Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

Lack of stem cells to blame for recurrent miscarriages

, 26 August 2020/in E-News /by 3wmedia

Scientists at the University of Warwick have discovered that a lack of stem cells in the womb lining is causing thousands of women to suffer from recurrent miscarriages.

The academics behind the breakthrough are now to start research into a treatment which they believe could bring hope to those who have suffered failed pregnancies.

Professor Jan Brosens, Professor of Obstetrics & Gynaecology at Warwick Medical School at the University of Warwick, and Consultant in Reproductive Health atUniversity Hospitals Coventry and Warwickshire NHS Trust , led the team who unearthed the link between stem cells and miscarriage. He said: “We have discovered that the lining of the womb in the recurrent miscarriage patients we studied is already defective before pregnancy.
“I can envisage that we will be able to correct these defects before the patient tries to achieve another pregnancy. In fact, this may be the only way to really prevent miscarriages in these cases.”

The team found a shortfall of stem cells is the likely cause of accelerated ageing of the lining of the womb which results in the failure of some pregnancies.

Miscarriage is the most common cause of loss; between 15-25% of pregnancies end in miscarriage and one in 100 women trying to conceive suffer recurrent miscarriages, defined as the loss of three or more consecutive pregnancies.

The researchers examined tissue samples from the womb lining, donated by 183 women who were being treated at the Implantation Research Clinic, University Hospitals Coventry and Warwickshire NHS Trust.

The team found that an epigenetic signature – which is typical of stem cells – was absent in cultures established from womb biopsies taken from women suffering recurrent miscarriages. Indeed, fewer stem cells could be isolated from the lining of the womb from recurrent miscarriage patients when compared to women in the study’s control group.

The researchers further found that a stem cell shortage accelerates cellular ageing in the womb. The lining has to renew itself each cycle, each miscarriage and successful birth. This renewal capacity is dependent on resident stem cell population. A shortage of these stem cells in patients suffering recurrent loss is associated with accelerated ageing of the tissue. Ageing cells mount an inflammatory response, which may facilitate implantation of an embryo but is detrimental for its further development.

Professor Brosens added: “After an embryo has implanted, the lining of the uterus develops into a specialised structure called the decidua, and this process can be replicated when cells from the uterus are cultured in the lab.

“Cultured cells from women who had had three or more consecutive miscarriages showed that ageing cells in the lining of the womb don’t have the ability to prepare adequately for pregnancy.” University of Warwick

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:18Lack of stem cells to blame for recurrent miscarriages

Gene therapy: a promising candidate for cystic fibrosis treatment

, 26 August 2020/in E-News /by 3wmedia

An improved gene therapy treatment can cure mice with cystic fibrosis (CF). Cell cultures from CF patients, too, respond well to the treatment. Those are the encouraging results of a study presented by the KU Leuven Laboratory for Molecular Virology and Gene Therapy.

Cystic fibrosis or mucoviscidosis is a genetic disorder that makes the mucus in the body thick and sticky, which in turn causes clogging in, for instance, the airways and the gastrointestinal tract. The symptoms can be treated, but there is no cure for the disorder.

Cystic fibrosis is caused by mutations in the CFTR gene. This gene contains the production code for a protein that functions as a channel through which chloride ions and water flow out of cells. In the cells of CF patients, these chloride channels are dysfunctional or even absent, so that thick mucus starts building up.

“A few years ago, a new drug was launched that can repair dysfunctional chloride channels”, Professor Zeger Debyser explains. “Unfortunately, this medicine only works in a minority of CF patients. As for the impact of gene therapy, previous studies suggested that the treatment is safe, but largely ineffective for cystic fibrosis patients. However, as gene therapy has recently proven successful for disorders such as haemophilia and congenital blindness, we wanted to re-examine its potential for cystic fibrosis”.

That is why lead authors Dragana Vidović and Marianne Carlon examined an improved gene therapy treatment based on inserting the genetic material for chloride channels – coded by the CFTR gene – into the genome of a recombinant AAV viral vector, which is derived from the relatively innocent AAV virus. The researchers then used this vector to ‘smuggle’ a healthy copy of the CFTR gene into the affected cells.

Both in mice with cystic fibrosis and in gut cell cultures from CF patients, this approach yielded positive results. “We administered the rAAV to the mice via their airways. Most of the CF mice recovered. In the patient-derived cell cultures, chloride and fluid transport were restored”.

There is still a long way to go before gene therapy can be used to treat cystic fibrosis patients, Debyser clarifies: “We must not give CF patients false hope. Developing a treatment based on gene therapy will take years of work. For one thing, our study did not involve actual human beings, only mice and patient-derived cell cultures. Furthermore, we still have to examine how long the therapy works. Repeated doses might be necessary. But gene therapy clearly is a promising candidate for further research towards a cure for cystic fibrosis”. KU Leuven

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:25Gene therapy: a promising candidate for cystic fibrosis treatment

10,000 UK genomes project explores the contribution of rare variants to human disease and its risk factors

, 26 August 2020/in E-News /by 3wmedia

The UK10K study explored the contribution of these rare genetic variants to human disease and its risk factors.

Rare genetic variants are changes in DNA that are carried only by relatively few people in a population. The UK10K study was designed to explore the contribution of these rare genetic variants to human disease and its risk factors.

‘The project has made important new contributions towards describing the role of rare genetic variants in a broad range of disease scenarios and human traits.’ says Dr Nicole Soranzo, corresponding author from the Wellcome Trust Sanger Institute. ‘It has shown that the value of sequencing a few thousand individuals is high for highly penetrant, rare diseases, but that for complex traits and diseases much larger sample sizes will be required in future studies. The data and results produced by this project will be instrumental for these future efforts.’

The project studied nearly 10,000 individuals, both healthy and affected by disease. The conditions included very rare disorders inherited in families, and more common diseases such as autism, schizophrenia and obesity. In healthy people, 64 different biomedical risk factors such as blood pressure or cholesterol levels were studied. By characterising the DNA sequence of these individuals, the project gained insight into the contribution of rare variants to a broad range of disease scenarios, and discovered new genetic variants and genes underpinning disease risk.

‘The UK10K project has increased the resolution of genetic discoveries. It has enabled access to a much denser set of variants within the genome in the UK population, which can be used to refine our understanding of genetic effect on phenotypic traits,’ explains Richard Durbin, senior UK10K researcher at the Sanger Institute. ‘In earlier studies either very rare variants with big effects or common variants, which usually only have small effects, could be analysed. Now we have been able to explore an increased part of the spectrum of variation in between the very rare and the common ones.’

A series of papers published today in Nature and Nature Genetics in collaboration with other investigators demonstrates the value of these data for genetic discoveries.

As efforts continue to characterise the genetic underpinnings of complex diseases, the data and results of this study are expected to enable the next wave of discoveries. The UK10K sequence reference panel, described in greater detail in a companion paper published in Nature Communications, has been shown to greatly increase the ability to characterise rare variants in large population samples available to the worldwide research community. This resource will enable researchers to ‘fill in’ missing data from lower resolution genotype studies, allowing them to explore full genotypes more quickly and cheaply. Sanger Institute

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:3310,000 UK genomes project explores the contribution of rare variants to human disease and its risk factors

Newly evolved, uniquely human gene variants protect older adults from cognitive decline

, 26 August 2020/in E-News /by 3wmedia

Humans evolved unique gene variants that protect older adults from neurodegenerative disease, thus preserving their valuable contributions and delaying dependency

Many human gene variants have evolved specifically to protect older adults against neurodegenerative and cardiovascular diseases, thus preserving their contributions to society, report University of California, San Diego School of Medicine researchers.

“We unexpectedly discovered that humans have evolved gene variants that can help protect the elderly from dementia,” said Ajit Varki, MD, Distinguished Professor of Medicine and Cellular and Molecular Medicine at UC San Diego School of Medicine, adjunct professor at the Salk Institute for Biological Studies and co-director of the UC San Diego/Salk Center for Academic Research and Training in Anthropogeny (CARTA). “Such genes likely evolved to preserve valuable and wise grandmothers and other elders, as well as to delay or prevent the emergence of dependent individuals who could divert resources and effort away from the care of the young.” Varki led the study, along with Pascal Gagneux, PhD, associate professor of pathology and associate director of CARTA.

The standard model of natural selection predicts that once the age of reproduction ends, individuals die. That’s because selection early in life strongly favours variants that benefit reproductive success, even at the cost of negative consequences late in life — one major reason we age. This is indeed the case in almost all vertebrates. Humans (and certain whales) are an exception to this rule, living decades beyond reproductive age. Such elders contribute to the fitness of younger individuals by caring for grandchildren and also by passing down important cultural knowledge. Age-related cognitive decline compromises these benefits, and eventually burdens the group with the need to care for dependent older members.

In this first-of-its kind discovery, Varki, Gagneux and their teams initially focused on the gene that encodes the CD33 protein. CD33 is a receptor that projects from the surface of immune cells, where it keeps immune reactions in check, preventing “self” attack and curtailing unwanted inflammation. Previous studies suggested that a certain form of CD33 suppresses amyloid beta peptide accumulation in the brain. Amyloid beta accumulation is thought to contribute to late-onset Alzheimer’s disease, a post-reproductive condition that uniquely affects humans and is aggravated by inflammation and cerebral vascular disease.

The researchers compared CD33 regulation in humans and our closest living relatives, chimpanzees. They found that levels of the CD33 variant that protects against Alzheimer’s are four-fold higher in humans than chimpanzees.

They also found human-specific variations in many other genes involved in the prevention of cognitive decline, such as APOE. The ancestral form of the gene, APOE4, is a notorious risk factor for Alzheimer’s and cerebral vascular disease. But this study finds that variants APOE2 and APOE3 seem to have evolved to protect from dementia. All of these protective gene variants are present in Africa, and thus predate the origin of our species. This finding is in keeping with the valuable role of the elderly across human societies.

“When elderly people succumb to dementia, the community not only loses important sources of wisdom, accumulated knowledge and culture, but elders with even mild cognitive decline who have influential positions can harm their social groups by making flawed decisions,” Gagneux said. “Our study does not directly prove that these factors were involved in the selection of protective variants of CD33, APOE and other genes, but it is reasonable to speculate about the possibility. After all, inter-generational care of the young and information transfer is an important factor for the survival of younger kin in the group and across wider social networks or tribes.” San Diego School of Medicine

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:20Newly evolved, uniquely human gene variants protect older adults from cognitive decline

The role played by the genome in eczema

, 26 August 2020/in E-News /by 3wmedia

The largest genetic study of atopic dermatitis ever performed permitted a team of international researchers to identify ten previously unknown genetic variations that contribute to the development of the condition. The researchers also found evidence of genetic overlap between atopic dermatitis and other illnesses, including inflammatory bowel disease.

Atopic dermatitis, a type of eczema, afflicts approximately one out of every five children and one out of every twelve adults. Though knowledge of the genome is crucial to assessing the likelihood that an individual will develop atopic dermatitis, most genes responsible for the condition have not yet been discovered.

The team of international researchers that conducted the largest genetic study of atopic dermatitis to this point pooled data obtained from 377,000 subjects in 40 different projects around the world.

 “We identified ten new genetic variations, making a total of 31 that are currently known to be associated with atopic dermatitis,” says Bo Jacobsson, a professor at Sahlgrenska Academy who was a member of the team. “Of particular interest is that each of the new ones has a role to play in regulation of the immune system.”
The researchers found evidence of genetic overlap between atopic dermatitis and other illnesses, including inflammatory bowel disease.

 “While the new variations contribute in only a small way to the risk of developing atopic dermatitis, knowing about them will raise our awareness about the mechanisms of the various diseases,” Professor Jacobsson says. “Our ultimate hope is that additional treatment methods will emerge as a result.”
Although the importance of genetic factors in the pathogenesis of atopic dermatitis had already been established, the sheer size of this study allowed researchers to fine tune their understanding and obtain more information about the ways that autoimmune mechanisms run amok as the disease develops.

A total of 21,399 cases of European, African, Japanese and Latino ancestry were first compared in 22 different studies with 95,464 controls. The findings were then replicated in 18 studies of 32,059 cases and 228,628 controls.

“Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis” was published in Nature Genetics online on October 19. University of Gothenburg

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:28The role played by the genome in eczema

New ‘mutation-tracking’ blood test could predict breast cancer

, 26 August 2020/in E-News /by 3wmedia

Scientists have developed a blood test for breast cancer able to identify which patients will suffer a relapse after treatment, months before tumours are visible on hospital scans.

The test can uncover small numbers of residual cancer cells that have resisted therapy by detecting cancer DNA in the bloodstream.

Researchers at The Institute of Cancer Research, London, and The Royal Marsden NHS Foundation Trust were able to track key mutations that cancer accumulates as it develops and spreads, without the need for invasive biopsy procedures.

They hope that by deciphering the DNA code found in blood samples, it should be possible to identify the particularly mutations likely to prove lethal to that patient – and tailor treatment accordingly.

The study is an important step towards use of ‘liquid biopsies’ to revolutionise breast cancer care – by changing the way cancer is monitored in the clinic and informing treatment decisions.

Researchers took tumour and blood samples from 55 breast cancer patients with early-stage disease who had received chemotherapy followed by surgery, and who had potentially been cured of their disease.

By monitoring patients with blood tests taken after surgery and then every six months in follow-up, the researchers were able to predict very accurately who would suffer a relapse.

Women who tested positive for circulating tumour DNA were at 12 times the risk of relapse of those who tested negative, and the return of their cancer was detected an average of 7.9 months before any visible signs emerged.

The researchers used a technique called ‘mutation tracking’ – developing a digital PCR test that was personalised to the mutations found in an individual patient’s cancer – to identify tumour DNA in the bloodstream.

Because the researchers at the ICR and The Royal Marsden were looking for mutations common to many types of breast cancers, they found the test could be applied to all breast cancer subtypes.

The research also showed how genetic mutations build up in the cancer as it develops over time, as the leftover cancer cells grow and spread.

This reinforces the importance of detecting recurrence early so patients can have treatment before the extra mutations emerge and make the disease harder to treat. Institute of Cancer Research

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:39New ‘mutation-tracking’ blood test could predict breast cancer

Global study reveals genes as major cause of inflammatory diseases

, 26 August 2020/in E-News /by 3wmedia

A global study involving 50 different research centres has found hundreds of genes which cause five common, hard-to-treat and debilitating inflammatory diseases, paving the way to new treatments for these conditions.
Led by Brisbane’s QUT and Christian-Albrechts-University, Kiel, Germany, the results of the world-first study have been published.

Co-senior author Professor Matthew Brown, from QUT’s Institute of Health and Biomedical Innovation, said they investigated ankylosing spondylitis, Crohn’s Disease and ulcerative colitis (collectively known as inflammatory bowel disease), psoriasis, and primary sclerosing cholangitis.
“These diseases affect about three per cent of the world’s population, and commonly occur together in families and in individuals. The big question has been whether this is due to shared environmental risk factors, or due to shared genes and now we believe we have the answer,” Professor Brown said.
“The research has conclusively demonstrated these conditions occur together mostly because they share similar genetic backgrounds.

“Studying nearly 86,000 subjects from 26 countries, our researchers identified 244 genetic variants which control whether or not people develop these conditions, a large proportion of which were completely new findings.
“They found that for nearly all of these diseases the reason they frequently occur together in individuals is due to the different diseases sharing genetic risk factors, rather than one disease causing the other.

“For some diseases such as the common form of spinal arthritis, ankylosing spondylitis, the study roughly trebled the number of genes known to be involved.”

Professor Brown said the new gene discoveries pointed to some potential new therapies, including agents already in use for other diseases which can now be trialled in these conditions very promptly.
“The discoveries have shed new light onto the causes of these diseases, such as identifying genetic risk variants which most likely work by affecting the bacteria present in the gut, in turn causing inflammation in joints, the liver or the gut itself,” Professor Brown said. Queensland University of Technology

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:16Global study reveals genes as major cause of inflammatory diseases

New gene map reveals cancer’s Achilles’ heel

, 26 August 2020/in E-News /by 3wmedia

Toronto researchers led by U of T Professor Jason Moffat switched off almost 90 per cent of the entire human genome, to find the genes essential for cell survival
Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

A team of Toronto researchers, led by Professor Jason Moffat from the University of Toronto’s Donnelly Centre, with a contribution from Stephane Angers from the Faculty of Pharmacy, have switched off, one by one, almost 18,000 genes, 90 per cent of the entire human genome, to find the genes that are essential for cell survival.

By turning genes off in five different cancer cell lines, including brain, retinal, ovarian, and two kinds of colorectal cancer cells, the team uncovered that each tumour relies on a unique set of genes that can be targeted by specific drugs. The finding raises hope of devising new treatments that would target only cancer cells, leaving the surrounding healthy tissue unharmed.

“It’s when you get outside the core set of essential genes, that it starts to get interesting in terms of how to target particular genes in different cancers and other disease states,” says Moffat, who is also a professor in the department of molecular genetics and a Senior Fellow at the Canadian Institute For Advanced Research (CIFAR).

Sequencing of the human genome 12 years ago allowed scientists to compile a list of parts – our 20,000 genes – that make up our cells and bodies. Despite this major achievement, we still didn’t understand the function of each gene, or how some genes make us sick when they go wrong. To do this, scientists realized they would have to switch genes off, one by one across the entire genome to determine what processes go wrong in the cells. But the available tools were either inaccurate or too slow.

The recent arrival of the gene editing technology CRISPR has finally made it possible to turn genes off, swiftly and with pinpoint accuracy, kicking off a global race among multiple competing research teams. The Toronto study, along with the paper from Harvard and MIT , found that roughly 10 per cent of our genes are essential for cell survival.

These findings show the majority of human genes play more subtle roles in the cell because switching them off doesn’t kill the cell. But if two or more of such genes are mutated at the same time, or the cells are under environmental stress, their loss begins to count.

Because different cancers have different mutations, they tend to rely on different sets of genes to survive. Moffatt’s team have identified distinct sets of “smoking gun” genes for each of the tested cancers – each set susceptible to different drugs.

“We can now interrogate our genome at unprecedented resolution in human cells that we grow in the lab with incredible speed and accuracy. In short order, this will lead to a functional map of cancer that will link drug targets to DNA sequence variation,” says Moffat.

His team has already shown how this can work. In his study, metformin, a widely prescribed diabetes drugs successfully killed brain cancer cells and those of one form of colorectal cancer – but was useless against the other cancers he studied. However, the antibiotics chloramphenicol and linezolid were effective against another form of colorectal cancer, and not against brain or other cancers studied. These data illustrate the clinical potential of the data in pointing to more precise treatments for the different cancers – and show the value of personalized medicine. University of Toronto

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:23New gene map reveals cancer’s Achilles’ heel

Suppression of epigenetic brain proteins induces autism-like syndrome

, 26 August 2020/in E-News /by 3wmedia

Regulation of a family of brain proteins known as bromodomain and extra-terminal domain containing transcription regulators (BETs) plays a key role in normal cognition and behaviour, according to a study conducted at the Icahn School of Medicine at Mount Sinai.

The Mount Sinai study focuses on epigenetics, the study of changes in the action of human genes caused by molecules that regulate when, where and to what degree our genetic material is activated. While scientists have traditionally focused on finding individual genes responsible for Autism Spectrum Disorders (ASD), recent research has found links between epigenetic regulation and ASD in human patients.  Such regulation derives, in part, from the function of specialized protein complexes that bind to specific DNA sequences and either encourage or shut down the expression of a given gene.

Mount Sinai researchers found that BETs, a family of epigenetic regulators that bind to many different genes and contribute to the copying of these genes into messenger RNA play a key role in the regulation of normal neuronal development and function.  The Mount Sinai study was conducted using a new type of pharmacological compound that does not inactivate BET proteins but, rather, prevents them from binding to the genes.

The research team developed a novel, highly specific, brain-permeable inhibitor of BET proteins called I-BET858. The compound was initially tested on in vitro cultured mouse neurons.  The researchers found that it affected the function of a particular group of genes with known links to neuron development and synaptic functions.  Importantly a significant number of the affected genes have been linked to ASD in humans.  Subsequently, the study team evaluated the effect of I-BET858 when injected into mice. They found the compound was able to trigger selective changes in neuronal gene expression in the brain followed by development of an ASD-like syndrome.

“We found that chronic daily administration of I-BET858 in young mice led to the development of behavioural abnormalities consistent with an autism-like syndrome, including reduced sociability and preference for social novelty ” says Anne Schaefer, MD, PhD, Assistant Professor in the Department of Neuroscience and Psychiatry at the Friedman Brain Institute at the Icahn School of Medicine at Mount Sinai, who led the study.

“One of the most important outcomes of our study is that we found a link between I-BET858-induced ASD and the altered function of a rather limited group of genes,” says Dr. Schaefer.  “Furthermore, our findings reinforce the idea that ASD could be caused not only by genetic alteration, but by environmental factors that reduce the efficiency of gene transcription into full length RNA during brain development. “ The Mount Sinai Health System

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:31Suppression of epigenetic brain proteins induces autism-like syndrome

Specific serological tests for Zika virus

, 26 August 2020/in E-News /by 3wmedia

ELISA and indirect immunofluorescence tests (IIFT) have been developed for sensitive and specific detection of antibodies against Zika virus in patient serum samples. The assays are suitable for diagnosing acute infections as well as for disease surveillance. In particular, serological analyses can aid the differentiation of infections with Zika virus, dengue virus and chikungunya virus, which manifest with similar symptoms and are endemic in much the same geographic regions. Anti-Zika Virus ELISA (IgM or IgG) are based on highly specific recombinant Zika NS1 protein which avoids cross reactivity with other flaviviruses. Data from panels of well characterized sera have confirmed that there is no cross reactivity with flaviviruses including dengue, West Nile, yellow fever and Japanese encephalitis viruses. In studies on clinically and serologically characterized samples the IgM and IgG ELISA showed 100% sensitivity and 100% specificity. Anti-Zika Virus IIFT (IgM or IgG) utilize Zika virus-infected cells as the antigenic substrate. Positive and negative results are evaluated by fluorescence microscopy. With the Arboviral Fever Mosaic 2 the Zika virus substrate is incubated in parallel with substrates for chikungunya virus and dengue virus serotypes 1 to 4. This BIOCHIP combination can help in the differential diagnosis of Zika, dengue and chikungunya virus infections. Due to the use of whole virus particles, cross reactivities between flavivirus antibodies can occur. Serological tests provide a longer window for diagnosis than direct detection methods, which are only effective during the viremic phase within the first week after onset of symptoms. Detection of specific IgM or a significant rise in specific IgG in a pair of samples taken seven to ten days apart is evidence of an acute infection. Serological analyses are also important for prenatal monitoring, screening of donated blood and epidemiological studies. Zika virus is the pathogenic agent of Zika fever, an infectious topical disease which manifests with fever, exanthema and arthritis. Zika virus infection has been linked to congenital malformations, in particular microcephaly, and neurological complications such as Guillain-Barré syndrome. The virus is transmitted by mosquitoes of the Aedes family. Zika virus is currently spreading explosively in the Americas.

Euroimmunwww.euroimmun.de

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:422021-01-08 11:10:18Specific serological tests for Zika virus
Page 165 of 227«‹163164165166167›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
13 November 2025

New Chromsystems Product for Antiepileptic Drugs Testing

11 November 2025

Trusted analytical solutions for reliable results

10 November 2025

Chromsystems | Therapeutic Drug Monitoring by LC-MS/MS

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription