Researchers have identified a new set of genes that may be responsible for the two most common and disabling neurological conditions, stroke and dementia.
The study may help researchers better understand, treat and prevent ischemic and haemorrhagic stroke, and perhaps Alzheimer’s disease and other dementias.
Stroke is the leading neurological cause of death and disability worldwide. Previous studies have looked mainly at genes causing atherosclerosis and genes affecting the function of platelets and clotting processes as risk factors for ischemic stroke (clot obstructing blood flow to the brain). A different set of genes has been associated with haemorrhagic stroke (bleeding into the brain).
Researchers from Boston University School of Medicine looked for new stroke genes using genome wide association as well as meta-analysis. They identified a new gene called FOXF2 which increased the risk of having a stroke due to small vessel disease in the brain. No previous study has identified a gene for the common type of small vessel disease stroke although some genes associated with familial small vessel diseases such as CADASIL are known.
Sudha-Seshadri“Our research has identified a gene affecting another type of ischemic stroke, due to small vessel disease, and also suggests some genes may be associated with both ischemic and haemorrhagic stroke and may act through a novel pathway affecting pericytes, a type of cell in the wall of small arteries and capillaries. Unravelling the mechanisms of small vessel disease is essential for the development of therapeutic and preventive strategies for this major cause of stroke,” explained corresponding author Sudha Seshadri, MD, professor of neurology at BUSM.
According to the researchers small vessel disease not only causes stroke but is also a major contributor to dementia risk, and is associated with gait problems and depression. “Hence, it is exciting that we are beginning to better understand the cause of this very important and poorly understood type of stroke,” she added.
Boston School of Medicine
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:33:212021-01-08 11:10:14New gene responsible for stroke discovered
The 2016 Biotexcel conference ‘Circulating Biomarkers’ will take place at the University of Abertay, Dundee, UK, on 12–13 October, 2016. This is the third such annual meeting and they have fast become one of the highlights of the year for workers in this field. Circulating biomarkers, such as the various forms of circulating DNA, RNA, tumour cells and exosomes, have proved useful for diagnostics and the monitoring of treatment. Previous meetings have seen presentations about the discovery of circulating biomarkers as well as subsequent validation and blood-biopsy test development. This year, the focus is expanding to include other kinds of least-invasive and non-invasive biomarkers. With its unique format, delegates include participants from science, industry, medicine and engineering and dedicated networking sessions allow broad collaborations between the different disciplines to facilitate the development of new diagnostics. The meeting includes presentations from leaders of their fields from the UK, Germany and the USA, including Prof. David Cameron, Edinburgh, UK Prof. Markus Metzler, Germany Prof. Craig Beam, USA, and others) Prof Sue Burchill, Leeds, UK Prof Colin Palmer, Ninewells Hospital, Dundee, UK Prof Angie Cox, Sheffield, UK Dr Clare Vesely, UCL Cancer Institute, London, UK
The topics to be covered are:
Circulating free tumour DNA
Circulating micro RNA
Circulating Tumour Cells
Fluid & Blood Biopsy Biomarkers & Examples of Translation into the Clinic
Case Study: “Biomarker to Diagnostic” Pathway
Non-invasive/Least-invasive biomarkers in Ascites, Hair, Saliva, Urine, CSF, Faeces etc
PDX – Patient Derived Xenograft models for Biomarkers.
The meeting will also have presentations on the latest technology developments from Analytik Jena, Covaris and Angle Plc. In addition to presentations, the meeting will also host a panel debate on “How do we break the translational bottle-neck and move circulating biomarkers into the Clinic?”, a poster session and award as well as a complimentary drinks reception hosted by the Lord Provost at City Chambers for all delegates and a 3-course networking dinner at Malmaison. This meeting is intended to be suitable for researchers and group heads working with circulating biomarkers, researchers working on translational medicine as well as those in the NHS, private labs, pharmaceutical and biotech companies, and service providers.
Please see the Biotexcel webstite (https://biotexcel.com/event/circulating-biomarkers-2016/) for further details of the meeting as well as the speakers and agenda. Registration can be done through the Biotexcel website or the button on the CLi website www.cli-online.com.
Three manuscripts published recently explored the versatility of liquid biopsies by identifying EGFR mutations using circulatingu tumour DNA (ctDNA) in urine and plasma and examining circulating tumour cells (CTCs) in plasma to predict the risk of lung cancer recurrence after surgical resection. Collectively, these findings illustrate the potential and reach of liquid biopsies in both identifying patients suitable for targeted treatment as well as predicting cancer recurrence.
Lung cancer is the most common type of cancer with the highest cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) accounts for roughly 85% of lung cancer and most patients present with advanced disease at diagnosis. Surgical resection is the preferred treatment option for patients with medically operable tumours. However, disease recurrence occurs in approximately 50% of cases. Patients with advanced disease are often not candidates for surgical resection and commonly harbour driver mutations that can be targeted by drugs. A major challenge for assessing driver mutations, such as epidermal growth factor receptor (EGFR) mutations, in advanced disease is the scarcity of suitable biopsy tissue for molecular testing. A minimally invasive alternative to invasive tissue biopsy is the use of liquid biopsy, which analyses ctDNA or CTCs in a liquid biological sample (i.e. urine, blood, or serum).
The first manuscript entitled, Circulating Free Tumor-derived DNA (ctDNA) Determination of EGFR Mutation Status in Real-World European and Japanese Patients with Advanced NSCLC: the ASSESS Study, used samples from the large ASSESS study to evaluate EGFR mutation status by analysing ctDNA from blood plasma. The results of the study demonstrated that analysing ctDNA from plasma is feasible for the identification of EGFR mutations with mutation status concordance in 1,162 matched samples of 89% (sensitivity 46%; specificity 97%; positive predictive value [PPV] 78%; negative PV 90%). The authors comment that, “Accurate and accessible ctDNA mutation testing to address the unmet need in patients without an available/evaluable tumour sample will be important to enable more patients to receive therapies personalized to the mutation status of their tumor.”
The second manuscript entitled, A Highly Sensitive and Quantitative Test Platform for Detection of NSCLC EGFR Mutations in Urine and Plasma, analysed samples from patients enrolled in TIGER-X, a phase 1/2 clinical study of rociletinib in previously treated patients with EGFR mutant-positive advanced NSCLC, to interrogate EGFR activating mutations and the T790M resistance mutation by analysing ctDNA from urine or blood plasma. The results from the study show that ctDNA derived from NSCLC tumours can be detected with high sensitivity in urine and plasma, sensitivity 93% for T790M, 80% L858R, and 83% exon 19 deletions and sensitivity 93% for T790M, 100% L858R, and 87% exon 19 deletions, respectively. The authors comment that, “In conclusion, our data demonstrates that urine testing using mutation enrichment NGS method successfully identifies EGFR mutations in patients with metastatic NSCLC and has a high concordance with tumour and plasma, suggesting that EGFR mutation detection from urine or plasma should be considered as a viable approach for assessing EGFR mutation status.”
Finally, a third manuscript on liquid biopsies entitled, Circulating tumour cells detected in the tumour-draining pulmonary vein are associated with disease recurrence after surgical resection of non-small cell lung cancer, used blood and tumour-draining pulmonary vein samples from patients pre-surgical resection and intra-operatively to analyse CTCs and circulating tumour microemboli (CTM, clusters). The investigators reported that combining CTC/CTM enumeration in tumour-draining pulmonary veins and peripheral blood at the time of curative-intent surgical resection of NSCLC better identifies those patients at higher risk of lung cancer recurrence than peripheral CTC/CTM numbers alone. “In addition to the potential role of CTCs as a prognostic/predictive biomarker, isolation and genetic analysis of individual CTCs from liquid biopsies may shed light on tumour biology and the metastatic process,” said Phil AJ Crosbie, MD, PhD, first author of the article.
The International Association for the Study of Lung Cancer
www.iaslc.org/news/liquid-biopsies-identification-egfr-mutations-and-prediction-lung-cancer-recurrence
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:33:212021-01-08 11:10:04Identification of EGFR mutations and prediction of lung cancer recurrence
Cancerous tumours must be fed. Their unregulated growth requires a steady stream of blood flow and nutrients. Thus, one way that researchers have tried to wipe out cancer is to target cells undergoing the metabolic shifts that enable a tumour’s rapid growth.
Yet new findings from University of Pennsylvania researchers suggest that such efforts might have missed a key pathway that enables the changes in metabolism that benefit tumours. Their work finds that mitochondrial stress alone can trigger metabolic shifts through a pathway that involves p53, a protein widely known to play multiple important roles in cancer.
“In all five cancer cell lines we looked at, we saw that p53 was induced when mitochondrial function was affected,” said senior author Narayan Avadhani, the Harriet Ellison Woodward Professor of Biochemistry in Penn’s School of Veterinary Medicine’s Department of Biomedical Sciences. “This led to our discovery that it’s possible to promote tumour growth independent of the HIF-1α pathway, which had up to this point been a prime target of therapeutic interventions.”
The study points to a new factor that could inform our understanding of how cancer progresses. It’s possible that markers of metabolic stress could even serve as a biomarker for a cancer’s aggressiveness or likelihood to spread.
Avadhani teamed with Penn Vet’s Anindya Roy Chowdhury, the lead author and a research associate, and Serge Y. Fuchs, professor of cell biology, as well as Ph.D. student Apple Long and Anil Rustgi, the T. Grier Miller Professor of Gastroenterology, both of Penn’s Perelman School of Medicine. Avadhani and Fuchs are also members of Penn Vet’s Mari Lowe Center for Comparative Oncology Research.
Mitochondrial stress induces expression of nearly 120 genes involved in cell metabolism.
In earlier studies, Avadhani and colleagues had shown that disrupting mitochondria could lead to tumour growth. Mitochondria are often referred to as the “powerhouses” of cells because they produce ATP, the molecular energy currency that cells utilize to perform their diverse functions. In related work, the researchers had also observed that subjecting mitochondria to stress also triggered an increase in p53 but, until now, hadn’t conducted follow-up on that finding.
Because p53 is mutated in nearly 50 percent of human cancers, it is widely believed to have a tumour-suppressor function. The researchers decided to take a more detailed look into the connection between mitochondrial stress and p53.
They experimentally depleted mitochondrial DNA to induce mitochondrial stress in six cell lines, including several cancer cell lines, and found that p53 levels increased in response to the mtDNA depletion in each type of cell. Because HIF-1α activity is known to play both complementary and contradictory roles in cancer to p53, they next looked to see how that protein responded. They found that p53 inhibited HIF-1α activity.
Looking specifically at a human colon cancer cell line in which p53 was experimentally deleted, they again found a relationship with HIF-1α: Its activity was six-times higher in the colon cancer cell line with p53 depleted than in the wild type colon cancer cell line, a further indication that p53 inhibits HIF-1α.
To ensure that this was not strictly associated with depletion of mitochondrial DNA, the researchers induced mitochondrial stress using other means, including with chemicals agents and by disrupting the membrane, and found that all induced p53.
Further investigation revealed that p53 reduced HIF-1α levels in the nucleus and the cytoplasm of cells and that genes responsive to HIF-1α were blunted when mitochondrial DNA was depleted. Notably, they found that the expression of several genes involved with glycolysis, a metabolic process by which cells break down sugar to make energy, jumped dramatically in cells in which mtDNA was depleted. Some of these were the same genes that HIF-1α normally regulates, pointing to mitochondrial stress as a similar but completely separate pathway by which a metabolic shift can occur in cancer cells.
Finally, the team demonstrated that, in cells with depleted mtDNA, p53 physically interferes with HIF-1α by preventing it from binding to gene promoters that it would normally and by promoting ubiquitination of HIF-1α, a process that tags the protein for degradation in the cell.
The findings point to a new direction and possible new targets for preventing the metabolic shift that can foster a supportive environment for cancer growth.
Penn’s School Veterinary Medicine
www.vet.upenn.edu/about/press-room/press-releases/article/penn-team-finds-mitochondrial-stress-induces-cancer-related-metabolic-shifts
Bacteria in your intestines may play an important role in determining if you will develop blinding wet Age-related Macular Degeneration (AMD).
Age-related Macular Degeneration (AMD) is the leading cause of irreversible blindness in the industrialized world, affecting over 10 million individuals in North America. A study lead by Dr. Przemyslaw (Mike) Sapieha, researcher at Hôpital Maisonneuve-Rosemont (CIUSSS de l’Est-de-l’Île-de-Montréal) and professor at the University of Montreal, uncovered that bacteria in your intestines may play an important role in determining if you will develop blinding wet AMD.
AMD is characterized by a heightened immune response, sizeable deposits of fat debris at the back of the eye called soft drusen (early AMD), destruction of nerve cells, and growth of new diseased blood vessels (wet AMD, late form). While only accounting for roughly 10% of cases of AMD, wet AMD is the primary form leading to blindness. Current treatments becomes less effective with time. It is therefore important to find new ways to prevent the onset of this debilitating disease.
While many studies on the genetics of AMD have identified several genes that predispose to AMD, no single gene can account for development of the disease. Epidemiological data suggests that in men, overall abdominal obesity is the second most important environmental risk factor, after smoking, for progression to late-stage blinding AMD. Until now, the mechanisms that underscore this observation remained ill defined. Elisabeth Andriessen, a PhD student in the lab of Professor Sapieha found that changes in the bacterial communities of your gut, such as those brought on by a diet rich in fat, can cause long-term low-grade inflammation in your whole body and eventually promote diseases such as wet AMD. Among the series of experiments conducted as part of this study, the group performed fecal transfers from mice receiving regular fat diets, compared to those receiving a high fat diet, and found a significant amelioration of wet AMD.
“Our study suggests that diets rich in fat alter the gut microbiome in a way that aggravates wet AMD, a vascular disease of the aging eye. Influencing the types of microbes that reside in your gut either through diet or by other means may thus affect the chances of developing AMD and progression of this blinding disease”, says Dr Sapieha. Professor Sapieha holds the Wolfe Professorship in Translational Vision Research and a Canada Research Chair in retinal cell biology.
University of Montreal
nouvelles.umontreal.ca/en/article/2016/11/15/microbes-in-your-gut-influence-major-eye-disease/
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:33:212021-01-08 11:09:52Microbes in your gut influence major eye disease
Nova Biomedical recently announced the opening of a new sales, service, manufacturing, and distribution subsidiary in Brazil. The new facility demonstrates Nova’s commitment to the Brazilian market and to supporting the strong growth of in vitro diagnostic testing in Brazil and Mercosur countries. Located in the town of Nova Lima, a suburb of the city of Belo Horizonte in the state of Minas Gerais, Nova’s new subsidiary is designed to fully support current business and to allow for anticipated future growth. The new subsidiary provides full sales and service support, inventory warehousing and distribution, and manufacturing for Nova customers in Brazil. With the new subsidiary, Nova brings the most advanced technology whole blood analysers for hospital and point-of-care (POC) use to Brazil. The Stat Profile Prime line of hospital analysers includes the Critical Care System (CCS), Electrolyte System (ES), and Prime Plus, which all feature Prime’s innovative, no-maintenance cartridge and reagent technology that saves time and space, and reduces costs. Prime CCS offers a comprehensive testing menu of pH, PCO2, PO2, Hct, Na, K, Cl, iCa, Glu, and Lac. Prime ES provides comprehensive electrolyte testing with Na, K, Cl, iCa, and iMg. Results are ready for both devices in only 60 seconds from 100 microliters of whole blood. Prime Plus combines blood gas, electrolyte, and metabolite testing with co-oximetry, for an extensive, 22-test menu that’s ready in only 60 seconds. The Stat Profile pHOx Ultra analyser provides up to 20 critical care tests from 210 microliters in only two minutes, with other partial test panels available in less than one minute. The StatStrip and StatSensor line of handheld, POC meter and test strip analysers provide rapid glucose/ketone, lactate, and creatinine results at the bedside to support clinical decision making. “We, at Nova Biomedical, are excited to welcome our new Brazilian subsidiary to our international team and for the opportunity to continue to bring Nova’s in vitro diagnostic testing technology to this important global market,” said Ken Lumm, Senior Director, International Sales at Nova.
http://www.novabio.us/
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:33:212021-01-08 11:09:59Nova Biomedical opens new subsidiary in Brazil
Researchers at the Perelman School of Medicine at the University of Pennsylvania and other institutions have uncovered a site of genetic variation that identified which patients with Parkinson’s disease are more likely to have tremors versus difficulty with balance and walking. The Penn team also found that patients with this genetic variation had a slower rate of Parkinson’s disease progression, and lower amounts of alpha-synuclein in the brain. Alpha-synuclein is a protein that experts know plays a role in the development of Parkinson’s disease.
Clinicians have long noted that the presence of tremors, rather than balance and walking problems, as the initial or dominant symptom of Parkinson’s may suggest slower progression of the disease. The Penn-led study is one of the first to link this difference to a specific genetic variation. Tremor-dominant patients are also less likely to develop dementia, although this symptom was not assessed in the study.
“We have never understood the reason why some people present with more tremor vs. walking/balance difficulties in Parkinson’s disease,” said the study’s lead author, Christine A. Cooper, MD, a fellow in movement disorders at Penn Medicine. “This finding gives us information, for the first time, that has implications for diagnosis, prognosis, treatment, and prevention efforts.”
In the study, the investigators ranked 251 Parkinson’s disease patients at the University of Pennsylvania Health System on tremor and balance/walking scores. They then looked at the patients’ genotypes to see if there were correlations between ten genetic variations previously associated with Parkinson’s disease and the primary symptoms that the patients displayed.
The researchers found that 39 of the 251 patients who had a genetic variation known as the GG genotype at the rs356182 SNP 3’ to the SNCA gene were more likely to have: 1) tremors rather than walking/balance problems; 2) slower physical progression of the disease; and 3) lower levels of alpha-synuclein in the brain. Patients were followed up to seven years in some cases. The investigators carried out the same type of analysis with an additional group of 559 patients at three other clinical sites in the United States and found similar results for the association between the genotype and the type of PD symptoms.
“This is how we can start thinking about precision medicine in action,” said the study’s senior author, Alice S. Chen-Plotkin, MD, an assistant professor of neurology at Penn. “We found that a relatively common genetic variation can both serve as a biomarker for and influence the disease course of Parkinson’s patients. This opens up the possibility of achieving a hallmark of precision medicine: targeted therapies for different ‘versions’ of what was once thought to be a single disease.”
University of Pennsylvania Health System
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:33:212021-01-08 11:10:09Genetic variation that predicted type and rate of physical decline in patients with Parkinson’s Disease
The distinct structures of toxic protein aggregates that form in degenerating brains determine which type of dementia will occur, which regions of brain will be affected, and how quickly the disease will spread, according to a study from the Peter O’Donnell Jr. Brain Institute.
The research helps explain the diversity of dementias linked to tau protein aggregation, which destroys brain cells of patients with Alzheimer’s and other neurodegenerative syndromes. The study also has implications for earlier and more accurate diagnoses of various dementias through definition of the unique forms of tau associated with each.
“In addition to providing a framework to understand why patients develop different types of neurodegeneration, this work has promise for the development of drugs to treat specific neurodegenerative diseases, and for how to accurately diagnose them. The findings indicate that a one-size-fits-all strategy for therapy may not work, and that we have to approach clinical trials and drug development with an awareness of which forms of tau we are targeting,” said study author Dr. Marc Diamond, founding Director of the Center for Alzheimer’s and Neurodegenerative Diseases, and Professor of Neurology and Neurotherapeutics with the O’Donnell Brain Institute at UT Southwestern Medical Center.
Researchers used special cell systems to replicate distinct tau aggregate conformations. These different forms of pathological tau were then inoculated into the brains of mice. Each form created different pathological patterns, recapitulating the variation that occurs in diseases such as Alzheimer’s, frontotemporal dementias, and traumatic encephalopathy.
The different forms of tau caused pathology that spread at different rates through the brain, and affected specific brain regions. This experiment demonstrated that the structure of pathological tau aggregates alone is sufficient to account for most if not all the variation seen in human neurodegenerative diseases that are linked to this protein.
The finding could have a notable impact on widespread efforts at the O’Donnell Brain Institute and elsewhere to develop treatments that eliminate tau and other toxic proteins from the brains of dementia patients.
“The challenge for us now is to figure out how to rapidly and efficiently determine the forms of tau that are present in individual patients, and simultaneously, to develop specific therapies. This work says that it should be possible to predict patterns of disease in patients and responses to therapy based on knowledge of tau aggregate structure,” said Dr. Diamond, who holds the Distinguished Chair in Basic Brain Injury and Repair.
Southwestern Medical Center
www.utsouthwestern.edu/newsroom/news-releases/year-2016/oct/identifying-tau-strains.html
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:33:212021-01-08 11:09:54Structure of toxic tau aggregates determines type of dementia, rate of progression
Ribonucleic acid (RNA) binding fluorescent probes have been powerful and important analytical tools for the study of RNA structures and functions.
A research group led by Professor Seiichi Nishizawa at Tohoku University’s Graduate School of Science has reported a new RNA probe that binds to double-stranded RNA (dsRNA) in a sequence-specific manner.
The probe has a weak response to mismatch-containing dsRNA sequences, thus enabling sequence-selective fluorescence sensing of dsRNA at the single-base pair resolution. It also shows a preference for binding with dsRNA over dsDNA, which is an important selective process for future applications in a cellular environment where RNA and DNA co-exist.
In contrast to the conventional analytical method which is limited to single-stranded regions of RNA, the new analytical method allows for fluorescent sensing of target dsRNA structure and sequence for the first time.
It is expected that the probe will open up new possibilities for analysing the functions of dsRNA-containing structures, which are closely related to various biological phenomena and diseases.
Tohoku University
www.tohoku.ac.jp/en/press/fluorescence_detection_of_rna.html
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:33:212021-01-08 11:10:01New analytical tool for fluorescence detection of double-stranded RNA
Skin cancer is the most common of all cancers, and melanoma, which accounts for 2% of skin cancer cases, is responsible for nearly all skin cancer deaths. Melanoma rates in the U.S. have been rising rapidly over the last 30 years, and although scientists have managed to identify key risk factors, melanoma’s modus operandi has eluded the world of medical research.
A new Tel Aviv University study sheds light on the trigger that causes melanoma cancer cells to transform from non-invasive cells to invasive killer agents, pinpointing the precise place in the process where “traveling” cancer turns lethal. The research was led by Dr. Carmit Levy of the Department of Human Genetics and Biochemistry at TAU’s Sackler School of Medicine and conducted by a team of researchers from TAU, the Technion Institute of Technology, the Sheba Medical Center, the Institut Gustave Roussy and The Hebrew University of Jerusalem.
If melanoma is caught in time, it can be removed and the patient’s life can be saved. But once melanoma invades the bloodstream, turning metastatic, an aggressive treatment must be applied. When and how the transformation into aggressive invasion takes place was a mystery until now.
‘To understand melanoma, I had to obtain a deep understanding about the structure and function of normal skin,’ said Dr. Levy, ‘Melanoma is a cancer that originates in the epidermis, and in its aggressive form it will invade the dermis, a lower layer, where it eventually invades the bloodstream or lymph vessels, causing metastasis in other organs of the body. But before invading the dermis, melanoma cells surprisingly extend upward, then switch directions to invade.
‘It occurred to me that there had to be a trigger in the microenvironment of the skin that made the melanoma cells ‘invasive,” Dr. Levy continued. ‘Using the evolutionary logic of the tumour, why spend the energy going up when you can just use your energy to go down and become malignant?’
After collecting samples of normal skin cells and melanoma cells from patients at hospitals around Israel, the researchers mixed normal and cancerous cells and performed gene analysis expression to study the traveling cancer’s behaviour. They found that, completely independent of any mutation acquisition, the microenvironment alone drove melanoma metastasis.
‘Normal skin cells are not supposed to ‘travel,” said Dr. Levy. ‘We found that when melanoma is situated at the top layer, a trigger sends it down to the dermis and then further down to invade blood vessels. If we could stop it at the top layer, block it from invading the bloodstream, we could stop the progression of the cancer.’
The researchers found that the direct contact of melanoma cells with the remote epidermal layer triggered an invasion via the activation of ‘Notch signalling,’ which turns on a set of genes that promotes changes in melanoma cells, rendering them invasive. According to the study, when a molecule expressed on a cell membrane — a spike on the surface of a cell, called a ligand — comes into contact with a melanoma cell, it triggers the transformation of melanoma into an invasive, lethal agent.
‘When I saw the results, I jumped out of the room and shouted, ‘We got it!” Dr. Levy said. ‘Now that we know the triggers of melanoma transformation and the kind of signalling that leads to that transformation, we know what to block. The trick was to solve the mystery, and we did. There are many drugs in existence that can block the Notch signalling responsible for that transformation. Maybe, in the future, people will be able to rub some substance on their skin as a prevention measure.’
Tel Aviv University
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:33:212021-01-08 11:10:14Trigger of deadly melanoma
We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
Essential Website Cookies
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.
Google Analytics Cookies
These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
Other external services
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.
Privacy Beleid
U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.