Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

DNA markers link season of birth and allergy risk

, 26 August 2020/in E-News /by 3wmedia

Researchers at the University of Southampton have discovered specific markers on DNA that link the season of birth to risk of allergy in later life.
The season a person is born in influences a wide range of things: from risk of allergic disease, to height and lifespan. Yet little is known about how a one-time exposure like the season of birth has such lasting effects.

The Southampton study conducted epigenetic scanning on DNA samples from a group of people born on the Isle of Wight. They found that particular epigenetic marks (specifically, DNA methylation) were associated with season of birth and still present 18 years later. The research team was also able to link these birth season epigenetic marks to allergic disease, for example people born in autumn had an increased risk of eczema compared to those born in spring. The results were validated in a cohort of Dutch children.

John Holloway, Professor of Allergy and Respiratory Genetics at the University and one of the study’s authors, comments: “These are really interesting results. We know that season of birth has an effect on people throughout their lives. For example generally, people born in autumn and winter are at increased risk for allergic diseases such as asthma. However, until now, we did not know how the effects can be so long lasting.

“Epigenetic marks are attached onto DNA, and can influence gene expression (the process by which specific genes are activated to produce a required protein) for years, maybe even into the next generation. Our study has linked specific epigenetic marks with season of birth and risk of allergy. However, while these results have clinical implications in mediating against allergy risk, we are not advising altering pregnancy timing.”

Dr Gabrielle Lockett, of the University of Southampton and first author of the study, adds: “It might sound like a horoscope by the seasons, but now we have scientific evidence for how that horoscope could work. Because season of birth influences so many things, the epigenetic marks discovered in this study could also potentially be the mechanism for other seasonally influenced diseases and traits too, not just allergy.”

The team say that further research is needed to understand what it is about the different seasons of the year that leads to altered disease risk, and whether specific differences in the seasons including temperature, sunlight levels and diets play a part. More study is also needed on the relationship between DNA methylation and allergic disease, and whether other environmental exposures also alter the epigenome, with potential disease implications. University of Southampton

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:15DNA markers link season of birth and allergy risk

How a genetic locus protects adult blood-forming stem cells

, 26 August 2020/in E-News /by 3wmedia

A particular location in DNA, called the Dlk1-Gtl2 locus, plays a critical role in protecting hematopoietic, or blood-forming, stem cells–a discovery revealing a critical role of metabolic control in adult stem cells, and providing insight for potentially diagnosing and treating cancer, according to researchers from the Stowers Institute for Medical Research.

In their study, Stowers Investigator Linheng Li, Ph.D., and first author Pengxu Qian, Ph.D., along with other collaborators, reveal how the mammalian imprinted Gtl2, located on mouse chromosome 12qF1, protects adult hematopoietic stem cells by restricting metabolic activity in the cells’ mitochondria.

The research focused on imprinted genes–genes ‘stamped’ according to whether they are inherited from the mother or father. With imprinted genes, one working copy, or allele, is inherited instead of two. Either the copy from the mother or father is inactivated or ‘silenced.’ Typically, the paternally inherited allele’s expression promotes growth, while the maternally inherited allele’s expression suppresses it.

The researchers found that when the Gtl2 locus is expressed from the maternally inherited allele, it produces non-coding RNAs to curb metabolic activity. Mechanistically, Gtl2’s ‘megacluster’ of microRNA, the largest cluster of microRNA in the mammalian genome, suppresses the mTOR signaling pathway and downstream mitochondrial biogenesis and metabolism, thus blocking mitochondrial-associated byproducts called reactive oxygen species (ROS) that can damage adult stem cells.

‘Reactive oxygen species are like the potentially harmful by-products that come from industrial manufacturing,’ says Li. ‘ROS are unavoidable derivatives of the mitochondrial metabolic process and need to be managed by the cell,’ he explains.

Hematopoietic stems cells renew themselves and differentiate into other cells, including white blood cells, red blood cells, and platelets, constantly renewing the body’s blood supply in a process called hematopoiesis. Because of their extraordinary transformative qualities, the transplantation or transfusion of isolated human hematopoietic stem cells has been used in the treatment of anemia, immune deficiencies, and other diseases, including cancer.

While hematopoietic stem cells have gained attention in research, it remains largely unknown how cell metabolic states are controlled. The new findings shed light on the delicate metabolic control required to balance hematopoietic stem cell maintenance and action and the associated healthy hematopoiesis.

An upset in that balance can cause cells to grow abnormally and lead to disease. Abnormalities in the Gtl2 locus on human chromosome 14q32.2 are associated with uniparental disomy in which an individual receives two copies of a chromosome from one parent and no copy from the other parent. Uniparental disomy may cause delayed development, mental retardation, or other medical problems. Differences in gene expression at the Gtl2 locus have also been linked to fetal alcohol exposure disorder.

But when working properly, the Gtl2 locus acts as a great protector of cells.

‘Most of the non-coding RNAs at the Gtl2 locus have been documented to function as tumor suppressors to maintain normal cell function,’ Qian says.

Li’s team zeroed in on Gtl2 by studying hematopoietic stem cells in mice with support from Stowers core centers including cytometry, bioinformatics, histology and electron microscopy, molecular biology, and tissue culture. Other collaborators included researchers from the University of Kansas; the University of Kansas Medical Center; Tianjin Medical University, China; Christian Medical College, Vellore, India; Tokyo University of Agriculture, Japan; and University of Cambridge, United Kingdom.

Over the three-year study, investigators used transcriptome profiling to analyze 17 hematopoietic cell types and found that non-coding RNAs expressed from the Gtl2 locus are predominantly located in a subset of the cell types, including adult ‘long-term’ hematopoietic stem cells which have long-term self-renewal capacity. In subsequent experiments, deleting the locus from the maternally inherited allele in hematopoietic stem cells increased mitochondrial biogenesis and subsequent metabolic activity as well as increased ROS levels, with the latter inducing cell death.

The finding opens the possibility for Gtl2 to be used as a biomarker because it could help label dormant (or reserve) stem cells in normal or potentially cancerous stem cell populations, Li says. The addition of a fluorescent tag to the Gtl2 locus could allow researchers to mark other adult stem cells in the gut, hair follicle, muscle, and neural systems. EurekAlert

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:25How a genetic locus protects adult blood-forming stem cells

Sexual transmission of Ebola Virus in Liberia confirmed

, 26 August 2020/in E-News /by 3wmedia

A suspected case of sexual transmission of Ebola virus disease (EVD) in Liberia was confirmed using genomic analysis, thanks to in-country laboratory capabilities established by U.S. Army scientists in collaboration with the Liberian Institute for Biomedical Research (LIBR).
The work provides molecular evidence of Ebola virus (EBOV) transmission between an EVD survivor and his female partner. It also demonstrates the value of real-time genomic surveillance during an outbreak, according to senior author Gustavo Palacios, Ph.D., of the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID).

CPT Suzanne Mate, Ph.D., of USAMRIID, said scientists working at the LIBR earlier this year analysed blood samples from a female patient who tested positive for EBOV in March 2015 when there had been no new documented cases for 30 days. The patient was reported have had recent sexual intercourse with a male partner who had survived EVD and had been declared EBOV negative in early October 2014.

Following the patient’s death on March 27, Mate said, public health officials were able to secure the consent of the male survivor to obtain and test a semen sample from him. The semen sample tested EBOV positive by quantitative RT-PCR, but the assay indicated that the level of viral RNA was low and required a different sample preparation method than the one originally deployed to sequence EBOV RNA from acute samples.

“We implemented a new enrichment strategy in collaboration with scientists from Illumina, Inc. that was pivotal in obtaining the required coverage to complete downstream genomic analysis,” said Michael Wiley, Ph.D, of USAMRIID. Next-generation sequencing of the enriched EBOV RNA extracted from the male survivor’s semen was used to compare the genome for similarity to the virus RNA extracted from the female patient’s blood sample.

“Ebola virus genomes assembled from the patient’s blood and the survivor’s semen were consistent with direct transmission,” commented Jason Ladner, Ph.D., of USAMRIID. “The samples shared three genetic substitutions that have not been found in any other Ebola virus sequences in Western Africa.”

In addition, said Ladner, these three genetic changes were distinct from the last
documented transmission chain in Liberia prior to this case. Combined with epidemiologic data, the genomic analysis provides support for sexual transmission of Ebola virus and for the persistence of infective EBOV in semen for more than 179 days after disease onset. This caused both the Centers for Disease Control and Prevention and the World Health Organization to change their recommendations for convalescent patients regarding sexual contact until more definitive information is obtained about how long Ebola virus can persist in semen. Research Institute of Infectious Diseases

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:30Sexual transmission of Ebola Virus in Liberia confirmed

Genetic overlapping in multiple autoimmune diseases may suggest common therapies

, 26 August 2020/in E-News /by 3wmedia

Scientists who analysed the genes involved in 10 autoimmune diseases that begin in childhood have discovered 22 genome-wide signals shared by two or more diseases. These shared gene sites may reveal potential new targets for treating many of these diseases, in some cases with existing drugs already available for non-autoimmune disorders.

Autoimmune diseases, such as type 1 diabetes, Crohn’s disease and juvenile idiopathic arthritis, collectively affect 7 to 10 percent of the population in the Western Hemisphere.

Dr. Hakonarson“Our approach did more than finding genetic associations among a group of diseases,” said study leader, Hakon Hakonarson, MD, PhD, director of the Center for Applied Genomics at The Children’s Hospital of Philadelphia (CHOP). “We identified genes with a biological relevance to these diseases, acting along gene networks and pathways that may offer very useful targets for therapy.”

The international study team performed a meta-analysis, including a case-control study of 6,035 subjects with automimmune disease and 10,700 controls, all of European ancestry. The study’s lead analyst, Yun (Rose) Li, an MD/PhD graduate student at the University of Pennsylvania and the Center for Applied Genomics, mentored by Hakonarson and his research team, applied highly innovative and integrative approaches in supporting the study of pathogenic roles of the genes uncovered across multiple diseases.

The research encompassed 10 clinically distinct autoimmune diseases with onset during childhood: type 1 diabetes, celiac disease, juvenile idiopathic arthritis, common variable immunodeficiency disease, systemic lupus erythematosus, Crohn’s disease, ulcerative colitis, psoriasis, autoimmune thyroiditis and ankylosing spondylitis.

Because many of these diseases run in families and because individual patients often have more than one autoimmune condition, clinicians have long suspected these conditions have shared genetic predispositions. Previous genome-wide association studies have identified hundreds of susceptibility genes among autoimmune diseases, largely affecting adults.

The current research was a systematic analysis of multiple paediatric-onset diseases simultaneously. The study team found 27 genome-wide loci, including five novel loci, among the diseases examined. Of those 27 signals, 22 were shared by at least two of the autoimmune diseases, and 19 of them were shared by at least three of them.

Many gene signals found on biological pathways linked to cell activation, proliferation and signalling

Many of the gene signals the investigators discovered were on biological pathways functionally linked to cell activation, cell proliferation and signalling systems important in immune processes. One of the five novel signals, near the CD40LG gene, was especially compelling, said Hakonarson, who added, “That gene encodes the ligand for the CD40 receptor, which is associated with Crohn’s disease, ulcerative colitis and celiac disease. This ligand may represent another promising drug target in treating these diseases.”

Gene signals have biological relevance to autoimmune disease processes, opportunities to better target gene networks and pathways

Many of the 27 gene signals the investigators uncovered have a biological relevance to autoimmune disease processes, Hakonarson said. “Rather than looking at overall gene expression in all cells, we focused on how these genes upregulated gene expression in specific cell types and tissues, and found patterns that were directly relevant to specific diseases. For instance, among several of the diseases, we saw genes with stronger expression in B cells. Looking at diseases such as lupus or juvenile idiopathic arthritis, which feature dysfunctions in B cells, we can start to design therapies to dial down over-expression in those cells.”

He added that “the level of granularity the study team uncovered offers opportunities for researchers to better target gene networks and pathways in specific autoimmune diseases, and perhaps to fine tune and expedite drug development by repurposing existing drugs, based on our findings.” The Children’s Hospital of Philadelphia

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:41Genetic overlapping in multiple autoimmune diseases may suggest common therapies

Lack of stem cells to blame for recurrent miscarriages

, 26 August 2020/in E-News /by 3wmedia

Scientists at the University of Warwick have discovered that a lack of stem cells in the womb lining is causing thousands of women to suffer from recurrent miscarriages.

The academics behind the breakthrough are now to start research into a treatment which they believe could bring hope to those who have suffered failed pregnancies.

Professor Jan Brosens, Professor of Obstetrics & Gynaecology at Warwick Medical School at the University of Warwick, and Consultant in Reproductive Health atUniversity Hospitals Coventry and Warwickshire NHS Trust , led the team who unearthed the link between stem cells and miscarriage. He said: “We have discovered that the lining of the womb in the recurrent miscarriage patients we studied is already defective before pregnancy.
“I can envisage that we will be able to correct these defects before the patient tries to achieve another pregnancy. In fact, this may be the only way to really prevent miscarriages in these cases.”

The team found a shortfall of stem cells is the likely cause of accelerated ageing of the lining of the womb which results in the failure of some pregnancies.

Miscarriage is the most common cause of loss; between 15-25% of pregnancies end in miscarriage and one in 100 women trying to conceive suffer recurrent miscarriages, defined as the loss of three or more consecutive pregnancies.

The researchers examined tissue samples from the womb lining, donated by 183 women who were being treated at the Implantation Research Clinic, University Hospitals Coventry and Warwickshire NHS Trust.

The team found that an epigenetic signature – which is typical of stem cells – was absent in cultures established from womb biopsies taken from women suffering recurrent miscarriages. Indeed, fewer stem cells could be isolated from the lining of the womb from recurrent miscarriage patients when compared to women in the study’s control group.

The researchers further found that a stem cell shortage accelerates cellular ageing in the womb. The lining has to renew itself each cycle, each miscarriage and successful birth. This renewal capacity is dependent on resident stem cell population. A shortage of these stem cells in patients suffering recurrent loss is associated with accelerated ageing of the tissue. Ageing cells mount an inflammatory response, which may facilitate implantation of an embryo but is detrimental for its further development.

Professor Brosens added: “After an embryo has implanted, the lining of the uterus develops into a specialised structure called the decidua, and this process can be replicated when cells from the uterus are cultured in the lab.

“Cultured cells from women who had had three or more consecutive miscarriages showed that ageing cells in the lining of the womb don’t have the ability to prepare adequately for pregnancy.” University of Warwick

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:18Lack of stem cells to blame for recurrent miscarriages

Gene therapy: a promising candidate for cystic fibrosis treatment

, 26 August 2020/in E-News /by 3wmedia

An improved gene therapy treatment can cure mice with cystic fibrosis (CF). Cell cultures from CF patients, too, respond well to the treatment. Those are the encouraging results of a study presented by the KU Leuven Laboratory for Molecular Virology and Gene Therapy.

Cystic fibrosis or mucoviscidosis is a genetic disorder that makes the mucus in the body thick and sticky, which in turn causes clogging in, for instance, the airways and the gastrointestinal tract. The symptoms can be treated, but there is no cure for the disorder.

Cystic fibrosis is caused by mutations in the CFTR gene. This gene contains the production code for a protein that functions as a channel through which chloride ions and water flow out of cells. In the cells of CF patients, these chloride channels are dysfunctional or even absent, so that thick mucus starts building up.

“A few years ago, a new drug was launched that can repair dysfunctional chloride channels”, Professor Zeger Debyser explains. “Unfortunately, this medicine only works in a minority of CF patients. As for the impact of gene therapy, previous studies suggested that the treatment is safe, but largely ineffective for cystic fibrosis patients. However, as gene therapy has recently proven successful for disorders such as haemophilia and congenital blindness, we wanted to re-examine its potential for cystic fibrosis”.

That is why lead authors Dragana Vidović and Marianne Carlon examined an improved gene therapy treatment based on inserting the genetic material for chloride channels – coded by the CFTR gene – into the genome of a recombinant AAV viral vector, which is derived from the relatively innocent AAV virus. The researchers then used this vector to ‘smuggle’ a healthy copy of the CFTR gene into the affected cells.

Both in mice with cystic fibrosis and in gut cell cultures from CF patients, this approach yielded positive results. “We administered the rAAV to the mice via their airways. Most of the CF mice recovered. In the patient-derived cell cultures, chloride and fluid transport were restored”.

There is still a long way to go before gene therapy can be used to treat cystic fibrosis patients, Debyser clarifies: “We must not give CF patients false hope. Developing a treatment based on gene therapy will take years of work. For one thing, our study did not involve actual human beings, only mice and patient-derived cell cultures. Furthermore, we still have to examine how long the therapy works. Repeated doses might be necessary. But gene therapy clearly is a promising candidate for further research towards a cure for cystic fibrosis”. KU Leuven

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:25Gene therapy: a promising candidate for cystic fibrosis treatment

10,000 UK genomes project explores the contribution of rare variants to human disease and its risk factors

, 26 August 2020/in E-News /by 3wmedia

The UK10K study explored the contribution of these rare genetic variants to human disease and its risk factors.

Rare genetic variants are changes in DNA that are carried only by relatively few people in a population. The UK10K study was designed to explore the contribution of these rare genetic variants to human disease and its risk factors.

‘The project has made important new contributions towards describing the role of rare genetic variants in a broad range of disease scenarios and human traits.’ says Dr Nicole Soranzo, corresponding author from the Wellcome Trust Sanger Institute. ‘It has shown that the value of sequencing a few thousand individuals is high for highly penetrant, rare diseases, but that for complex traits and diseases much larger sample sizes will be required in future studies. The data and results produced by this project will be instrumental for these future efforts.’

The project studied nearly 10,000 individuals, both healthy and affected by disease. The conditions included very rare disorders inherited in families, and more common diseases such as autism, schizophrenia and obesity. In healthy people, 64 different biomedical risk factors such as blood pressure or cholesterol levels were studied. By characterising the DNA sequence of these individuals, the project gained insight into the contribution of rare variants to a broad range of disease scenarios, and discovered new genetic variants and genes underpinning disease risk.

‘The UK10K project has increased the resolution of genetic discoveries. It has enabled access to a much denser set of variants within the genome in the UK population, which can be used to refine our understanding of genetic effect on phenotypic traits,’ explains Richard Durbin, senior UK10K researcher at the Sanger Institute. ‘In earlier studies either very rare variants with big effects or common variants, which usually only have small effects, could be analysed. Now we have been able to explore an increased part of the spectrum of variation in between the very rare and the common ones.’

A series of papers published today in Nature and Nature Genetics in collaboration with other investigators demonstrates the value of these data for genetic discoveries.

As efforts continue to characterise the genetic underpinnings of complex diseases, the data and results of this study are expected to enable the next wave of discoveries. The UK10K sequence reference panel, described in greater detail in a companion paper published in Nature Communications, has been shown to greatly increase the ability to characterise rare variants in large population samples available to the worldwide research community. This resource will enable researchers to ‘fill in’ missing data from lower resolution genotype studies, allowing them to explore full genotypes more quickly and cheaply. Sanger Institute

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:3310,000 UK genomes project explores the contribution of rare variants to human disease and its risk factors

Newly evolved, uniquely human gene variants protect older adults from cognitive decline

, 26 August 2020/in E-News /by 3wmedia

Humans evolved unique gene variants that protect older adults from neurodegenerative disease, thus preserving their valuable contributions and delaying dependency

Many human gene variants have evolved specifically to protect older adults against neurodegenerative and cardiovascular diseases, thus preserving their contributions to society, report University of California, San Diego School of Medicine researchers.

“We unexpectedly discovered that humans have evolved gene variants that can help protect the elderly from dementia,” said Ajit Varki, MD, Distinguished Professor of Medicine and Cellular and Molecular Medicine at UC San Diego School of Medicine, adjunct professor at the Salk Institute for Biological Studies and co-director of the UC San Diego/Salk Center for Academic Research and Training in Anthropogeny (CARTA). “Such genes likely evolved to preserve valuable and wise grandmothers and other elders, as well as to delay or prevent the emergence of dependent individuals who could divert resources and effort away from the care of the young.” Varki led the study, along with Pascal Gagneux, PhD, associate professor of pathology and associate director of CARTA.

The standard model of natural selection predicts that once the age of reproduction ends, individuals die. That’s because selection early in life strongly favours variants that benefit reproductive success, even at the cost of negative consequences late in life — one major reason we age. This is indeed the case in almost all vertebrates. Humans (and certain whales) are an exception to this rule, living decades beyond reproductive age. Such elders contribute to the fitness of younger individuals by caring for grandchildren and also by passing down important cultural knowledge. Age-related cognitive decline compromises these benefits, and eventually burdens the group with the need to care for dependent older members.

In this first-of-its kind discovery, Varki, Gagneux and their teams initially focused on the gene that encodes the CD33 protein. CD33 is a receptor that projects from the surface of immune cells, where it keeps immune reactions in check, preventing “self” attack and curtailing unwanted inflammation. Previous studies suggested that a certain form of CD33 suppresses amyloid beta peptide accumulation in the brain. Amyloid beta accumulation is thought to contribute to late-onset Alzheimer’s disease, a post-reproductive condition that uniquely affects humans and is aggravated by inflammation and cerebral vascular disease.

The researchers compared CD33 regulation in humans and our closest living relatives, chimpanzees. They found that levels of the CD33 variant that protects against Alzheimer’s are four-fold higher in humans than chimpanzees.

They also found human-specific variations in many other genes involved in the prevention of cognitive decline, such as APOE. The ancestral form of the gene, APOE4, is a notorious risk factor for Alzheimer’s and cerebral vascular disease. But this study finds that variants APOE2 and APOE3 seem to have evolved to protect from dementia. All of these protective gene variants are present in Africa, and thus predate the origin of our species. This finding is in keeping with the valuable role of the elderly across human societies.

“When elderly people succumb to dementia, the community not only loses important sources of wisdom, accumulated knowledge and culture, but elders with even mild cognitive decline who have influential positions can harm their social groups by making flawed decisions,” Gagneux said. “Our study does not directly prove that these factors were involved in the selection of protective variants of CD33, APOE and other genes, but it is reasonable to speculate about the possibility. After all, inter-generational care of the young and information transfer is an important factor for the survival of younger kin in the group and across wider social networks or tribes.” San Diego School of Medicine

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:20Newly evolved, uniquely human gene variants protect older adults from cognitive decline

The role played by the genome in eczema

, 26 August 2020/in E-News /by 3wmedia

The largest genetic study of atopic dermatitis ever performed permitted a team of international researchers to identify ten previously unknown genetic variations that contribute to the development of the condition. The researchers also found evidence of genetic overlap between atopic dermatitis and other illnesses, including inflammatory bowel disease.

Atopic dermatitis, a type of eczema, afflicts approximately one out of every five children and one out of every twelve adults. Though knowledge of the genome is crucial to assessing the likelihood that an individual will develop atopic dermatitis, most genes responsible for the condition have not yet been discovered.

The team of international researchers that conducted the largest genetic study of atopic dermatitis to this point pooled data obtained from 377,000 subjects in 40 different projects around the world.

 “We identified ten new genetic variations, making a total of 31 that are currently known to be associated with atopic dermatitis,” says Bo Jacobsson, a professor at Sahlgrenska Academy who was a member of the team. “Of particular interest is that each of the new ones has a role to play in regulation of the immune system.”
The researchers found evidence of genetic overlap between atopic dermatitis and other illnesses, including inflammatory bowel disease.

 “While the new variations contribute in only a small way to the risk of developing atopic dermatitis, knowing about them will raise our awareness about the mechanisms of the various diseases,” Professor Jacobsson says. “Our ultimate hope is that additional treatment methods will emerge as a result.”
Although the importance of genetic factors in the pathogenesis of atopic dermatitis had already been established, the sheer size of this study allowed researchers to fine tune their understanding and obtain more information about the ways that autoimmune mechanisms run amok as the disease develops.

A total of 21,399 cases of European, African, Japanese and Latino ancestry were first compared in 22 different studies with 95,464 controls. The findings were then replicated in 18 studies of 32,059 cases and 228,628 controls.

“Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis” was published in Nature Genetics online on October 19. University of Gothenburg

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:28The role played by the genome in eczema

New ‘mutation-tracking’ blood test could predict breast cancer

, 26 August 2020/in E-News /by 3wmedia

Scientists have developed a blood test for breast cancer able to identify which patients will suffer a relapse after treatment, months before tumours are visible on hospital scans.

The test can uncover small numbers of residual cancer cells that have resisted therapy by detecting cancer DNA in the bloodstream.

Researchers at The Institute of Cancer Research, London, and The Royal Marsden NHS Foundation Trust were able to track key mutations that cancer accumulates as it develops and spreads, without the need for invasive biopsy procedures.

They hope that by deciphering the DNA code found in blood samples, it should be possible to identify the particularly mutations likely to prove lethal to that patient – and tailor treatment accordingly.

The study is an important step towards use of ‘liquid biopsies’ to revolutionise breast cancer care – by changing the way cancer is monitored in the clinic and informing treatment decisions.

Researchers took tumour and blood samples from 55 breast cancer patients with early-stage disease who had received chemotherapy followed by surgery, and who had potentially been cured of their disease.

By monitoring patients with blood tests taken after surgery and then every six months in follow-up, the researchers were able to predict very accurately who would suffer a relapse.

Women who tested positive for circulating tumour DNA were at 12 times the risk of relapse of those who tested negative, and the return of their cancer was detected an average of 7.9 months before any visible signs emerged.

The researchers used a technique called ‘mutation tracking’ – developing a digital PCR test that was personalised to the mutations found in an individual patient’s cancer – to identify tumour DNA in the bloodstream.

Because the researchers at the ICR and The Royal Marsden were looking for mutations common to many types of breast cancers, they found the test could be applied to all breast cancer subtypes.

The research also showed how genetic mutations build up in the cancer as it develops over time, as the leftover cancer cells grow and spread.

This reinforces the importance of detecting recurrence early so patients can have treatment before the extra mutations emerge and make the disease harder to treat. Institute of Cancer Research

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:39New ‘mutation-tracking’ blood test could predict breast cancer
Page 164 of 227«‹162163164165166›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
13 November 2025

New Chromsystems Product for Antiepileptic Drugs Testing

11 November 2025

Trusted analytical solutions for reliable results

10 November 2025

Chromsystems | Therapeutic Drug Monitoring by LC-MS/MS

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription