DIAsource ImmunoAssays has received China FDA clearance for its 25OH Vitamin D ELISA assay based on proprietary (Patented) monoclonal antibodies. The test is successfully launched in the Chinese market in collaboration with a local Chinese distributor and its sub-distributors. The assay which has the CE mark and is FDA cleared, is characterized by a very simple protocol with an extremely efficient pretreatment solution directly in the ELISA well. Its extreme user-friendliness makes it a popular assay among manual ELISA users as well as in laboratories that need high throughput using open ELISA instruments. The company provides validated protocols for the most common ELISA automates in the market. This assay is one of the various assays for determination of Vitamin D (25OH Vitamin D, 1,25 (OH)2 Vitamin D and free 25OH Vitamin D) that DIAsource has available (IVD and RUO versions) in its product portfolio either in an ELISA and/or RIA format.
www.vitamin-d-diagnostics.com
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:33:422021-01-08 11:10:32DIAsource 25OH Vitamin D ELISA CFDA-cleared and launched in the Chinese market
The presence or absence of the CAP2 gene causes sudden cardiac death in mice, according to new research from the Perelman School of Medicine at the University of Pennsylvania. In particular, the absence of the gene interrupts the animal’s ability to send electrical signals to the heart to tell it to contract, a condition called cardiac conduction disease.
“This study proves that the CAP2 gene is directly responsible for cardiac conduction disease in mice,” said senior author Jeffrey Field, PhD, a professor of Systems Pharmacology and Translational Therapeutics. Heart disease is the leading cause of death among men in the United States. There are several risk factors for heart disease, many of which can be controlled with changes in behaviours and medication, but there are also hard-wired genetic factors that play a role. “Since humans have the same CAP2 gene, what we learn from the mice could advance our understanding of heart disease.”
Researchers have known that the CAP2 gene could be implicated in heart disease. However, its effect on cardiac conduction in the mouse heart was a surprise, Field said. The cardiac conduction system is a molecular network that sends electrical signals to the heart, telling it to contract in the correct rhythm to keep blood flowing smoothly.
The CAP2 gene’s class of protein, while known to regulate the structure or cytoskeleton of the heart, is not usually associated with cardiac conduction because this function is governed by a different family of proteins associated with cell communication. “Initially, saying that CAP2 is involved in cardiac conduction is like saying a person with a broken bone isn’t able to talk,” Field said. “The bone’s structural function and the ability to talk are each from entirely different systems. There’s no relationship. This finding merits further study to see how exactly CAP2 regulates conduction. While we don’t understand how, this gene definitely has a role in controlling conduction.”
Using a mouse model in which the team deleted the CAP2 gene, they found that most newborn males died suddenly, soon after weaning. The males were also prone to eye infections, and their eyes developed incorrectly and could not efficiently flush away debris. The knockout mice were also smaller in overall body size.
Though rare, some of the mice also developed hearts that were overly large. “The loss of the CAP2 gene resulted in bigger hearts because the heart had trouble contracting and to compensate, it dilated in order to get more blood flowing,” Field said.
The knockout mice also exhibited arrhythmia that worsened over four to five days. “We were able to monitor the mice as they died. Their hearts beat slower and slower, and they quickly died of heart block,” he said. Heart block happens when the heart atriums contract, but the ventricles do not get the signal to contract. As a result, the mouse hearts missed a few beats at first, and then stopped completely. This condition is called sudden cardiac death, which is distinct from a heart attack caused by clogged arteries impeding blood supply to the heart. In this experiment, there were no observable effects of a missing CAP2 gene on the female newborns.
Studies of some children with a rare developmental problem, called 6p22 syndrome, hint that this gene is associated with similar cardiac issues in people. These children have deep-set eyes and cardiac problems that are not well defined. “Almost all of these children are born with a deletion of one of their copies of the CAP2 gene,” Field noted.
Knowing this connection, the researchers generated mice that would exhibit only cardiac conduction disease (CCD). They reinstated the gene but this time engineered it so they could knock it out again, but this time only in the hearts of the mice. “It took close to five years to perfect this mouse model that exhibited only the heart knockout,” Field said. The researchers could then conduct experiments targeting only the heart problem, because all the other symptoms, such as the eye problems, were out of the picture.
The mice once again developed CCD, leading to sudden cardiac death from complete heart block, but there was an extra surprise this time. The female newborns also died of CCD. “That’s a puzzle for us. We’d be interested in studying why the gender specificity for CAP2-related sudden cardiac death goes away when we knock the gene out just in the heart,” Field said.
The team says that the study increases the understanding of how the CAP2 gene affects heart disease, but it also raises new questions that underline the need for further research heart disease and why it’s a major cause of death in humans.
Perelman School of Medicine
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:33:422021-01-08 11:10:20Heart structural gene causes sudden cardiac death in animal model
An important regulator that controls the ability of tumour cells to hide from the immune system in lymphoma patients, making them unlikely to respond to standard treatment, has been discovered by scientists at the University of Oxford.
Researchers analysed tumour samples from individual patients with diffuse large B-cell lymphoma (DLBCL), alongside cell line models and data on treatment response and survival.
DLBCL, an aggressive cancer affecting white blood cells, is diagnosed in around 5,000 people each year in the UK. There are several different subtypes of the disease, each of which differs in its response to chemotherapy.
The Oxford team found that high levels of shortened forms of a protein, known as FOXP1, in a patient’s lymphoma cells enable the cancer to evade the immune system, potentially nearly halving survival rates for these patients.
The shortened form of the FOXP1 protein was shown to block molecular ‘red flags’ on the surface of lymphoma cells, that would normally present tumour markers to immune cells in the blood – thus blocking the body’s natural defence against cancer.
An aggressive subtype of diffuse large B-cell lymphoma that affects around a half of all patients is known to have abundant shorter forms of the FOXP1 protein. There are a number of drugs currently being developed for this disease subtype, and these findings could add crucial information.
Professor Alison Banham, from the University of Oxford, said: “Scientists have been trying to understand the mechanism of this loss of immune system recognition for over a decade. Now we know that the FOXP1 protein has such an impact on how this type of lymphoma progresses, we can design drugs to switch off the FOXP1 gene in lymphoma cells and help patients’ immune systems to fight their tumour.”
When the scientists prevented the FOXP1gene from functioning in the laboratory, they found that levels of a group of proteins involved in cell interaction with the immune system were raised. Levels of one particular protein in this group, HLA-DRA (a major histocompatibility class II protein), rose significantly as levels of FOXP1 dropped in tumour cells.
The researchers then analysed the tumour profiles of 150 patients with DLBCL who had undergone standard treatment – a combination of chemotherapy and antibody drugs. While 72% of patients with high levels of the HLA-DRA protein survived for over five years after diagnosis, just 38% of patients with lower levels of the protein in their lymphoma cells survived that long. Scientists believe that blocking FOXP1can elevate HLA-DRA, which in turn helps the immune system to keep the lymphoma at bay.
Oxford University
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:33:422021-01-08 11:10:27Genetic key to why some lymphoma patients don’t respond to treatment
Researchers from the University of Ottawa Heart Institute (UOHI), together with the teams of Dr. Martin Farrell at Oxford University, and Dr. Sekar Kathiresan at the Broad Institute, have found the answer to an ongoing debate in the cardiovascular scientific world. Dr. Ruth McPherson and Dr. Majid Nikpay, researchers at the UOHI’s Ruddy Canadian Cardiovascular Genetics Centre, report that the genetic basis of heart disease is largely derived from the cumulative effect of multiple common genetic variants, rather than from a few rare variants with large effects.
The study used the data from the 1000 Genomes project in order to obtain information on close to 10 million genetic variants (called SNPs). The analysis involved 60,000 heart disease patients, 120,000 healthy individuals, from a total of 48 studies around the world. Not only is the number of genetic variants much greater than the approximately 1 million previously studied, this is the first time that researchers have been able to study the link of rare genetic variants present in as few as 1 in 1000 people at risk of heart disease.
“Our analysis provides a comprehensive survey of the fine genetic architecture of coronary artery disease (CAD), showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect size rather than just a few rare variants with large effects,” say the authors of this important study.
Dr. Majid Nikpay, post-doctoral fellow at the Ottawa Heart Institute, also used an alternative statistical method of analysis to find two new risk markers that have an effect only if an individual has inherited two copies of the “bad gene”, that is one from each parent. In addition to discovering a total of 10 new risk markers, by using other statistical approaches, this research team has produced a list of 202 genetic variants in 129 gene regions that together explain approximately 23% of the heritability of coronary heart disease as compared to only 11% reported in previous studies.
“Many of these genetic variants are likely to exert their effects on the walls of arteries, making them more susceptible to the common heart disease risk factors such as cigarette smoking, diabetes and cholesterol,” added Dr Ruth McPherson, Director of the Ruddy Canadian Cardiovascular Genetics Centre at the University of Ottawa Heart Institute.
A number of preventative strategies target the vessel wall (control of blood pressure and smoking cessation), but the large majority of existing drug treatments for lowering CAD risk operate through manipulation of circulating lipid levels and few directly target vessel wall processes. Detailed investigation of new aspects of vessel wall biology that are implicated by genetic association but have not previously been explored in atherosclerosis may provide new insights into the complex etiology of disease and, hence, identify new targets.
University of Ottawa Heart Institute
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:33:422021-01-08 11:10:35Researchers answer important scientific debate connected to heart disease
At age 56, Roma Jean Ockler was continually afflicted with sinus infections and pneumonia, and despite treatments, only seemed to be getting worse. For decades, immunologist Harry R. Hill, M.D., had seen patients like her. At the time he couldn’t have known that her family’s genetic information, combined with that of five other families from across the world, would classify a new disorder. Their subtype of common variable immunodeficiency disorder (CVID) results from mutations in IKAROS, a protein well known for its central role in immune cell development. The new findings make possible a definitive genetic diagnosis for this class of CVID, opening a door to precision medicine tailored to patients with the disorder.
The research was a collaboration between Hill and his colleagues Attila Kumánovics, M.D., Karl Voelkerding, M.D., Sarah South, Ph.D., Nancy Augustine, and Thomas Martins, M.S., from the University of Utah School of Medicine and the ARUP Institute for Clinical and Experimental Pathology at ARUP Laboratories in Salt Lake City, and 26 other scientists from institutions across the U.S. and Europe.
One of the most frustrating aspects of CVID is that it’s difficult to diagnose early before serious complications develop, says Hill. Occurring in about 1 in 20,000 people, the rare condition is actually a collection of disorders that cause a susceptibility to infection, as seen in Ockler’s case. Her illnesses worsened considerably over time but because doctors did not diagnose her, she was not given appropriate treatment. By the time she saw Hill for the first time, she had been through 17 years of sinus surgeries, pneumonias, and a life-threatening intestinal infection. Based on experience he prescribed an immunoglobulin regimen that has since quieted her symptoms.
The genetic causes of only about 15 percent of CVID cases have been identified, and Ockler did not have any of them. When Hill learned she had relatives with similar symptoms, he saw an opportunity to define her condition.
“We knew that if we could find the cause of her and her extended family’s disorder that we would have the chance to keep others from going through what she had,” says Hill, professor of pathology, paediatrics and medicine.
In collaboration with molecular pathologists Kumánovics and Voelkerding, they found that many of her relatives were missing one of two copies of a gene that codes for IKAROS. Meanwhile, Mary Ellen Conley, M.D., from The Rockefeller University, independently came to the same conclusion with her own patients. She connected with the Utah team and coordinated what would become an international effort revealing a total of six unrelated families who share similar sets of symptoms, and changes in the same gene, implicating IKAROS as the culprit behind their shared disorder. “Often research tries to answer a question that is brought up by the patients,” says Conley.
Harry HillWhile some families had a change in just one DNA letter within the gene, others were missing a large piece, or all of it. Each of the mutations cripple a region required for IKAROS to function, a result confirmed by biochemical analysis, suggesting it cannot carry out its critical role in regulating immune B cell development. Indeed, as the experiments predicted, all six families have low B cell counts. In other words, their immune system is misconstructed, likely explaining why they also have low levels of infection-fighting antibodies (immunoglobulins).
Yet one of the most surprising findings, says Kumánovics, assistant professor of pathology, is that while some who carry the IKAROS mutations are prone to sickness, others appear to be healthy. He adds that understanding the biology that leads to this unexpected resilience could provide clues to overcoming the condition. “These rare patients don’t know how valuable they are. They are providing insights into how the immune system works,” he says.
University of Utah
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:33:422021-01-08 11:10:15A path to personalized treatment for an immune disorder
Variations in genes involved in normal bone development are associated with an 8- to 15-fold increased risk for osteonecrosis in young patients with acute lymphoblastic leukaemia (ALL), according to research led by St. Jude Children’s Research Hospital and Children’s Oncology Group investigators.
Osteonecrosis is a major side effect of ALL treatment with chemotherapy. About 15 percent of ALL patients develop the complication, which is caused by reduced blood flow to bones in the hips and other joints and leads bone to break down faster than it is replaced. For patients, the results may include stiffness, pain, disability and joint-replacement surgery. ALL patients aged 10 to 20 years old are at particularly high risk for osteonecrosis.
This study is the first to focus on genetic risk factors for osteonecrosis in ALL patients less than 10 years old, an age group that accounts for about 75 percent of newly identified ALL patients and about half of ALL patients who develop osteonecrosis. Researchers used genome-wide association studies to check the DNA of 1,186 ALL patients less than 10 years old for single changes in the 3.2 billion “letters” or chemical bases that make up the human genetic code.
Researchers checked for genetic variations that were more common in 82 young ALL patients who developed osteonecrosis than in 287 who did not. The screening was then repeated with an additional 817 ALL patients younger than 10 years old. The patients were treated in clinical trials of the Children’s Oncology Group, an international clinical trials group focused exclusively on paediatric cancer.
Patients with osteonecrosis were eight to 15 times more likely to have genetic variations located near BMP7, a gene important for normal bone development.
“The goal of this and earlier studies is to identify and understand genetic and other risk factors for osteonecrosis so we can identify patients at high risk for the side effect and develop interventions to prevent the disease,” said first author Seth Karol, M.D., a St. Jude Physician Scientist Training Program fellow. Karol works with the study’s senior author Mary Relling, Pharm.D., chair of the St. Jude Department of Pharmaceutical Sciences.
A variation in the glutamate receptor gene GRID2 was also associated with a greater likelihood of osteonecrosis in ALL patients younger than 10. GRID2 belongs to a family of genes that carries instructions for assembling receptor proteins on the cell membrane that cells rely on to respond to the chemical messenger glutamate. The finding confirms previous research that reported variations in other glutamate receptor genes were associated with an elevated risk of osteonecrosis, with the prior study primarily identifying the risk in patients aged 10 and older.
“The finding that the genetic variations that affect osteonecrosis risk differ by age was unexpected,” Karol said. “The results suggest that as children age, particularly when bone growth is accelerated during adolescence, certain gene variants may become more or less important.”
Additional research is planned to expand the search for osteonecrosis genetic risk factors to include additional ALL treatment regimens and subtypes of the disease. Working in laboratory models, researchers also plan to study how gene variants affect osteonecrosis risk in order to help lay the groundwork for intervention to prevent the disease.
St. Jude Children’s Research Hospital
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:33:422021-01-08 11:10:22Genetic variants tied to increased risk of bone complications in young leukaemia patients
Not all cancers are the same, even if they originate from the same tissue type. A new study by University of Wisconsin Carbone Cancer Center (UWCCC) researchers has found a small subset of pancreatic cancers may be caused by a gene mutation that can be therapeutically targeted, leading to new treatment options for those patients with the mutation.
‘My lab is interested in what the mutation profiles are in cancers,’ said Dustin Deming, MD, assistant professor of medicine at UWCCC. ‘Nearly ninety percent of pancreas cancers have a mutation in the KRAS gene, but there is currently no successful drug therapy to target those mutations, making pancreas cancer one of the more difficult cancers to treat.’
‘The idea behind this study was to ask if there is potentially any other mutation in the remaining cases that can be targeted,’ Deming said.
He and his research team searched through publicly available datasets of pancreas cancer mutation profiles to see if they could identify a gene other than KRAS that appeared with some frequency.
‘We found that, though uncommon, there appears to be a small percentage of pancreas cancers that have a mutation in the PIK3CA gene, a gene we know from our work in colon cancer that we can target therapeutically, and target it pretty well,’ Deming said.
PIK3CA encodes a protein, called PI3K, that is responsible for activating many downstream targets that promote cell growth, and mutant forms of the gene can lead to persistent, uncontrollable signalling of these targets. PIK3CA mutations have been implicated in many human cancers including colorectal and breast, and an estimated three to five percent of pancreas cancers have mutations in this gene.
To directly assess the role of PIK3CA mutations in pancreas cancer development, Deming and his team generated mouse models where the mutant gene was expressed only in pancreatic cells but no other tissue types. They then performed histology and pathology tests on pancreas sections from these mice and found several hallmarks of pancreas cancer development were present.
‘We were able to show that this mutation can initiate pancreas cancer in mice, and therefore the idea that it initiates pancreas cancers in humans, though more uncommonly than KRAS mutations, might be valid,’ Deming said.
Next, they wanted to see if drugs that inhibit PI3K, like those used with some success to treat colorectal cancers, could reduce the pancreas cancer burden in these genetically altered mice. They administered a dual inhibitor drug that targets both PI3K and one of its downstream targets, and found that nearly all of the cancer hallmarks previously seen in the untreated mice were not present in the treated group.
‘Our next goal is to find patients who have this mutation, look at their clinical characteristics and try to figure out if there is some way, other than genotyping everyone’s cancer for this mutation, to predict who might benefit,’ Deming said. “We are excited that this work might have identified a more treatable subtype of pancreatic cancer that could respond to drugs that are already in clinical development.”
University of Wisconsin-Madison School of Medicine
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:33:422021-01-08 11:10:30Therapeutically targeted gene mutation may cause subset of pancreatic cancers
Research has led to a greater understanding of how certain genetic variants can ‘switch’ on or off the regulatory elements which control the expression of genes and ultimately the manifestation of an individual’s characteristics and disease predispositions.
These variants are found in regions of the genome which are not directly responsible for coding genes, but which instead have a regulatory function. Not much is yet known about these regions, however, research into how the variants work could eventually lead to new clues about how human diseases might be understood at a genetic level and, ultimately, controlled.
“We know many genetic variants are associated with different diseases, but since most of them lie in the non-coding part of the genome, we often don’t know what the precise mechanisms underlying these associations are,” explains Judith Zaugg, who led the study at EMBL. “Our results, and the computational approaches we have developed mean it will now be possible to take these variants and link them back to the regulatory network within the DNA to identify the specific gene that is associated with them. This might enable us to unravel the causal mechanisms behind certain inherited diseases.”
‘Switches’ controlling gene expression might be far apart on DNA strand, but close in 3D space.
Key to the process are regions in the non-coding part of the DNA that harbour specific sequences, called enhancers and promoters. These are responsible for activating the expression of a particular gene. Promoters are located close to the gene they regulate. Enhancers, in contrast, can be far away from their target gene in terms of genomic location and might require physical interaction with the promoter of a gene to propagate the activity signal. One of the big challenges in understanding how genes are controlled is to link these enhancers to their target genes.
In this study, the team has generated molecular profiles from 75 human individuals that were sequenced as part of the 1000 Genomes Project – an international collaboration to produce an extensive catalogue of human genetic variation.
They used epigenetic marks to identify enhancers and promoters within the subjects’ genome and, using a second technology (Hi-C) were able to map how enhancers and promoters were interacting in three-dimensional space. As well as charting the specific interactions between promoters and enhancers using genotype information, the team were able to find genetic associations between physically interacting regions of the genome, thus providing evidence for functional interactions between enhancers and promoters.
Map of genetic ‘switches’ will pave the way for understanding the molecular basis of complex genetic diseases.
An unexpected finding was that often it was not only genetic variants in enhancers that were associated with gene expression, but also regulatory elements in promoters of a distal genes that were physically and genetically connected to the gene of interest.
Genes are known to physically interact with multiple enhancers. In addition, the team also discovered that some promoters are genetically controlled by two or more enhancers, meaning that the enhancers either work in combination to affect gene expression or compensate each other. For example, if one individual lacks a particular enhancer there might be a backup enhancer that could compensate for the loss. Such a compensation mechanism could explain why it is so difficult to identify the causal variants of complex genetic diseases.
“The approach we used enables us to map links between genes and their regulatory elements,” says Fabian Grubert, who led the work at Stanford University, in Michael Snyder’s lab. “Further studies in different tissues will add even more detail to the map, and hopefully will allow us to identify all the enhancers and promoters that influence a single gene under different conditions.”
EMBL
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:33:422021-01-08 11:10:41Variations in our molecular make-up are controlled within our DNA.
Scientists from the University of Granada have developed a new fluorescent dye capable of detecting, in a single test lasting 20 minutes, the presence of phosphate and biothiol inside living cells. This scientific breakthrough could contribute significantly to the early diagnosis of diseases such as osteoporosis, Alzheimer’s, type 2 diabetes, and prostate cancer, since abnormal levels of both substances are associated with these diseases.
The main author behind the study, Luis Crovetto González, explains: “We have successfully managed to create, for the first time, a dual function dye capable of detecting both substances in the same test. Until now, this procedure has been conducted using two separate fluorescent dyes and/or two separate tests.”
In 2014, the same research group patented a new non-invasive method that allows for the measurement, in real-time, of concentration levels of phosphate ions inside living cells. This new dye that they have developed is, in effect, the continuation of this previous research and subsequent patent.
The importance of being able to measure phosphate ions stems precisely from the fact that these measurements can be employed to assess the bioavailability of drugs used to treat certain diseases, among others, osteoporosis.
At present, the only available method for calculating the concentration levels of phosphates found inside the osteoblasts (the precursor cells of bone) is invasive, employing radioactive phosphorous, the use of which carries serious risks.
University of Granada
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:33:422021-01-08 11:10:17Non-invasive diagnosis of diseases such as osteoporosis and Alzheimer’s
A simple, ultrasensitive microRNA sensor developed by researchers from the School of Science at Indiana University-Purdue University Indianapolis, the IU School of Medicine and the IU Melvin and Bren Simon Cancer Center holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
In a study the IUPUI researchers describe their design of the novel, low-cost, nanotechnology-enabled reusable sensor. They also report on the promising results of tests of the sensor’s ability to identify pancreatic cancer or indicate the existence of a benign condition by quantifying changes in levels of microRNA signatures linked to pancreatic cancer.
‘We used the fundamental concepts of nanotechnology to design the sensor to detect and quantify biomolecules at very low concentrations,’ said Rajesh Sardar, Ph.D., who developed the sensor. ‘We have designed an ultrasensitive technique so that we can see minute changes in microRNA concentrations in a patient’s blood and confirm the presence of pancreatic cancer.’ Sardar is an assistant professor of chemistry and chemical biology in the School of Science at IUPUI and leads an interdisciplinary research program focusing on the intersection of analytical chemistry and the nanoscience of metallic nanoparticles.
‘If we can establish that there is cancer in the pancreas because the sensor detects high levels of microRNA-10b or one of the other microRNAs associated with that specific cancer, we may be able to treat it sooner,’ said Murray Korc, M.D., the Myles Brand Professor of Cancer Research at the IU School of Medicine and a researcher at the IU Simon Cancer Center. Korc worked with Sardar to improve the sensor’s capabilities and led the testing of the sensor and its clinical uses as well as advancing the understanding of pancreatic cancer biology.
‘That’s especially significant for pancreatic cancer, because for many patients it is symptom-free for years or even a decade or more, by which time it has spread to other organs, when surgical removal is no longer possible and therapeutic options are limited,’ said Korc. ‘For example, diagnosis of pancreatic cancer at an early stage of the disease followed by surgical removal is associated with a 40 percent five-year survival. Diagnosis of metastatic pancreatic cancer, by contrast, is associated with life expectancy that is often only a year or less.
‘The beauty of the sensor designed by Dr. Sardar is its ability to accurately detect mild increases in microRNA levels, which could allow for early cancer diagnosis,’ Korc added.
Over the past decade, studies have shown that microRNAs play important roles in cancer and other diseases, such as diabetes and cardiovascular disorders. The new IUPUI nanotechnology-based sensor can detect changes in any of these microRNAs.
The sensor is a small glass chip that contains triangular-shaped gold nanoparticles called ‘nanoprisms.’ After dipping it in a sample of blood or another body fluid, the scientist measures the change in the nanoprism’s optical property to determine the levels of specific microRNAs.
‘Using gold nanoprisms may sound expensive, but it isn’t because these particles are so very tiny,’ Sardar said. “It’s a rather cheap technique because it uses nanotechnology and needs very little gold. $250 worth of gold makes 4,000 sensors. Four thousand sensors allow you to do at least 4,000 tests. The low cost makes this technique ideal for use anywhere, including in low-resource environments in this country and around the world.’
IUSM
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:33:422021-01-08 11:10:25Nanotechnology-based sensor developed to measure microRNAs in blood, speed cancer detection
We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
Essential Website Cookies
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.
Google Analytics Cookies
These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
Other external services
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.
Privacy Beleid
U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.