Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

Method sheds light on how genetic mutations cause inherited Parkinson’s disease

, 26 August 2020/in E-News /by 3wmedia

Researchers led by the University of Dundee’s Professor Dario Alessi have developed a new method of measuring the activity of disease-causing mutations in the LRRK2 gene, a major cause of inherited Parkinson’s disease.

The team believes this research could help pave the way for future development of a clinical test that could facilitate evaluation of drugs to target this form of the condition.

Mutations in the LRRK2 gene are the most common cause of genetic Parkinson’s disease. The most common disease-causing mutation in this gene increases the activity of the LRRK2 protein three-fold, implying this may contribute towards the symptoms of the disease in patients. It also suggests that drugs that reduce the activity of the protein (LRRK2 inhibitors) may help treat patients with this form of inherited Parkinson’s disease.

“It is important to better understand how disruption in LRRK2 biology causes Parkinson’s disease and whether a drug that targeted the LRRK2 enzyme would offer therapeutic benefit,” said Professor Alessi, lead author on the study.

“Current drug treatments only deal with symptoms of the condition, such as tremors, but do not affect the progression of Parkinson’s disease. An important question is whether an LRRK2 therapy might have potential to slow progression of the condition, which no other current therapy is able to do.”

When the LRRK2 protein is active it stops another cellular protein called Rab10 from fulfilling its function in the body. There are many proteins in the Rab family, and a number of them have been shown to be low in number or deactivated in different forms of Parkinson’s disease.

The new method of measuring these was developed by a collaboration of researchers from Dundee, The Michael J. Fox Foundation for Parkinson’s Research, GSK and the University of Hong Kong. It analyses how much of the Rab10 protein has been deactivated – a process where phosphate groups are added to the Rab10 molecules by the LRRK2 protein – as a measure of heightened LRRK2 protein activity.

This new experimental assay is straightforward, requires only small amounts of sample material and is suitable for adapting to analyse large samples. This contrast with current mass spectrometry technology that is more complex and cumbersome and requires larger sample sizes.

While acknowledging that more work is needed, the researchers believe this breakthrough could help with future drug developments for patients with this form of Parkinson’s disease.

Professor Alessi continued, “The prediction is that elevation of LRRK2 activity leads to Parkinson’s disease, and this is now testable using our assay. The expectation is that if a sub-group of patients can be identified with elevated LRRK2 activity, these individuals might benefit most from LRRK2 inhibitors.

University of Dundee www.dundee.ac.uk/news/2016/lab-method-sheds-light-on-how-genetic-mutations-cause-inherited-parkinsons-disease.php

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:10:03Method sheds light on how genetic mutations cause inherited Parkinson’s disease

Promising new blood test is first of its kind to detect liver scarring

, 26 August 2020/in E-News /by 3wmedia

Newcastle scientists and medics have developed a new type of genetic blood test that diagnoses scarring in the liver – even before someone may feel ill. It is the first time an epigenetic signature in blood has been discovered which is diagnostic of the severity of fibrosis for people with Non-alcoholic Fatty Liver Disease (NAFLD).

NAFLD, caused by being overweight or having diabetes, affects one in three people in the UK and may progress to cirrhosis and liver failure, requiring a transplant.

The Newcastle team describe the proof of principle research in which they measure specific epigenetic markers to stratify NAFLD patients into mild or severe liver scarring, known as fibrosis.

Dr Quentin Anstee, Clinical Senior Lecturer at Newcastle University, Consultant Hepatologist within the Newcastle Hospitals and joint senior author explained what it could mean for patients: “This scientific breakthrough has great promise because the majority of patients show no symptoms.

“Routine blood tests can’t detect scarring of the liver and even more advanced non-invasive tests can really only detect scarring at a late stage when it is nearing cirrhosis. We currently have to rely on liver biopsy to measure fibrosis at its early stages – by examining a piece of the liver under the microscope.

“We know that the presence of even mild fibrosis of the liver predicts a worse long-term outcome for patients with NAFLD and so it’s important to be able to detect liver scarring at an early stage.”

In this first stage of research the team developed the blood analysis in 26 patients with NAFLD. The test detects chemical changes on tiny amounts of “cell-free” DNA that are released into the blood when liver cells are injured. Changes in DNA methylation at genes like PPARγthat controls scar formation are then used to stratify patients by fibrosis severity.

Senior author Dr Jelena Mann of Newcastle University’s Institute for Cellular Medicine added: “This is the first time that a DNA methylation ‘signature’ from the blood has been shown to match the severity of a liver disease.

“It opens up the possibility of an improved blood test for liver fibrosis in the future.” Newcastle University

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:10:13Promising new blood test is first of its kind to detect liver scarring

Leading diagnostics supplier offers rapid test platform

, 26 August 2020/in E-News /by 3wmedia

MP Diagnostics (a division of MP Biomedicals) has 30 years in the diagnostics industry, we offer a wide range of products including ELISAs, Immunoblots, Point-of-Care Tests, Molecular Diagnostics and analyser solutions. MP Diagnostics also specializes in infectious disease diagnostics and have continuously developed high quality products to meet the demands of global organizations and institutions. The MULTISURE and ASSURE Range of Point-of-Care-Tests has enabled rapid and accurate testing for diseases such as HIV, Hepatitis C and Hepatitis E.

The MULTISURE and ASSURE Rapid Tests are equipped with MP Biomedicals’ patented reverse flow technology which enhances sensitivity and specificity. This unique technology enables the MULTISURE platform to contain multiple test lines within one cassette. With multiple lines as compared with the traditional single line lateral flow rapid test, each test line will give the user additional information which may help to make critical decisions for the treatment of the patients.

The MULTISURE HIV-1/2 Rapid Test is a novel medical device from the laboratories of MP Biomedicals based in Singapore. The MULTISURE HIV-1/2 Rapid Test is able to detect and differentiate HIV-1 and HIV-2. This is achieved through the 4 different test lines that are striped onto the membrane of the device. Each test line indicates the positivity of antibodies to HIV-1 and/or HIV-2.

The MULTISURE HCV Antibody Assay is a Point-of-Care Test that helps to detect HCV antibodies to antigen that is striped onto the membrane. Each of the four test lines gives the user additional information with regards to the staging of the disease and in turn helps healthcare professionals to treat the patient accordingly.

As the first company to isolate and clone the Hepatitis E Virus, MP Biomedicals will continue to strive to be the benchmark for HEV diagnosis worldwide. The ASSURE HEV IgM Rapid Test is the go-to test for HEV diagnosis; with just one test line, this rapid test is simple to perform, easy to interpret and takes only 15 minutes to results.
 
MP Diagnostics’ ASSURE Reader and ASSURE Palm Reader are developed for use with the MULTISURE and ASSURE range of rapid tests and are fully integrated instruments designed for your institution’s needs. The MP ASSURE readers complements the reading and documentation of results for both laboratory and point-of-care settings; with the latest upgrade in software, the MP ASSURE readers’ integration to management systems would be seamless for all users.

www.mpbio.com/dx
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:35:14Leading diagnostics supplier offers rapid test platform

Major global study reveals new hypertension and blood pressure genes

, 26 August 2020/in E-News /by 3wmedia

Thirty-one new gene regions linked with blood pressure have been identified in one of the largest genetic studies of blood pressure to date, involving over 347,000 people, and jointly led by Queen Mary University of London (QMUL) and the University of Cambridge.

The discoveries include DNA changes in three genes that have much larger effects on blood pressure in the population than previously seen, providing new insights into the physiology of hypertension and suggesting new targets for treatment.

High blood pressure or hypertension is a major risk factor for cardiovascular disease and premature death. It is estimated to be responsible for a larger proportion of global disease burden and premature mortality than any other disease risk factor. However, there is limited knowledge on the genetics of blood pressure.

The teams investigated the genotypes of around 347,000 people and their health records to find links between their genetic make-up and cardiovascular health. The participants included healthy individuals and those with diabetes, coronary artery disease and hypertension, from across Europe (including the UK, Denmark, Sweden, Norway, Finland and Estonia), the USA, Pakistan and Bangladesh. The study brought together around 200 investigators from across 15 countries.

Study author Professor Patricia Munroe from QMUL said:

“We already know from earlier studies that high blood pressure is a major risk factor for cardiovascular disease. Finding more genetic regions associated with the condition allows us to map and understand new biological pathways through which the disease develops, and also highlight potential new therapeutic targets. This could even reveal drugs that are already out there but may now potentially be used to treat hypertension.”

Most genetic blood pressure discoveries until now have been of common genetic variants that have small effects on blood pressure. The study, published in Nature Genetics, has found variants in three genes that appear to be rare in the population, but have up to twice the effect on blood pressure.

Study author, Dr Joanna Howson from the University of Cambridge said:

“The sheer scale of our study has enabled us to identify genetic variants carried by less than one in a hundred people that affect blood pressure regulation. While we have known for a long time that blood pressure is a risk factor for coronary heart disease and stroke, our study has shown that there are common genetic risk factors underlying these conditions.”

Queen Mary University of London www.whri.qmul.ac.uk/about-us/whri-news/94-news/627-major-global-study-reveals-new-hypertension-and-blood-pressure-genes

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:09:58Major global study reveals new hypertension and blood pressure genes

New structure of a calcium-shuttling molecule could help scientists target aggressive cancers

, 26 August 2020/in E-News /by 3wmedia

Scientists have captured new images of a calcium-shuttling molecule that has been linked to aggressive cancers. The three-dimensional structure could help researchers develop novel therapies and diagnostic tools for diseases that are caused by a malfunction in calcium adsorption.

Alexander Sobolevsky’s lab at Columbia University Medical Center is studying a family of proteins called “Transient receptor potential (TRP)” channels. These proteins line surfaces inside the body, such as the intestine, and form pores that help calcium cross a dense barrier of lipid and protein called the membrane to reach the interior of the cell.

“Scientists have found that a TRP channel variant, called TRPV6, is present in excess amounts in the tumour cells of some cancer patients,” says senior author Alexander Sobolevsky, PhD, who is an assistant professor in the Department of Biochemistry and Molecular Biophysics at Columbia University Medical Center. “And patients who have higher quantities of TRPV6 seem to have a more aggressive form of the disease.”

In order to uncover how these channels guide calcium into the cell, and how disease can occur when this process becomes unregulated, Sobolevsky’s lab used a technique called X-ray crystallography. This process involved growing crystals of TRPV6 and exposing them to an X-ray beam. The scientists then used the diffraction pattern produced by the X-rays to map out a 3D model of the protein.

The structure—which represents a single frozen state of the channel—reveals that the surface of TRPV6 pore is lined with negative charges. This configuration helps attract calcium ions, which are positively charged. The calcium ions are then shuffled from location to location inside of the pore, up to three molecules at a time, as they pass through into the cell.

“In future, we could use this model to design drugs that can target some types of tumour cells by plugging up TRP channels on their surfaces,” says Sobolevsky.

Ordinarily the calcium ingested from our diet is used by the body to regulate a variety of processes including the beating of the heart, muscle contractions, and brain signalling. In addition to various forms of cancer, altered calcium uptake and TRPV6 expression has also been linked to Crohn’s and kidney stone diseases in mouse models. Further research needs to be done to determine the extent that alteration in TRP channel activity leads to disease progression.

Columbia University Medical Center newsroom.cumc.columbia.edu/blog/2016/07/15/new-structure-calcium-shuttling-molecule-help-scientists-target-aggressive-cancers/

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:10:05New structure of a calcium-shuttling molecule could help scientists target aggressive cancers

Autism spectrum disorder linked to mutations in some mitochondrial DNA

, 26 August 2020/in E-News /by 3wmedia

Children diagnosed with autism spectrum disorder (ASD) have greater numbers of harmful mutations in their mitochondrial DNA than family members, report Zhenglong Gu of Cornell University in Ithaca, New York, and colleagues, in a study.

Increasingly, studies point to malfunctions in mitochondria — the powerhouses of the cell — as a cause of autism spectrum disorder, but the biological basis for this relationship is unclear. To see if a genetic link exists between mitochondrial malfunction and ASD, the scientists analysed mitochondrial DNA sequences from 903 children with ASD, along with their unaffected siblings and mothers. They discovered a unique pattern of heteroplasmic mutations, where both mutant and normal mitochondrial DNA sequences exist in a single cell. Children with ASD had more than twice as many potentially harmful mutations compared to unaffected siblings, and 1.5 times as many mutations that would alter the resulting protein. The researchers went on to show that these mutations can be inherited from the mother, or the result of spontaneous mutation during development.

The scientists noted that the risk associated with these mutations is most pronounced in children with lower IQ and poor social behaviour compared to their unaffected siblings. Carrying harmful mutations in mitochondrial DNA is also associated with increased risk of neurological and developmental problems among children with ASD. Because mitochondria play a central role in metabolism, these findings may help explain the metabolic disorders commonly associated with ASD and other neurodevelopmental disorders. Evaluating mutations in the mitochondrial DNA of high-risk families could help improve the diagnosis and treatment of these diseases.

Zhenglong Gu says ‘The result of our study synergizes with recent work on ASD, calling attention to children diagnosed with ASD who have one or more developmental abnormalities or related co-morbid clinical conditions for further testing on mitochondrial DNA and mitochondrial function. Since many neurodevelopmental disorders and related childhood disorders show abnormalities that converge upon mitochondrial dysfunction, and may have mtDNA defects as a common harbinger, future research is needed to elucidate the mitochondrial mechanisms underpinning to these diseases. Ultimately, understanding the energetic aspects of neurodevelopmental disorders may lead to entirely new kinds of treatments, and preventative strategies that would target mitochondria.’

ScienceDaily www.sciencedaily.com/releases/2016/10/161028161729.htm

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:09:53Autism spectrum disorder linked to mutations in some mitochondrial DNA

Novel genetic mutation may lead to the progressive loss of motor function

, 26 August 2020/in E-News /by 3wmedia

Researchers from the National Institutes of Health and their colleagues identified the genetic cause and a possible therapeutic target for a rare form of paediatric progressive neuropathy. Neuropathy, damage or disease affecting the peripheral nervous system, can range from rare conditions linked to a patient’s exome to more common causes like diabetes and viral infections. Neuropathies can affect both motor and sensory neurons, producing muscle weakness, numbness, pain, and a wide range of symptoms.

These types of discoveries underscore the importance of the families who volunteer to participate in clinical research. “This case superbly illustrates how the intensive study of children with very rare neurological disorders can lead quickly to a deep knowledge of a specific genetic condition, as well as uncover mysteries of the nervous system relevant to a wide spectrum of disorders,” said Walter J. Koroshetz, M.D., director of NINDS.

In their report, researchers examined a 10-year-old child with early onset, progressive neuropathy primarily affecting his ability to walk, grasp, and perform fine motor skills. When the patient’s complete genetic makeup, or genome, was analysed, a mutation was found in the gene associated with the protein KCC3. This protein is important for the ability of cells to respond to swelling.

When a neuron swells, KCC3 is involved in the mechanism that drives fluid out, returning the cell to normal. In the absence of this protein (in what is called a loss-of-function mutation), extreme swelling of the neurons can occur, which in turn leads to nerve damage.

In the study, the patient’s mutation affected the ability of KCC3 to turn off once it was no longer needed, leading to the opposite effect—shrunken neurons that also fail to communicate properly. This is referred to as a gain-of-function mutation, causing the affected protein to behave in a new and damaging way.

“This protein, KCC3, has been connected to other forms of neuropathy in the past,” said Carsten G. Bonnemann, M.D., a senior investigator in the Neuromuscular and Neurogenetic Disorders of Childhood Section at NINDS and a senior author of the paper. “What’s unique here is that this is the first time that we have seen a gain-of-function mutation in the KCC3 protein that leads to neuropathy.”

NIH www.nih.gov/news-events/news-releases/novel-genetic-mutation-may-lead-progressive-loss-motor-function

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:10:00Novel genetic mutation may lead to the progressive loss of motor function

New genetic risk factors for myopia discovered

, 26 August 2020/in E-News /by 3wmedia

Myopia, also known as short-sightedness or near-sightedness, is the most common disorder affecting the eyesight and it is on the increase. The causes are both genetic and environmental. The Consortium for Refractive Error and Myopia (CREAM) has now made important progress towards understanding the mechanisms behind the development of the condition. This international group of researchers includes scientists involved in the Gutenberg Health Study of the University Medical Center of Johannes Gutenberg University Mainz (JGU). The team has uncovered nine new genetic risk factors which work together with education-related behaviour as the most important environmental factor causing myopia to generate the disorder. The results of the study ‘Genome-wide joint meta-analyses of genetic main effects and interaction with education level identify additional loci for refractive error: The CREAM Consortium’ have recently been published in the scientific journal Nature Communications.
There has been a massive rise in the prevalence of short-sightedness across the globe in recent decades and this upwards trend is continuing. It is known from previous studies of twins and families that the risk of acquiring short-sightedness is determined to a large extent by heredity. However, the myopia-causing genes that had been previously identified do not alone sufficiently explain the extent to which the condition is inherited. In addition to the genetic causes of myopia there are also environmental factors, the most significant of which are education-related behaviour patterns. “We know from the Gutenberg Health Study conducted at Mainz that the number of years of education increases the risk of developing myopia,’ said Professor Norbert Pfeiffer, Director of the Department of Ophthalmology at the Mainz University Medical Center.

With the aim of identifying genetic mutations relating to myopia and acquiring better insight into the development of the condition, the international research group CREAM carried out a meta-analysis of data collected from around the world. The data compiled for this analysis originated from more than 50,000 participants who were analysed in 34 studies. The second largest group of participants was formed by the more than 4,500 subjects of the Gutenberg Health Study of the Mainz University Medical Center. ‘In the field of genetic research, international cooperation is of particular importance. This is also borne out by this study, to which we were able to make a valuable contribution in the form of data from our Gutenberg Health Study,’ continued Professor Norbert Pfeiffer. ‘And in view of the fact that a survey undertaken by the European Eye Epidemiology Consortium with the help of the Gutenberg Health Study shows that about one third of the adult population of Europe is short-sighted, it is essential that we learn more about its causes in order to come up with possible approaches for future treatments.’

Aware that environmental effects and hereditary factors reinforce one another in the development of myopia, the scientists devised a novel research concept for their investigations. They used a statistical analysis technique that takes into account both the effects of the environmental and hereditary factors and does so in equal measure and simultaneously. Their efforts were crowned with success as they were able to classify nine previously unknown genetic risk factors.

Risk-associated gene involved in the development of short-sightedness
These newly discovered genetic variants are associated with proteins which perform important functions when it comes to the transmission of signals in the eye. One of these genes is of particular interest because it plays a major role in the transmission of the neurotransmitter gamma-aminobutyric acid (GABA) in the eye. Previous studies have shown that there is greater activation of the gene in question in eyes that are myopic. The results of current research substantiate this conclusion. The CREAM researchers interpret this as evidence that this newly discovered risk-related gene is actually involved in the development of short-sightedness. This represents significant initial headway towards understanding how genetic causes interact with the level of education as an environmental factor to produce the heterogeneity of myopia. Further research will be needed to clarify the details of how the mechanisms actually work and interact with one another.

The spread of short-sightedness is a worldwide phenomenon. Particularly in South East Asia the incidence of myopia in school children has increased notably over the last decades. This is likely due to an improvement in educational attainment. People who read a great deal also perform a lot of close-up work, usually in poor levels of daylight. The eye adjusts to these visual habits and the eyeball becomes more elongated than normal as a result. But if it becomes too elongated, the cornea and lens focus the image just in front of the retina instead of on it so that distant objects appear blurry. The individual in question is then short-sighted.

Johannes Gutenberg University Mainz
www.uni-mainz.de/presse/20232_ENG_HTML.php

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:10:08New genetic risk factors for myopia discovered

Mapping the ‘dark matter’ of human DNA

, 26 August 2020/in E-News /by 3wmedia

Researchers from ERIBA, Radboud UMC, XJTU, Saarland University, CWI and UMC Utrecht have made a big step towards a better understanding of the human genome. By identifying large DNA variants in 250 Dutch families, the researchers have clarified part of the ‘dark matter’, the great unknown, of the human genome. These new data enable researchers from all over the world to study the DNA variants and use the results to better understand genetic diseases.

Although our knowledge of the human DNA is extensive, it is nowhere near complete. For instance, our knowledge of exactly which changes in our DNA are responsible for a certain disease is often insufficient. This is related to the fact that no two people have exactly the same DNA. Even the DNA molecules of identical twins have differences, which occur during their development and ageing. Some differences ensure that not everybody looks exactly alike, while others determine our susceptibility to particular diseases. Knowledge about the DNA variants can therefore tell us a lot about potential health risks and is a first step towards personalized medicine. Many small variants in the human genome – the whole of genetic information in the cell – have already been documented. Although it is known that larger structural variants play an important role in many hereditary diseases, these variants are also more difficult to detect and are, therefore, much less investigated.

By comparing the DNA of 250 healthy Dutch families with the reference DNA database the researchers were able to identify 1.9 million variants affecting multiple DNA ‘letters’. These variants include large sections of DNA that have disappeared, moved or even appear out of nowhere. When this happens in the middle of a gene that encodes a certain protein, it is likely that the functionality of the gene, and thus the production of the protein, is compromised. However, large structural variants often occur just before or after the coding part of a gene. The effect of this type of variation is hard to predict.

In the paper two occasions are described in which an extra piece of DNA was found just outside the coding region of a gene. In these occasions the variants had a demonstrable effect on the gene regulation. This proves that even structural variants that occur outside the coding regions need to be monitored closely in future DNA screenings. The catalogue of variants provided by this research enables other scientists to predict the occurrence of large structural variants from the known profile of the smaller ones. This technique opens new possibilities for studying the effects of large structural changes in our genomes.

Additionally, the research resulted in the discovery of large parts of DNA that were not included in the genome reference. This ‘extra’ DNA does contain parts that could be involved in the production of proteins. One of the extra pieces of DNA that was described in the paper is a new ‘ZNF’ gene that has previously never been found in humans. Nevertheless it appears to be present in roughly half of the Dutch population. This particular gene is a member of the ZNF gene family that was known from the reference genomes of several species of apes. The new variant will now be added to the human reference database. Authors subsequently showed that this gene is also present in genomes of several other human populations, however its function remains unknown. The fact that these and other pieces of ‘dark matter’ now have been placed on the genetic map enables scientists worldwide to study them and use the results to better understand human genetic diseases.

EurekAlert www.eurekalert.org/pub_releases/2016-10/su-mt100716.php

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:09:55Mapping the ‘dark matter’ of human DNA

The Heart-Brain Connection: The link between LQTS and seizures

, 26 August 2020/in E-News /by 3wmedia

Researchers at the University of Rochester Medical Center recently discovered a genetic link between Long QT Syndrome (LQTS), a rare cardiac rhythm disease, and an increased risk for seizures. The study also found that people with LQTS who experience seizures are at greater risk of sudden cardiac death.

According to research, there is a clear association between the heart and the brain of LQTS patients. Patients carrying LQTS genetic mutations were three times more likely to have experienced seizures in their past, compared to their family members who did not carry those mutations. Interestingly, LQTS patients who had a history of seizures also tended to have worse cardiac symptoms.

David Auerbach, Ph.D., senior instructor of Medicine in the Aab Cardiovascular Research Institute of the University of Rochester Medical Center, and lead author of the study found seizure status to be the strongest predictor of cardiac arrhythmias – the abnormal heart rhythms characteristic of LQTS. In fact, about 20% of the LQTS patients in the study who had a history of seizures had survived at least one lethal cardiac arrhythmia. 

You could begin applying these findings to patients today by telling physicians treating LQTS patients to look outside the heart.
Auerbach’s study set a new clinical precedence for the link between seizures and LQTS and provides a case for doctors to pay more attention to what is happening in LQTS patients’ brains or, more broadly, to “look outside the classic organ of interest” in any disease.

As a postdoctoral fellow, Auerbach studied the heart-brain connection in a severe genetic form of epilepsy, and found that cardiac arrhythmias were one cause of sudden unexplained death in people with epilepsy. Now, he investigates the converse – whether a genetic heart disorder is also associated with issues in the brain. 

Auerbach tapped into the Rochester-based LQTS Patient Registry to answer this question. This unique resource was developed 40 years ago by the senior author of the study, Arthur Moss, M.D., the Bradford C. Berk, MD, PhD, Distinguished Professor of Medicine at URMC. The registry contains information about more than 18,000 people including LQTS patients and their affected and unaffected family members, who provide a nearly ideal group of controls. “In essence, they have the same genetic makeup, except theoretically, the LQTS-causing mutation,” says Auerbach.

To ensure that the seizures reported in the registry were not merely misdiagnosed cardiac arrhythmias, Auerbach investigated the effect of beta blockers, drugs often prescribed to LQTS patients to prevent cardiac arrhythmias. While the drugs effectively reduced patients’ arrhythmias, they had no effect on seizures, minimizing the chance that the seizures were simply misdiagnosed cardiac side effects.

Looking at the patients’ genetic information, Auerbach and his colleagues found that patients with the three different types of LQTS (LQTS1-3) showed similar heart rhythm symptoms, but vastly different prevalence of seizures. LQTS1 and LQTS2 patients had much higher prevalence of seizures than LQTS3 or no mutation – with LQTS2 at the greatest risk.

Further investigation of the LQTS-causing mutation showed that the specific location of the mutation greatly affected the risk of cardiac arrhythmias and seizures.  In one location on the gene, the mutation protected against these symptoms, but in another location on the same gene, the mutation increased the risk of those symptoms. Understanding what each of these mutations does may shed new light on a basic mechanism of seizures and may provide viable therapeutic targets to treat LQTS.

The University of Rochester Medical Center www.urmc.rochester.edu/news/story/4612/the-heart-brain-connection-the-link-between-lqts-and-seizures.aspx

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:10:03The Heart-Brain Connection: The link between LQTS and seizures
Page 169 of 227«‹167168169170171›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
13 November 2025

New Chromsystems Product for Antiepileptic Drugs Testing

11 November 2025

Trusted analytical solutions for reliable results

10 November 2025

Chromsystems | Therapeutic Drug Monitoring by LC-MS/MS

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription