary fibrosis

Scientists find genetic variants key to understanding origins of ovarian cancer

, 26 August 2020/in E-News /by 3wmedia

New research by an international team including Keck Medicine of USC scientists is bringing the origins of ovarian cancer into sharper focus.

The study highlights the discovery of three genetic variants associated with mucinous ovarian carcinomas (MOCs), offering the first evidence of genetic susceptibility in this type of ovarian cancer. The research also suggests a link between common pathways of development between MOCs and colorectal cancer and for the first time identifies a gene called HOXD9, which turns genes on and off, and provides clues about the development of MOCs.

‘It remains a mystery where these cancers come from,’ said Simon Gayther, Ph.D., professor in preventive medicine, Keck School of Medicine of USC, corresponding author of the international genome-wide association study (GWAS). ‘By finding these genetic markers, we begin to understand more about the biology of the disease itself. This study tells us more about the biology of ovarian cancer from the early development stage than most research has.’

Ovarian cancer is the fourth leading cause of cancer in American women and seventh most common cancer in women throughout the world (World Health Organization). In 2015, more than 14,000 American women will die of ovarian cancer, according to the American Cancer Society.

Most ovarian cancers have low survival rates, typically because of the misunderstanding of symptoms and discovery of the cancer in later, less treatable stages. ‘Although MOCs are a less common type of ovarian cancer with generally good prognosis when diagnosed in early stages, they are twice as likely to be resistant to treatment at later stages,’ said Andrew Berchuck, M.D., director of gynecologic oncology at Duke University Cancer Institute, and senior author of the study. ‘Our results will contribute to the identification of women at greatest risk of developing the disease with the long-term goal of prevention.’

The association analysis was based on 1,644 women diagnosed with MOC and more than 21,000 women without ovarian cancer. The research was conducted as part of the Collaborative Oncological Gene-environment Study (COGS), launched in 2009 with the goal of determining risks of breast, ovarian and prostate cancer. EurekAlert

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:10:52Scientists find genetic variants key to understanding origins of ovarian cancer

Genome library, blood test aim to minimize statin side effects, maximize benefits

, 26 August 2020/in E-News /by 3wmedia

With more than 200 million global users of statins, these medications are the very definition of ‘blockbuster.’ By stopping a substance the body uses to make cholesterol, statins can help stave off heart attacks and strokes — the top two causes of death worldwide. But in a significant percent of patients — up to 30 percent by some reports — statins can also eat away muscle tissue, causing weakness, muscle pain and in rare cases, potentially deadly kidney and liver damage.

And the problem could grow larger. Under the most recent heart disease prevention guidelines issued by the American Heart Association and American College of Cardiology, the potential number of candidates for statin therapy in the US jumped from 43 million to 56 million.

‘As doctors follow the current guidelines, we expect that nearly half of Americans ages 40 to 75 and most men over 60 may be prescribed a statin,’ said Joseph Kitzmiller, MD, PhD an associate director of the Center for Pharmacogenomics at The Ohio State University Wexner Medical Center. ‘We currently have a limited ability to predict clinical outcomes and potential side effects for any of those individual patients — many of whom will be on a statin for the rest of their lives. In general and for most patients, statins are largely beneficial. Unfortunately, not all patients benefit and some are harmed by statins.’

Kitzmiller, who has devoted his career to untangling the many ways that genetics influence how patients respond to their medications, thinks that statin dosage recommendations need also to consider common genetic variants the affect drug exposure.

‘The muscle toxicity associated with statins is largely about exposure, and exposure is significantly affected by a patient’s genetics,’ Kitzmiller explained. ‘If you give two people 20 milligrams of a statin, and one of them has a polymorphism, or gene variation that changes the way the body processes that statin, it may be as though you’ve given them two or three times as much medication.’

Kitzmiller is team, which is primarily studying simvastatin, have already identified a gene variation that decreases statin metabolism — making people more susceptible to adverse events.

‘For our patients carrying this genetic variant, simvastatin doesn’t break down as much in the liver. This means more of the drug is in their bloodstream, increasing their exposure and potential for muscle toxicity,’ said Kitzmiller. ‘For these people, a lower dose of simvastatin could potentially deliver the same benefits while causing fewer side effects.’

Kitzmiller also found that a patient’s likelihood for carrying a genetic polymorphism depends on their race. Recent work by his research team suggests that the effect size also varies significantly across racial groups. One genetic variant resulted in a nearly 3-fold increase in simvastatin concentrations for African-Americans but only a modest increase for Caucasians.

‘That can have incredible clinical significance, especially since African-Americans often suffer higher rates of drug adverse outcomes and higher disease mortality rates despite receiving similar or even identical treatment,’ said Kitzmiller, who is also an associate professor in the Department of Pharmacology at Ohio State’s College of Medicine.

His team has also recently developed a blood test that can simultaneously measure the quantities of three different types of statins and their metabolites, which indicates how much of a medication the body has metabolized. This type of tool is essential to help scientists establish connections between genetic profiles and the variation in how statins are absorbed, transported, distributed and excreted. Kitzmiller is in the process of developing a multigene test that could tell clinicians if their patients have any of the genetic culprits that are likely to lead to muscle problems or other side effects from statins. He hopes to bring this test to clinical trials later this year. Science Daily

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:11:01Genome library, blood test aim to minimize statin side effects, maximize benefits

Gene fuels age-related obesity and diabetes

, 26 August 2020/in E-News /by 3wmedia

Practically everyone gets fatter as they get older, but some people can blame their genes for the extra padding. Researchers have shown that two different mutations in a gene called ankyrin-B cause cells to suck up glucose faster than normal, fattening them up and eventually triggering the type of diabetes linked to obesity.

The more severe of the two mutations, called R1788W, is carried by nearly one million Americans. The milder mutation, known as L1622I, is shared by seven percent of the African American population and is about as common as the trait for sickle cell anaemia.

The findings, which were generated in mice, could help identify at-risk individuals who might be able to tip the scales back in their favour by eating better and exercising more.

“This is one of the first examples of a susceptibility gene that would only be manifested through a modern lifestyle,” said Vann Bennett, M.D., Ph.D., senior author of the study and George Barth Geller Professor of Biochemistry, Cell Biology, and Neurobiology at Duke University School of Medicine. “The obesity epidemic really took off in the 1980’s, when sugary sodas and French fries became popular. It’s not like we suddenly changed genetically in 1980, but rather we have carried susceptibility genes that were exacerbated by this new diet. We think our findings are just the beginning, and that there are going to be many genes like this.’

Bennett, who is also an investigator with the Howard Hughes Medical Institute, discovered ankyrin-B more than thirty years ago. He found that ankyrin-B acts as a kind of protein anchor, tethering important proteins to the inside of the cell’s plasma membrane. Since his initial discovery, Bennett and other researchers have implicated defects in ankyrin-B in a wide variety of human afflictions, including irregular heartbeat, autism, muscular dystrophy, aging, and, more recently, diabetes.

Diabetes is quickly becoming one of the greatest threats to public health, as waistlines expand around the world and here in the United States. If the current trends continue, one in three Americans will have diabetes by 2050. Patients with type 1 diabetes do not make enough insulin, the hormone that helps process the glucose that builds up in the bloodstream after a meal. Patients with type 2 diabetes, the form linked to obesity, make insulin but become resistant to its effects.

Several years ago, the Bennett laboratory found evidence that ankyrin-B mutations might play a role in insulin secretion and metabolism. Since then, several studies have uncovered rare ankyrin-B variants that are associated with type 2 diabetes. One mutation, called R1788W, was more common in Caucasians and Hispanics. Another, called L1622I, was found exclusively in African-Americans, a group known to be at a particularly high risk of diabetes. But it was still unclear how these changes in the genetic code could set a course for diabetes.

To get at that answer, Bennett’s MD/PhD student Jane Healy created mouse models that carried these same human genetic variants. She and her colleagues found that animals with two copies of the R1788W mutation made less insulin than normal mice. Despite this shortcoming, their blood glucose levels were normal. So the researchers performed the rodent equivalent of a glucose tolerance test –- commonly used to screen for type 2 diabetes in people — to determine how quickly glucose was cleared from the bloodstream in the mutant mice. To their surprise, the mutant mice metabolized glucose more quickly than normal mice.

“We thought that the main problem in these mice would be with the beta cells that produced and secreted insulin,’ said Healy, co-author of the study and a former trainee in Bennett’s laboratory. “Instead, our most significant finding lay with the target cells, which took up much more glucose than expected.”

Glucose doesn’t enter cells and tissues all on its own, but instead has to rely on a second molecule, called GLUT4 transporter, to gain access. Normally, GLUT4 hangs out in the cell, like a hostess waiting for party guests to arrive. When insulin is present it acts as a kind of doorbell, alerting GLUT4 to spring into action and open the door to let glucose into the cell. When insulin goes away, the GLUT4 transporters close the door, turn around, and go back into the middle of the cell.

However, postdoctoral fellow Damaris Lorenzo, Ph.D., found that wasn’t the case with the mutant mice. After conducting a number of biochemistry experiments, Lorenzo ddiscovered that the mice had lots of GLUT4 on the surface of their muscle and fat cells even when there wasn’t any insulin around. That meant that glucose could flow in without necessarily having to bother with the doorbell.

This open door policy was an advantage when they were young, because it protected the animals from low insulin levels. But when the mice got older — or switched to a particularly high-fat diet — it made the mice fatter and, eventually, led them to become insulin resistant.

The researchers believe that long ago, the R1788W mutation — and the milder L1622I mutation — may have provided an evolutionary advantage. Aging hunter-gatherer types, who weren’t as effective at chasing down their next meal, needed to gain as much fat as possible to avoid starvation. Now that high-fat, high-calorie foods are plentiful in much of the world, these variants put people at increased risk for modern afflictions like obesity and diabetes. Duke University

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:10:47Gene fuels age-related obesity and diabetes

Genetic biomarker may predict cancer patients’ response to immunotherapy drug

, 26 August 2020/in E-News /by 3wmedia

In a report of a proof-of-principle study of patients with colon and other cancers for whom standard therapies failed, researchers at the Johns Hopkins Kimmel Cancer Center say that mistakes in so-called mismatch repair genes, first identified by Johns Hopkins and other scientists two decades ago, may accurately predict who will respond to certain immunotherapy drugs known as PD-1 inhibitors. Such drugs aim to disarm systems developed by cancer cells to evade detection and destruction by immune system cells.

“This study gives us a solid clue about how immunotherapy may work in cancer and how to guide immunotherapy treatment decisions based on the genetic signatures of a cancer rather than class of cells or organ of origin,” says Luis Diaz Jr., M.D., an oncologist at the Johns Hopkins Kimmel Cancer Center.

“Defects in mismatch repair genes are found in a small percentage of many cancer types, and this type of biomarker for immunotherapy response could apply to tumours containing errors in other DNA repair genes, as well,” says Dung Le, M.D., an oncologist at the Johns Hopkins Kimmel Cancer Center. “Using a predictive biomarker can help us direct the use of immunotherapy drugs to patients who are more likely to respond, avoiding giving people expensive and time-consuming treatments that are not likely to work or delaying the use of other treatments.” John Hopkins Medicine

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:10:55Genetic biomarker may predict cancer patients’ response to immunotherapy drug

Advances in understanding of eating disorders

, 26 August 2020/in E-News /by 3wmedia

Building on their discovery of a gene linked to eating disorders in humans, a team of researchers at the University of Iowa has now shown that loss of the gene in mice leads to several behavioural abnormalities that resemble behaviours seen in people with anorexia nervosa.

The team, led by Michael Lutter, MD, PhD, assistant professor of psychiatry in the UI Carver College of Medicine, found that mice that lack the oestrogen-related receptor alpha (ESRRA) gene are less motivated to seek out high-fat food when they are hungry and have abnormal social interactions. The effect was stronger in female mice, which also showed increased obsessive-compulsive-like behaviours.

The study also shows that ESRRA levels are controlled by energy status in the mice. Restricting calorie intake to 60 percent of normal over several days significantly increased levels of ESRRA in the brains of normal mice.

“Decreased calorie intake usually motivates animals, including humans, to seek out high-calorie food. These findings suggest that loss of ESRRA activity may disrupt that response,” Lutter says.

Anorexia nervosa and bulimia nervosa are common and severe mental illnesses. Lutter notes that although 50 to 70 percent of the risk of getting an eating disorder is inherited, identifying the genes that mediate this risk has proven difficult. Learn more about the treatment of eating disorders at UI Hospitals and Clinics.

ESRRA is a transcription factor—a gene that turns on other genes. Lutter and his colleagues previously found that a mutation that reduces ESRRA activity is associated with an increased risk for eating disorders in human patients. Although ESRRA is expressed in many brain regions that are disrupted in anorexia, almost nothing was known about its function in the brain. In the new study Lutter’s team manipulated ESRRA in mice to investigate the gene’s role in behaviour. University of Iowa Hospitals and Clinics

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:11:09Advances in understanding of eating disorders

Researchers identify critical genes responsible for brain tumour growth

, 26 August 2020/in E-News /by 3wmedia

After generating new brain tumour models, Cedars-Sinai scientists in the Board of Governors Regenerative Medicine Institute identified the role of a family of genes underlying tumour growth in a wide spectrum of high grade brain tumours.

‘With these new genetic findings, our group of researchers plan to develop targeted therapeutics that we hope will one day be used treat patients with high grade brain tumours and increase their survival,’ said Joshua Breunig, PhD, a research scientist in the Brain Program at the Cedars-Sinai Board of Governors Regenerative Medicine Institute and lead author of the research study published in the journal Cell Reports.

High grade brain tumours, known as gliomas, are difficult to treat with only a single digit five-year survival rate. Most patients treated for primary gliomas develop into secondary gliomas, which are almost always fatal.

‘Any given tumour can harbour a variety of different combinations of mutations,’ said Moise Danielpour, MD, Vera and Paul Guerin Family Chair in Pediatric Neurosurgery, director of the Pediatric Neurosurgery Program and the Center for Pediatric Neurosciences in the Maxine Dunitz Children’s Health Center and last author on the study. ‘Despite advances in radiation and chemotherapy, there are currently no effective curative regimens for treatment for these diverse tumours.’

Researchers first modelled high grade brain tumours from resident stem cells inside the brain, using a cutting edge method of rapid modelling that can create up to five distinct tumour models within 45 minutes.

After effectively modelling high grade brain tumours, researchers identified the Ets family of genes as contributors to glioma brain tumours. These Ets factors function to regulate the behaviour of tumour cells by controlling expression of genes necessary for tumour growth and cell fate. When expression of the Ets genes is blocked, researchers can identify and strategize novel treatment therapies.

‘The ability to rapidly model unique combinations of driver mutations from a patient’s tumour enhances our quest to create patient-specific animal models of human brain tumours,’ added Danielpour.

Immediate next steps involve testing the function of each individual Ets factor to determine their specific role in tumour progression and recurrence after treatment. Cedars-Sinai

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:34:012021-01-08 11:10:42Researchers identify critical genes responsible for brain tumour growth
Page 151 of 227«‹149150151152153›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
13 November 2025

New Chromsystems Product for Antiepileptic Drugs Testing

11 November 2025

Trusted analytical solutions for reliable results

10 November 2025

Chromsystems | Therapeutic Drug Monitoring by LC-MS/MS

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription