Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

Rare genetic variations linked to schizophrenia

, 26 August 2020/in E-News /by 3wmedia

Many of the genetic variations that increase risk for schizophrenia are rare, making it difficult to study their role in the disease. To overcome this, the Psychiatric Genomics Consortium, an international team led by Jonathan Sebat, PhD, at University of California San Diego School of Medicine, analysed the genomes of more than 41,000 people in the largest genome-wide study of its kind to date. Their study reveals several regions of the genome where mutations increase schizophrenia risk between four- and 60-fold.

These mutations, known as copy number variants, are deletions or duplications of the DNA sequence. A copy number variant may affect dozens of genes, or it can disrupt or duplicate a single gene. This type of variation can cause significant alterations to the genome and lead to psychiatric disorders, said Sebat, who is a professor and chief of the Beyster Center for Genomics of Neuropsychiatric Diseases at UC San Diego School of Medicine. Sebat and other researchers previously discovered that relatively large copy number variants occur more frequently in schizophrenia than in the general population.

In this latest study, Sebat teamed up with more than 260 researchers from around the world, part of the Psychiatric Genomics Consortium, to analyse the genomes of 21,094 people with schizophrenia and 20,227 people without schizophrenia. They found eight locations in the genome with copy number variants associated with schizophrenia risk. Only a small fraction of cases (1.4 percent) carried these variants. The researchers also found that these copy number variants occurred more frequently in genes involved in the function of synapses, the connections between brain cells that transmit chemical messages.
With its large sample size, this study had the power to find copy number variants with large effects that occur in more than 0.1 percent of schizophrenia cases. However, the researchers said they are still missing many variants. More analyses will be needed to detect risk variants with smaller effects, or ultra-rare variants.

“This study represents a milestone that demonstrates what large collaborations in psychiatric genetics can accomplish,” Sebat said. “We’re confident that applying this same approach to a lot of new data will help us discover additional genomic variations and identify specific genes that play a role in schizophrenia and other psychiatric conditions.”

University of California San Diego Health health.ucsd.edu/news/releases/Pages/2016-11-22-study-finds-rare-genetic-variations-linked-to-schizophrenia.aspx

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:09:50Rare genetic variations linked to schizophrenia

Genetic causes of small head size share common mechanism

, 26 August 2020/in E-News /by 3wmedia

Microcephaly is a rare disorder that stunts brain development in utero, resulting in an abnormally small head. The Zika virus is one environmental cause of this devastating condition, but genetic defects can cause microcephaly, too. A new Duke University study examining three genetic causes of microcephaly in mice suggests one common mechanism through which the disorder could arise.

The study offers a new window into early, critical stages of brain development, and may improve understanding of the diverse causes of microcephaly and other neurodevelopmental disorders, including autism.

“We’re excited about this study because, by stepping back and looking at the basic mechanistic routes to microcephaly, we hope to understand how Zika infection causes microcephaly,” said the study’s senior investigator Debra Silver, an assistant professor of molecular genetics and microbiology at the Duke University School of Medicine.

In the new study, Hanqian Mao, a graduate student in Silver’s lab, created three mouse models of microcephaly by cutting the levels of each of three genes — Magoh, Rbm8a and Eif4a3 — by half during a critical time in brain development. All three types of mice developed a smaller cerebral cortex, the part of the brain responsible for memory and thought.

Then, Mao screened for any changes in mRNA and protein levels that could also contribute to the underdeveloped brains. One change that stood out involved a protein called p53, which accumulated in each of the mutant brains. The group hypothesized that too much p53 could cause developing cells to die.

To test the involvement of p53 in microcephaly, Duke postdoctoral fellow John McMahon suppressed it in each of the three types of mice. By blocking p53 at a crucial point in development, the team was able to trigger the brains to partially or fully recover to normal size, suggesting that p53 or its signalling partners might be considered as new therapeutic targets for microcephaly.

“What we don’t know yet is exactly how our microcephaly-causing genes are regulating p53 and other changes in the brain, and that’s going to be the next big question,” Silver said.

The genes Magoh, Rbm8a and Eif4a3 are related to one another in that they bind together on specific spots on RNA and affect its processing to become protein. Although the triad is expressed in every cell of the body, it is more abundant in brain tissue.

“Our results suggest that the molecular complex is a master regulator of cortical development, because it’s regulating critical genes in stem cells, which must divide and then start making neurons,” said Silver, who is also a member of the Duke Institute for Brain Sciences.

“If you have problems at this early stage, you don’t get enough stem cells. And then the stem cells themselves can’t go on to make neurons. That’s where you get microcephaly,” Silver added.

Importantly, disruptions in the genes Rbm8a and Eif43 have already been linked to human cases of intellectual disability, and Rbm8a has been associated with microcephaly and autism in people.

“That’s another reason that identifying the downstream molecules of these genes is really important,” Silver said, adding that her team has some of the only mouse models in which it is possible explore those questions.

Duke University today.duke.edu/2016/09/genetic-causes-small-head-size-share-common-mechanism

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:09:58Genetic causes of small head size share common mechanism

Study points to fast-acting drug for OCD

, 26 August 2020/in E-News /by 3wmedia

A single chemical receptor in the brain is responsible for a range of symptoms in mice that are reminiscent of obsessive-compulsive disorder (OCD), according to a Duke University study.

The findings provide a new mechanistic understanding of OCD and other psychiatric disorders and suggest that they are highly amenable to treatment using a class of drugs that has already been investigated in clinical trials.

“These new findings are enormously hopeful for considering how to approach neurodevelopmental diseases and behavioural and thought disorders,” said the study’s senior investigator Nicole Calakos, M.D., Ph.D., an associate professor of neurology and neurobiology at the Duke University Medical Center.

OCD, which affects 3.3 million people in the United States, is an anxiety disorder that is characterized by intrusive, obsessive thoughts and repeated compulsive behaviours that collectively interfere with a person’s ability to function in daily life.

In 2007, Duke researchers (led by Guoping Feng, who is now at the Massachusetts Institute of Technology) created a new mouse model of OCD by deleting a gene that codes for Sapap3, a protein that helps organize the connections between neurons so that the cells can communicate.

Similar to the way some people with OCD wash their hands excessively, the Sapap3-lacking mouse grooms itself excessively and shows signs of anxiety. Although researchers praised the new model for its remarkable similarity to a human psychiatric disorder, and have begun using it to study OCD, questions remain about how the loss of the Sapap3 gene leads to the grooming behaviours.

In the new study, Calakos’s team found that over-activity of a single type of receptor for neurotransmitters — mGluR5, found in a brain region involved in compulsive behaviours — was the major driver for the abnormal behaviours. When researchers gave Sapap3-lacking mice a chemical that blocks mGluR5, the grooming and anxiety behaviours abated.

“The reversibility of the symptoms was immediate — on a minute time frame,” Calakos said. In contrast, the original study describing Sapap3-lacking mice found that antidepressants could help treat symptoms but on the time scale of weeks, as is typical with these drugs in patients.

The immediate effects seen in the new study were also surprising, given that the brains of these mice appear developmentally immature and neurodevelopmental diseases are not typically thought of as being easily reversible, Calakos said.

Intriguingly, by taking normal laboratory mice and giving them a drug that boosted mGluR5 activity, Calakos’s team could instantaneously recreate the same excessive grooming and anxiety behaviours they saw in the Sapap3-lacking mice.

The researchers found that without a functioning Sapap3 protein, the mGluR5 receptor is always on. That, in turn, makes the brain regions involved in compulsion overactive. In particular, a group of neurons that give the “green light” for an action, like face-washing, is working overtime.

Calakos said that mGluR5 should be considered for the treatment of compulsive behaviours. “But which people and which compulsive behaviours? We don’t know yet,” she added.

Duke University today.duke.edu/2016/07/ocdreceptor

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:10:05Study points to fast-acting drug for OCD

Genetic mutations that lead to macular degeneration blindness mapped

, 26 August 2020/in E-News /by 3wmedia

Two gene mutations that trigger a retinal disease that causes blindness in one in 5,000 males have been mapped, leading to the potential for new therapeutic treatments.

Researchers from The University of Manchester undertook a structural analysis of X-linked Retinoschisis (XLRS), a genetic disease leading to a type of macular degeneration in which the inner layers of the retina split causing severe loss of vision and gradual blindness. Currently, there is no effective treatment for XLRS, with research focused on understanding how the disease occurs in the retina.

XLRS is caused by mutations in the retinal protein retinoschisin. The protein plays a crucial role in the cellular organisation of the retina, assembling itself to form paired octameric (consisting of eight retinoschisin) rings. The rings each resemble an 8-bladed propeller. This new structural insight yielded important clues into how retinoschisin performs its crucial role in the retina and spurred efforts to investigate what happens to this structure when it is mutated in XLRS.

Using a cryo-electron microscope, the team examined the paired rings as well as the effects on the rings of two XLRS-causing mutations. The effects of these mutations, despite being reported to cause the disease, were unknown and may offer explanations on how the normal protein functions in the retina.

Clair Baldock, Professor of Biochemistry at The University of Manchester and lead author of the research team’s resulting paper, said the cryo-electron microscopy allowed them to identify the location of the mutations on the rings.

“We found that one disease-causing mutation sits in the interface between the octamer rings, causing retinoschisin to be less stable. The other mutation is on the propeller tip which we think is a novel interaction site for other binding proteins in the retina.”

As well as identifying the mutations and precisely mapping their locations, the research team held out the possibility that future work could lead to genetic interventions and treatments, which could limit or prevent the damage caused by XLRS.

“XLRS is a promising candidate for gene therapy, so our findings on these two different classes of mutations will be informative for future therapeutic strategies,” concluded Professor Baldock.

University of Manchesterwww.manchester.ac.uk/discover/news/genetic-mutations-that-lead-to-macular-degeneration-blindness-mapped-by-new-research/

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:09:53Genetic mutations that lead to macular degeneration blindness mapped

Mutations responsible for debilitating heart conditions

, 26 August 2020/in E-News /by 3wmedia

The leading cause of death in the world remains cardiovascular diseases, which are responsible for more than one third of overall mortality, according to the World Health Organization. Obesity and diet are obvious culprits behind heart disease but, over the past decade, research has also pointed to genetic factors, specifically mutations in cell adhesion components—the forces that bind cells together.

In a new study, scientists from the Florida campus of The Scripps Research Institute offer new molecular insights into how the interaction between specific genetic mutations and a cytoskeletal protein critical for the proper development and maintenance of heart tissue can lead to conditions such as dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM)—and ultimately heart failure.

The new study, which was led by Associate Professor T. Izard of the Florida campus of TSRI. The new insights could aid in the development of drug therapies to strengthen the hearts of patients suffering from age-related heart failure.

The study focuses on the protein vinculin and a variant form known as metavinculin, which is found only in muscle tissue. Vinculin has been shown to reinforce the myocardial cell cytoskeleton, improving heart muscle contractility and prolonging life, while metavinculin plays an essential role in the development and function of the heart.

Both vinculin and metavinculin regulate cell adhesion and migration by linking the cell’s cytoskeleton to adhesion receptor complexes via a process known as dimerization—the joining of two similar subunits. Control of the dimerization process is crucial for normal protein function in cell adhesion sites.

But mutations in the variant metavinculin, either inherited or spontaneous, corrupt this process, altering dimerization and, the study suggests, producing a decreased ability to stabilize critical cell adhesions, weakening the heart muscle over time.

The researchers found that these mutations—specifically, a mutation known as R975W in metavinculin—dictate the type of interaction during dimerization and can actually block the process. That, in turn, results in heart muscles that are far more susceptible to stress-induced heart disease.

The Scripps Research Institute www.scripps.edu/news/press/2016/20160811izard.html

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:10:00Mutations responsible for debilitating heart conditions

Abbott demonstrates next-generation molecular diagnostics prototype

, 26 August 2020/in E-News /by 3wmedia

Abbott demonstrated a prototype of the company’s next-generation molecular diagnostics platform at a recent scientific event hosted for its customers from across the globe. At the event, molecular laboratory directors and researchers had hands-on interaction with the prototype and were able to provide additional feedback on the system prior to further stages of development.

Abbott’s new system is currently being designed from the ground up based on extensive input from laboratory customers. For example, health systems around the world are often challenged with higher testing volumes with staffing and budget constraints, including in the molecular laboratories.
“Our molecular lab customers tell us they are facing pressures to do more with less,” said John Carrino, divisional vice president, research and development, Molecular Diagnostics, Abbott. “Abbott’s next-generation molecular system is being designed to have a faster turnaround time, greater flexibility to run any test at any time, an ability to run higher volumes and automation to increase lab efficiency – all without compromising the testing performance and quality for which our organization is highly regarded.”

Additionally, customer insights suggest a need for a broad testing menu in the molecular lab. Abbott currently offers one of the broadest molecular testing menus for infectious diseases such as HIV, hepatitis and tuberculosis, as well as sexually transmitted infections such as human papillomavirus (HPV), chlamydia and gonorrhea, among others tests.

“Abbott’s molecular diagnostics can provide the information needed to help guide some of life’s most important health decisions,” said Andrea Wainer, president, Molecular Diagnostics, Abbott. “Our accurate, reliable and quality tests could allow clinicians to make more informed treatment decisions to help improve patient care.” In addition to the new molecular system, Abbott will be launching next-generation systems in blood screening, immunoassay, clinical chemistry, hematology and point of care testing in the near future. All of the systems will be built on the same software and hardware platforms to enable more automation and to simplify the user experience for Abbott’s customers.

www.abbottmolecular.com
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:10:08Abbott demonstrates next-generation molecular diagnostics prototype

Non-invasive diagnosis

, 26 August 2020/in E-News /by 3wmedia

A new non-invasive method of predicting the risk of developing a severe form of liver disease could ensure patients receive early and potentially life-saving medical intervention before irreversible damage is done.

Using information collected in a liver biopsy study, researchers at Cardiff University have developed a method of determining the onset of non-alcoholic steatohepatitis (NASH) through the analysis of lipids, metabolites and clinical markers in blood.

NASH is the most extreme form of non-alcoholic fatty liver disease (NAFLD) – a range of conditions caused by a build-up of fat in the liver. With NASH, inflammation of the liver damages the cells, potentially causing scarring and cirrhosis.

Currently, the diagnosis of NASH can only be done with a liver biopsy – an invasive and costly procedure. The new research could lead to a simple blood test that could catch the onset of NASH before inflammation damages the liver.

Dr You Zhou from Cardiff University’s Systems Immunity Research Institute said: “Many people with non-alcoholic steatohepatitis do not have symptoms and are not aware they are developing a serious liver problem. As such, diagnosis often comes after irreversible damage is done. Our quicker and less invasive method of diagnosis could mean that more people with non-alcoholic fatty liver disease could be easily tested to determine whether they are progressing to non-alcoholic steatohepatitis, the more severe form of the disease.”

A healthy liver should contain little or no fat. It’s estimated that around 20% of people in the UK have early stages of NAFLD where there are small amounts of fat in their liver. NASH is estimated to affect up to 5% of the UK population and is now considered to be one of the main causes of cirrhosis – a condition where irregular bumps replace the smooth liver tissue, making it harder and decreasing the amount of healthy cells to support normal functions. This can lead to complete liver failure.

Common risk factors for both NAFLD and NASH are obesity, lack of physical exercise and insulin resistance. But if detected and managed at an early stage, it’s possible to stop both NAFLD and NASH from getting worse.

The new method of NASH diagnosis will undergo further investigation with a view to developing a simple blood test that can be used by clinicians to provide effective medical care for patients at high risk of the disease.

Cardiff University www.cardiff.ac.uk/news/view/482735-non-invasive-diagnosis

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:09:55Non-invasive diagnosis

Method sheds light on how genetic mutations cause inherited Parkinson’s disease

, 26 August 2020/in E-News /by 3wmedia

Researchers led by the University of Dundee’s Professor Dario Alessi have developed a new method of measuring the activity of disease-causing mutations in the LRRK2 gene, a major cause of inherited Parkinson’s disease.

The team believes this research could help pave the way for future development of a clinical test that could facilitate evaluation of drugs to target this form of the condition.

Mutations in the LRRK2 gene are the most common cause of genetic Parkinson’s disease. The most common disease-causing mutation in this gene increases the activity of the LRRK2 protein three-fold, implying this may contribute towards the symptoms of the disease in patients. It also suggests that drugs that reduce the activity of the protein (LRRK2 inhibitors) may help treat patients with this form of inherited Parkinson’s disease.

“It is important to better understand how disruption in LRRK2 biology causes Parkinson’s disease and whether a drug that targeted the LRRK2 enzyme would offer therapeutic benefit,” said Professor Alessi, lead author on the study.

“Current drug treatments only deal with symptoms of the condition, such as tremors, but do not affect the progression of Parkinson’s disease. An important question is whether an LRRK2 therapy might have potential to slow progression of the condition, which no other current therapy is able to do.”

When the LRRK2 protein is active it stops another cellular protein called Rab10 from fulfilling its function in the body. There are many proteins in the Rab family, and a number of them have been shown to be low in number or deactivated in different forms of Parkinson’s disease.

The new method of measuring these was developed by a collaboration of researchers from Dundee, The Michael J. Fox Foundation for Parkinson’s Research, GSK and the University of Hong Kong. It analyses how much of the Rab10 protein has been deactivated – a process where phosphate groups are added to the Rab10 molecules by the LRRK2 protein – as a measure of heightened LRRK2 protein activity.

This new experimental assay is straightforward, requires only small amounts of sample material and is suitable for adapting to analyse large samples. This contrast with current mass spectrometry technology that is more complex and cumbersome and requires larger sample sizes.

While acknowledging that more work is needed, the researchers believe this breakthrough could help with future drug developments for patients with this form of Parkinson’s disease.

Professor Alessi continued, “The prediction is that elevation of LRRK2 activity leads to Parkinson’s disease, and this is now testable using our assay. The expectation is that if a sub-group of patients can be identified with elevated LRRK2 activity, these individuals might benefit most from LRRK2 inhibitors.

University of Dundee www.dundee.ac.uk/news/2016/lab-method-sheds-light-on-how-genetic-mutations-cause-inherited-parkinsons-disease.php

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:10:03Method sheds light on how genetic mutations cause inherited Parkinson’s disease

Promising new blood test is first of its kind to detect liver scarring

, 26 August 2020/in E-News /by 3wmedia

Newcastle scientists and medics have developed a new type of genetic blood test that diagnoses scarring in the liver – even before someone may feel ill. It is the first time an epigenetic signature in blood has been discovered which is diagnostic of the severity of fibrosis for people with Non-alcoholic Fatty Liver Disease (NAFLD).

NAFLD, caused by being overweight or having diabetes, affects one in three people in the UK and may progress to cirrhosis and liver failure, requiring a transplant.

The Newcastle team describe the proof of principle research in which they measure specific epigenetic markers to stratify NAFLD patients into mild or severe liver scarring, known as fibrosis.

Dr Quentin Anstee, Clinical Senior Lecturer at Newcastle University, Consultant Hepatologist within the Newcastle Hospitals and joint senior author explained what it could mean for patients: “This scientific breakthrough has great promise because the majority of patients show no symptoms.

“Routine blood tests can’t detect scarring of the liver and even more advanced non-invasive tests can really only detect scarring at a late stage when it is nearing cirrhosis. We currently have to rely on liver biopsy to measure fibrosis at its early stages – by examining a piece of the liver under the microscope.

“We know that the presence of even mild fibrosis of the liver predicts a worse long-term outcome for patients with NAFLD and so it’s important to be able to detect liver scarring at an early stage.”

In this first stage of research the team developed the blood analysis in 26 patients with NAFLD. The test detects chemical changes on tiny amounts of “cell-free” DNA that are released into the blood when liver cells are injured. Changes in DNA methylation at genes like PPARγthat controls scar formation are then used to stratify patients by fibrosis severity.

Senior author Dr Jelena Mann of Newcastle University’s Institute for Cellular Medicine added: “This is the first time that a DNA methylation ‘signature’ from the blood has been shown to match the severity of a liver disease.

“It opens up the possibility of an improved blood test for liver fibrosis in the future.” Newcastle University

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:10:13Promising new blood test is first of its kind to detect liver scarring

Leading diagnostics supplier offers rapid test platform

, 26 August 2020/in E-News /by 3wmedia

MP Diagnostics (a division of MP Biomedicals) has 30 years in the diagnostics industry, we offer a wide range of products including ELISAs, Immunoblots, Point-of-Care Tests, Molecular Diagnostics and analyser solutions. MP Diagnostics also specializes in infectious disease diagnostics and have continuously developed high quality products to meet the demands of global organizations and institutions. The MULTISURE and ASSURE Range of Point-of-Care-Tests has enabled rapid and accurate testing for diseases such as HIV, Hepatitis C and Hepatitis E.

The MULTISURE and ASSURE Rapid Tests are equipped with MP Biomedicals’ patented reverse flow technology which enhances sensitivity and specificity. This unique technology enables the MULTISURE platform to contain multiple test lines within one cassette. With multiple lines as compared with the traditional single line lateral flow rapid test, each test line will give the user additional information which may help to make critical decisions for the treatment of the patients.

The MULTISURE HIV-1/2 Rapid Test is a novel medical device from the laboratories of MP Biomedicals based in Singapore. The MULTISURE HIV-1/2 Rapid Test is able to detect and differentiate HIV-1 and HIV-2. This is achieved through the 4 different test lines that are striped onto the membrane of the device. Each test line indicates the positivity of antibodies to HIV-1 and/or HIV-2.

The MULTISURE HCV Antibody Assay is a Point-of-Care Test that helps to detect HCV antibodies to antigen that is striped onto the membrane. Each of the four test lines gives the user additional information with regards to the staging of the disease and in turn helps healthcare professionals to treat the patient accordingly.

As the first company to isolate and clone the Hepatitis E Virus, MP Biomedicals will continue to strive to be the benchmark for HEV diagnosis worldwide. The ASSURE HEV IgM Rapid Test is the go-to test for HEV diagnosis; with just one test line, this rapid test is simple to perform, easy to interpret and takes only 15 minutes to results.
 
MP Diagnostics’ ASSURE Reader and ASSURE Palm Reader are developed for use with the MULTISURE and ASSURE range of rapid tests and are fully integrated instruments designed for your institution’s needs. The MP ASSURE readers complements the reading and documentation of results for both laboratory and point-of-care settings; with the latest upgrade in software, the MP ASSURE readers’ integration to management systems would be seamless for all users.

www.mpbio.com/dx
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:35:14Leading diagnostics supplier offers rapid test platform
Page 171 of 229«‹169170171172173›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
14 January 2026

Nuclera installs eProtein Discovery systems at Taiwan universities

14 January 2026

Revvity to acquire ACD/Labs in research informatics expansion

14 January 2026

CHITOSE and FUJIFILM Biosciences announce strategic alliance for biopharmaceutical production

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription