Shimadzu Europe
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Digital edition
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
  • White Papers
  • Events
  • Suppliers
  • E-Alert
  • Contact us
  • FREE newsletter subscription
  • Search
  • Menu Menu
Clinical Laboratory int.
  • Allergies
  • Cardiac
  • Gastrointestinal
  • Hematology
  • Microbiology
  • Microscopy & Imaging
  • Molecular Diagnostics
  • Pathology & Histology
  • Protein Analysis
  • Rapid Tests
  • Therapeutic Drug Monitoring
  • Tumour Markers
  • Urine Analysis

Archive for category: E-News

E-News

New structure of a calcium-shuttling molecule could help scientists target aggressive cancers

, 26 August 2020/in E-News /by 3wmedia

Scientists have captured new images of a calcium-shuttling molecule that has been linked to aggressive cancers. The three-dimensional structure could help researchers develop novel therapies and diagnostic tools for diseases that are caused by a malfunction in calcium adsorption.

Alexander Sobolevsky’s lab at Columbia University Medical Center is studying a family of proteins called “Transient receptor potential (TRP)” channels. These proteins line surfaces inside the body, such as the intestine, and form pores that help calcium cross a dense barrier of lipid and protein called the membrane to reach the interior of the cell.

“Scientists have found that a TRP channel variant, called TRPV6, is present in excess amounts in the tumour cells of some cancer patients,” says senior author Alexander Sobolevsky, PhD, who is an assistant professor in the Department of Biochemistry and Molecular Biophysics at Columbia University Medical Center. “And patients who have higher quantities of TRPV6 seem to have a more aggressive form of the disease.”

In order to uncover how these channels guide calcium into the cell, and how disease can occur when this process becomes unregulated, Sobolevsky’s lab used a technique called X-ray crystallography. This process involved growing crystals of TRPV6 and exposing them to an X-ray beam. The scientists then used the diffraction pattern produced by the X-rays to map out a 3D model of the protein.

The structure—which represents a single frozen state of the channel—reveals that the surface of TRPV6 pore is lined with negative charges. This configuration helps attract calcium ions, which are positively charged. The calcium ions are then shuffled from location to location inside of the pore, up to three molecules at a time, as they pass through into the cell.

“In future, we could use this model to design drugs that can target some types of tumour cells by plugging up TRP channels on their surfaces,” says Sobolevsky.

Ordinarily the calcium ingested from our diet is used by the body to regulate a variety of processes including the beating of the heart, muscle contractions, and brain signalling. In addition to various forms of cancer, altered calcium uptake and TRPV6 expression has also been linked to Crohn’s and kidney stone diseases in mouse models. Further research needs to be done to determine the extent that alteration in TRP channel activity leads to disease progression.

Columbia University Medical Center newsroom.cumc.columbia.edu/blog/2016/07/15/new-structure-calcium-shuttling-molecule-help-scientists-target-aggressive-cancers/

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:10:05New structure of a calcium-shuttling molecule could help scientists target aggressive cancers

Autism spectrum disorder linked to mutations in some mitochondrial DNA

, 26 August 2020/in E-News /by 3wmedia

Children diagnosed with autism spectrum disorder (ASD) have greater numbers of harmful mutations in their mitochondrial DNA than family members, report Zhenglong Gu of Cornell University in Ithaca, New York, and colleagues, in a study.

Increasingly, studies point to malfunctions in mitochondria — the powerhouses of the cell — as a cause of autism spectrum disorder, but the biological basis for this relationship is unclear. To see if a genetic link exists between mitochondrial malfunction and ASD, the scientists analysed mitochondrial DNA sequences from 903 children with ASD, along with their unaffected siblings and mothers. They discovered a unique pattern of heteroplasmic mutations, where both mutant and normal mitochondrial DNA sequences exist in a single cell. Children with ASD had more than twice as many potentially harmful mutations compared to unaffected siblings, and 1.5 times as many mutations that would alter the resulting protein. The researchers went on to show that these mutations can be inherited from the mother, or the result of spontaneous mutation during development.

The scientists noted that the risk associated with these mutations is most pronounced in children with lower IQ and poor social behaviour compared to their unaffected siblings. Carrying harmful mutations in mitochondrial DNA is also associated with increased risk of neurological and developmental problems among children with ASD. Because mitochondria play a central role in metabolism, these findings may help explain the metabolic disorders commonly associated with ASD and other neurodevelopmental disorders. Evaluating mutations in the mitochondrial DNA of high-risk families could help improve the diagnosis and treatment of these diseases.

Zhenglong Gu says ‘The result of our study synergizes with recent work on ASD, calling attention to children diagnosed with ASD who have one or more developmental abnormalities or related co-morbid clinical conditions for further testing on mitochondrial DNA and mitochondrial function. Since many neurodevelopmental disorders and related childhood disorders show abnormalities that converge upon mitochondrial dysfunction, and may have mtDNA defects as a common harbinger, future research is needed to elucidate the mitochondrial mechanisms underpinning to these diseases. Ultimately, understanding the energetic aspects of neurodevelopmental disorders may lead to entirely new kinds of treatments, and preventative strategies that would target mitochondria.’

ScienceDaily www.sciencedaily.com/releases/2016/10/161028161729.htm

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:09:53Autism spectrum disorder linked to mutations in some mitochondrial DNA

Novel genetic mutation may lead to the progressive loss of motor function

, 26 August 2020/in E-News /by 3wmedia

Researchers from the National Institutes of Health and their colleagues identified the genetic cause and a possible therapeutic target for a rare form of paediatric progressive neuropathy. Neuropathy, damage or disease affecting the peripheral nervous system, can range from rare conditions linked to a patient’s exome to more common causes like diabetes and viral infections. Neuropathies can affect both motor and sensory neurons, producing muscle weakness, numbness, pain, and a wide range of symptoms.

These types of discoveries underscore the importance of the families who volunteer to participate in clinical research. “This case superbly illustrates how the intensive study of children with very rare neurological disorders can lead quickly to a deep knowledge of a specific genetic condition, as well as uncover mysteries of the nervous system relevant to a wide spectrum of disorders,” said Walter J. Koroshetz, M.D., director of NINDS.

In their report, researchers examined a 10-year-old child with early onset, progressive neuropathy primarily affecting his ability to walk, grasp, and perform fine motor skills. When the patient’s complete genetic makeup, or genome, was analysed, a mutation was found in the gene associated with the protein KCC3. This protein is important for the ability of cells to respond to swelling.

When a neuron swells, KCC3 is involved in the mechanism that drives fluid out, returning the cell to normal. In the absence of this protein (in what is called a loss-of-function mutation), extreme swelling of the neurons can occur, which in turn leads to nerve damage.

In the study, the patient’s mutation affected the ability of KCC3 to turn off once it was no longer needed, leading to the opposite effect—shrunken neurons that also fail to communicate properly. This is referred to as a gain-of-function mutation, causing the affected protein to behave in a new and damaging way.

“This protein, KCC3, has been connected to other forms of neuropathy in the past,” said Carsten G. Bonnemann, M.D., a senior investigator in the Neuromuscular and Neurogenetic Disorders of Childhood Section at NINDS and a senior author of the paper. “What’s unique here is that this is the first time that we have seen a gain-of-function mutation in the KCC3 protein that leads to neuropathy.”

NIH www.nih.gov/news-events/news-releases/novel-genetic-mutation-may-lead-progressive-loss-motor-function

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:10:00Novel genetic mutation may lead to the progressive loss of motor function

New genetic risk factors for myopia discovered

, 26 August 2020/in E-News /by 3wmedia

Myopia, also known as short-sightedness or near-sightedness, is the most common disorder affecting the eyesight and it is on the increase. The causes are both genetic and environmental. The Consortium for Refractive Error and Myopia (CREAM) has now made important progress towards understanding the mechanisms behind the development of the condition. This international group of researchers includes scientists involved in the Gutenberg Health Study of the University Medical Center of Johannes Gutenberg University Mainz (JGU). The team has uncovered nine new genetic risk factors which work together with education-related behaviour as the most important environmental factor causing myopia to generate the disorder. The results of the study ‘Genome-wide joint meta-analyses of genetic main effects and interaction with education level identify additional loci for refractive error: The CREAM Consortium’ have recently been published in the scientific journal Nature Communications.
There has been a massive rise in the prevalence of short-sightedness across the globe in recent decades and this upwards trend is continuing. It is known from previous studies of twins and families that the risk of acquiring short-sightedness is determined to a large extent by heredity. However, the myopia-causing genes that had been previously identified do not alone sufficiently explain the extent to which the condition is inherited. In addition to the genetic causes of myopia there are also environmental factors, the most significant of which are education-related behaviour patterns. “We know from the Gutenberg Health Study conducted at Mainz that the number of years of education increases the risk of developing myopia,’ said Professor Norbert Pfeiffer, Director of the Department of Ophthalmology at the Mainz University Medical Center.

With the aim of identifying genetic mutations relating to myopia and acquiring better insight into the development of the condition, the international research group CREAM carried out a meta-analysis of data collected from around the world. The data compiled for this analysis originated from more than 50,000 participants who were analysed in 34 studies. The second largest group of participants was formed by the more than 4,500 subjects of the Gutenberg Health Study of the Mainz University Medical Center. ‘In the field of genetic research, international cooperation is of particular importance. This is also borne out by this study, to which we were able to make a valuable contribution in the form of data from our Gutenberg Health Study,’ continued Professor Norbert Pfeiffer. ‘And in view of the fact that a survey undertaken by the European Eye Epidemiology Consortium with the help of the Gutenberg Health Study shows that about one third of the adult population of Europe is short-sighted, it is essential that we learn more about its causes in order to come up with possible approaches for future treatments.’

Aware that environmental effects and hereditary factors reinforce one another in the development of myopia, the scientists devised a novel research concept for their investigations. They used a statistical analysis technique that takes into account both the effects of the environmental and hereditary factors and does so in equal measure and simultaneously. Their efforts were crowned with success as they were able to classify nine previously unknown genetic risk factors.

Risk-associated gene involved in the development of short-sightedness
These newly discovered genetic variants are associated with proteins which perform important functions when it comes to the transmission of signals in the eye. One of these genes is of particular interest because it plays a major role in the transmission of the neurotransmitter gamma-aminobutyric acid (GABA) in the eye. Previous studies have shown that there is greater activation of the gene in question in eyes that are myopic. The results of current research substantiate this conclusion. The CREAM researchers interpret this as evidence that this newly discovered risk-related gene is actually involved in the development of short-sightedness. This represents significant initial headway towards understanding how genetic causes interact with the level of education as an environmental factor to produce the heterogeneity of myopia. Further research will be needed to clarify the details of how the mechanisms actually work and interact with one another.

The spread of short-sightedness is a worldwide phenomenon. Particularly in South East Asia the incidence of myopia in school children has increased notably over the last decades. This is likely due to an improvement in educational attainment. People who read a great deal also perform a lot of close-up work, usually in poor levels of daylight. The eye adjusts to these visual habits and the eyeball becomes more elongated than normal as a result. But if it becomes too elongated, the cornea and lens focus the image just in front of the retina instead of on it so that distant objects appear blurry. The individual in question is then short-sighted.

Johannes Gutenberg University Mainz
www.uni-mainz.de/presse/20232_ENG_HTML.php

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:10:08New genetic risk factors for myopia discovered

Mapping the ‘dark matter’ of human DNA

, 26 August 2020/in E-News /by 3wmedia

Researchers from ERIBA, Radboud UMC, XJTU, Saarland University, CWI and UMC Utrecht have made a big step towards a better understanding of the human genome. By identifying large DNA variants in 250 Dutch families, the researchers have clarified part of the ‘dark matter’, the great unknown, of the human genome. These new data enable researchers from all over the world to study the DNA variants and use the results to better understand genetic diseases.

Although our knowledge of the human DNA is extensive, it is nowhere near complete. For instance, our knowledge of exactly which changes in our DNA are responsible for a certain disease is often insufficient. This is related to the fact that no two people have exactly the same DNA. Even the DNA molecules of identical twins have differences, which occur during their development and ageing. Some differences ensure that not everybody looks exactly alike, while others determine our susceptibility to particular diseases. Knowledge about the DNA variants can therefore tell us a lot about potential health risks and is a first step towards personalized medicine. Many small variants in the human genome – the whole of genetic information in the cell – have already been documented. Although it is known that larger structural variants play an important role in many hereditary diseases, these variants are also more difficult to detect and are, therefore, much less investigated.

By comparing the DNA of 250 healthy Dutch families with the reference DNA database the researchers were able to identify 1.9 million variants affecting multiple DNA ‘letters’. These variants include large sections of DNA that have disappeared, moved or even appear out of nowhere. When this happens in the middle of a gene that encodes a certain protein, it is likely that the functionality of the gene, and thus the production of the protein, is compromised. However, large structural variants often occur just before or after the coding part of a gene. The effect of this type of variation is hard to predict.

In the paper two occasions are described in which an extra piece of DNA was found just outside the coding region of a gene. In these occasions the variants had a demonstrable effect on the gene regulation. This proves that even structural variants that occur outside the coding regions need to be monitored closely in future DNA screenings. The catalogue of variants provided by this research enables other scientists to predict the occurrence of large structural variants from the known profile of the smaller ones. This technique opens new possibilities for studying the effects of large structural changes in our genomes.

Additionally, the research resulted in the discovery of large parts of DNA that were not included in the genome reference. This ‘extra’ DNA does contain parts that could be involved in the production of proteins. One of the extra pieces of DNA that was described in the paper is a new ‘ZNF’ gene that has previously never been found in humans. Nevertheless it appears to be present in roughly half of the Dutch population. This particular gene is a member of the ZNF gene family that was known from the reference genomes of several species of apes. The new variant will now be added to the human reference database. Authors subsequently showed that this gene is also present in genomes of several other human populations, however its function remains unknown. The fact that these and other pieces of ‘dark matter’ now have been placed on the genetic map enables scientists worldwide to study them and use the results to better understand human genetic diseases.

EurekAlert www.eurekalert.org/pub_releases/2016-10/su-mt100716.php

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:09:55Mapping the ‘dark matter’ of human DNA

The Heart-Brain Connection: The link between LQTS and seizures

, 26 August 2020/in E-News /by 3wmedia

Researchers at the University of Rochester Medical Center recently discovered a genetic link between Long QT Syndrome (LQTS), a rare cardiac rhythm disease, and an increased risk for seizures. The study also found that people with LQTS who experience seizures are at greater risk of sudden cardiac death.

According to research, there is a clear association between the heart and the brain of LQTS patients. Patients carrying LQTS genetic mutations were three times more likely to have experienced seizures in their past, compared to their family members who did not carry those mutations. Interestingly, LQTS patients who had a history of seizures also tended to have worse cardiac symptoms.

David Auerbach, Ph.D., senior instructor of Medicine in the Aab Cardiovascular Research Institute of the University of Rochester Medical Center, and lead author of the study found seizure status to be the strongest predictor of cardiac arrhythmias – the abnormal heart rhythms characteristic of LQTS. In fact, about 20% of the LQTS patients in the study who had a history of seizures had survived at least one lethal cardiac arrhythmia. 

You could begin applying these findings to patients today by telling physicians treating LQTS patients to look outside the heart.
Auerbach’s study set a new clinical precedence for the link between seizures and LQTS and provides a case for doctors to pay more attention to what is happening in LQTS patients’ brains or, more broadly, to “look outside the classic organ of interest” in any disease.

As a postdoctoral fellow, Auerbach studied the heart-brain connection in a severe genetic form of epilepsy, and found that cardiac arrhythmias were one cause of sudden unexplained death in people with epilepsy. Now, he investigates the converse – whether a genetic heart disorder is also associated with issues in the brain. 

Auerbach tapped into the Rochester-based LQTS Patient Registry to answer this question. This unique resource was developed 40 years ago by the senior author of the study, Arthur Moss, M.D., the Bradford C. Berk, MD, PhD, Distinguished Professor of Medicine at URMC. The registry contains information about more than 18,000 people including LQTS patients and their affected and unaffected family members, who provide a nearly ideal group of controls. “In essence, they have the same genetic makeup, except theoretically, the LQTS-causing mutation,” says Auerbach.

To ensure that the seizures reported in the registry were not merely misdiagnosed cardiac arrhythmias, Auerbach investigated the effect of beta blockers, drugs often prescribed to LQTS patients to prevent cardiac arrhythmias. While the drugs effectively reduced patients’ arrhythmias, they had no effect on seizures, minimizing the chance that the seizures were simply misdiagnosed cardiac side effects.

Looking at the patients’ genetic information, Auerbach and his colleagues found that patients with the three different types of LQTS (LQTS1-3) showed similar heart rhythm symptoms, but vastly different prevalence of seizures. LQTS1 and LQTS2 patients had much higher prevalence of seizures than LQTS3 or no mutation – with LQTS2 at the greatest risk.

Further investigation of the LQTS-causing mutation showed that the specific location of the mutation greatly affected the risk of cardiac arrhythmias and seizures.  In one location on the gene, the mutation protected against these symptoms, but in another location on the same gene, the mutation increased the risk of those symptoms. Understanding what each of these mutations does may shed new light on a basic mechanism of seizures and may provide viable therapeutic targets to treat LQTS.

The University of Rochester Medical Center www.urmc.rochester.edu/news/story/4612/the-heart-brain-connection-the-link-between-lqts-and-seizures.aspx

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:10:03The Heart-Brain Connection: The link between LQTS and seizures

A key gene in the development of coeliac disease has been found in ‘junk’ DNA

, 26 August 2020/in E-News /by 3wmedia

Coeliac disease is a chronic, immunological disease that is manifested as intolerance to gluten proteins present in wheat, rye and barley. This intolerance leads to an inflammatory reaction in the small intestine that hampers the absorption of nutrients. The only treatment is a strict, life-long, gluten-free diet.

It has been known for some time that coeliac disease develops in people who have a genetic susceptibility, but despite the fact that 40% of the population carry the most decisive risk factor (the HLA-DQ2 and DQ8 polymorphisms), only 1% go on to develop the disease. ‘What we have here is a complex genetic disease in which many polymorphisms play a role, each making a very small contribution to its development,’ explained the UPV/EHU researcher Ainara Castellanos, who has led the work published in Science.

One of the added risk factors is to be found, according to this research, in the so-called ‘junk’ DNA, in other words, in 95% of the DNA. It is the least-known part because, unlike the remaining 5%, it is not involved in synthesising proteins. Nevertheless, light is gradually being shed on its role in the control of the overall functioning of the genome, in other words, it regulates important processes in our organism such as immune response and that is where it might be possible to find the causes of auto-immune diseases such as coeliac disease.

A key gene in the regulating of the inflammatory response observed in coeliac patients has been found in one of the regions of the junk genome: it is the 1nc13. The ribonucleic acid produced by this gene belongs to the family of long, non-coding RNAs or lncRNA and is responsible for maintaining the normal levels of expression of pro-inflammatory genes. In coeliacs, this non-coding RNA is hardly produced at all so the levels of these inflammatory genes are not properly regulated and their expression is increased. But besides being produced in low quantities, the 1nc13 produced by coeliac patients has a variant that alters the way it functions. ‘That way an inflammatory environment is created and the development of the disease is encouraged,’ said Ainara Castellanos.

‘This study confirms the importance of the regions of the genome previously regarded as ‘junk’ in the development of common complaints such as coeliac disease and opens up the door to a new possibility for diagnosis. Right now, we are interested in finding out whether the low levels of this RNA are an early feature of coeliac disease (and of other immune diseases), which could be used as a diagnostic tool before its onset,’ explained the UPV/EHU’s lecturer in Genetics José Ramón Bilbao, another of the authors of the work. University of the Basque Country

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:10:13A key gene in the development of coeliac disease has been found in ‘junk’ DNA

Clues to altered brain wiring in autism

, 26 August 2020/in E-News /by 3wmedia

Autism is an agonizing puzzle, a complex mixture of genetic and environmental factors. One piece of this puzzle that has emerged in recent years is a biochemical cascade called the mTOR pathway that regulates growth in the developing brain. A mutation in one of the genes that controls this pathway, PTEN (also known as phosphatase and tensin homolog), can cause a particular form of autism called macrocephaly/autism syndrome.

Using an animal model of this syndrome, scientists from the Florida campus of The Scripps Research Institute (TSRI) have discovered that mutations in PTEN affect the assembly of connections between two brain areas important for the processing of social cues: the prefrontal cortex, an area of the brain associated with complex cognitive processes such as moderating social behavior, and the amygdala, which plays a role in emotional processing.

 “When PTEN is mutated, we find that neurons that project from the prefrontal cortex to the amygdala are overgrown and make more synapses,” said TSRI Associate Professor Damon Page. “In this case, more synapses are not necessary a good thing because this contributes to abnormal activity in the amygdala and deficits in social behavior.”

The study also showed that targeting the activity of the mTOR pathway shortly after birth, a time when neurons are forming connections between these brain areas, can block the emergence of abnormal amygdala activity and social behavioral deficits. Likewise, reducing activity neurons that project between these areas in adulthood can also reverse these symptoms.

‘Given that the functional connectivity between the prefrontal cortex and amygdala is largely conserved between mice and humans,” said TSRI Graduate Student Wen-Chin Huang, the first author of the study, “we anticipate the therapeutic strategies suggested here may be relevant for individuals on the autism spectrum.”

Although caution is warranted in extrapolating findings from animal models to humans, these findings have implications for individualized approaches to treating autism. “Even within individuals exposed to the same risk factor, different strategies may be appropriate to treat the symptoms of autism in early development versus maturity,” said Page.

The Scripps Research Institute www.scripps.edu/news/press/2016/20161115page.html

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:09:51Clues to altered brain wiring in autism

Discovery of a novel gene for hereditary colon cancer

, 26 August 2020/in E-News /by 3wmedia

The formation of large numbers of polyps in the colon has a high probability of developing into colon cancer, if left untreated. The large-scale appearance of polyps is often due to a hereditary cause; in this case the disease can occur in multiple family members. Under the leadership of human geneticists of the University Hospital Bonn, a team of researchers discovered genetic changes in the MSH3 gene in patients and identified a new rare form of hereditary colon cancer.

Colon polyps form like mushroom-shaped growths from the mucosa and are several millimetres to several centimetres in size. They are benign and generally do not cause any symptoms – however, they can turn into malignant tumours (colon cancer). Physicians refer to the development of a large number of polyps in the colon as ‘polyposis.’ Scientists have already discovered several genes associated with a polyposis. ‘However, about one-third of families affected by the disease do not have any abnormalities in these genes,’ says Prof. Dr. Stefan Aretz, head of the working group at the Institute of Human Genetics at the University of Bonn Hospital. Therefore, there would have to be even more genes involved in the formation of polyps in the colon.

Together with pathologists from the University Hospital Bonn, scientists from the Yale University School of Medicine in New Haven (USA), and the Frankfurt University Hospital, the team working with Prof. Aretz investigated the genetic material (DNA) of more than 100 polyposis patients using blood samples. In each patient, all of the about 20,000 protein-coding genes known were simultaneously examined. In this process, the scientists filtered the rare, possibly relevant genetic changes out of the gigantic quantity of data, like the proverbial needle in a haystack. In two patients, genetic changes (mutations) were discovered in the MSH3 gene on chromosome 5.

Proof of causes is like a trial based on circumstantial evidence

‘The challenge is proving the causal connection between the mutations in this gene and the disease,’ says Prof. Aretz. The process is similar to that of a trial based on circumstantial evidence. Family members also play a role here: The siblings with the disease have to have these same MSH3 mutations as the patient who was first examined, but not the healthy relatives. That was the case. In addition, the scientists investigated the consequences for patients resulting from the loss of function of the MSH3 gene. ‘It involves a gene for the repair of the genetic material,’ reports Dr. Ronja Adam, one of the two lead authors from Prof. Aretz’s team. ‘The mutations cause the MSH3 protein to not be formed.’ Since the protein is missing in the cell nucleus of the patient´s tissues, there is an accumulation of genetic defects. The mutations which are not repaired then predispose to the more frequent occurrence of polyps in the colon.

The newly discovered type of polyposis, in contrast to many other forms of hereditary colon cancer, is not inherited dominantly, but instead recessively. ‘This means that siblings have a 25 percent chance of developing the disease; however, the parents and children of affected persons only have a very low risk of developing the disease,’ explains Dr. Isabel Spier from the Institute of Human Genetics, who was also very involved in the study.

The annual colonoscopy is the most effective cancer screening method for polyposis patients. As a result, the development of colon cancer can be effectively prevented. By investigating the MSH3 gene, a clear diagnosis can be made prospectively in some other, previously unexplained polyposis cases. Afterwards, healthy persons at risk in the family can be tested for the mutations. ‘Only proven carriers would need to take part in the intensive surveillance program,’ says the human geneticist. In addition, science would gain new insights into the development and biological foundations of tumours through the identification of mutations in the MSH3 gene. Prof. Aretz: ‘The knowledge about molecular mechanisms which lead to cancer is also a precondition for the development of new targeted drugs.’

University of Bonn www.uni-bonn.de/Press-releases/discovery-of-a-novel-gene-for-hereditary-colon-cancer

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:09:58Discovery of a novel gene for hereditary colon cancer

Changes in benign tissue next to prostate tumours may predict biomedical recurrence of cancer

, 26 August 2020/in E-News /by 3wmedia

Changes in benign tissues next to prostate tumours may provide an early warning for patients at higher risk for biochemical recurrence after a radical prostatectomy, a study by researchers at Case Western Reserve University and Johns Hopkins Medical Institutions shows.

Biochemical recurrence, which is increasing prostate-specific antigen (PSA) levels, can be used to predict which prostate cancer patients will develop local recurrence, distant metastases and death.
In a small sampling, image analysis of the adjacent tissue was a better predictor than the current standard for prognosis following the prostatectomy.
If preliminary findings are confirmed by further studies, they may help doctors decide sooner which patients need more follow-up therapies after surgery or should return for more regular monitoring.
“In a sense, this study is validating what a lot of people think regarding these cancers—that there is a field effect, as if the tumour has hard-to-see tentacles that can affect the patient and outcomes,” said Anant Madabhushi, the F. Alex Nason professor II of biomedical engineering at Case Western Reserve and leader of the research.

Madabhushi worked with Case Western Reserve’s George Lee, a research assistant professor, and Sahirzeeshan Ali, a PhD student, and Johns Hopkins Medical Institutions’ Robert W. Veltri, associate professor of urology, and Jonathan I. Epstein, the Reinhard Professor of Urologic Pathology. Their study is published in the journal European Urology Focus.

The researchers analyzed records from 70 patients who underwent radical prostatectomies from 2000 to 2004 with up to 14 years follow-up. They digitized images of the resected prostate specimens and analysed the tumour regions and surrounding tissue that appeared to be benign.
Of the group studied, 22 suffered from biochemical recurrence, metastasis or died.

The scientists used computers to search for and identify image features that may be undetectable with the human eye, but which may correlate with a biochemical recurrence. They used the top 10 features to develop a risk score.

They were surprised to find that nuclear shape and architecture in the benign-looking tissue were greater predictors of recurrence than features found in the tumour, Madabhushi said. “Its an amazing finding, completely unexpected.”
Among the risk calculators used to assess prostate cancer recurrence is a nomogram of variables known to influence recurrence, and a Gleason score, which is based on the cancer tissue pattern compared to normal tissue.
“We were able to do better than nomograms and the Gleason score,” Madabhushi said.
But by combining the benign-field features with tumour features extracted from patient’s pathology images and Gleason scoring, they were able to further improve the prediction of recurrence.

Case Western Reserve University blog.case.edu/think/2016/07/06/changes_in_benign_tissue_next_to_prostate_tumours_may_predict_biomedical_recurrence_of_cancer_scientists_find

https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 0 0 3wmedia https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png 3wmedia2020-08-26 09:33:212021-01-08 11:10:06Changes in benign tissue next to prostate tumours may predict biomedical recurrence of cancer
Page 178 of 228«‹176177178179180›»
Bio-Rad - Preparing for a Stress-free QC Audit

Latest issue of Clinical laboratory

November 2025

CLi Cover nov 2025
15 December 2025

WERFEN APPLAUDS SIGNIFICANT PUBLICATION URGING ACTION ON THE RISKS OF UNDETECTED HEMOLYSIS

13 December 2025

Indero validates three-day gene expression method

12 December 2025

Johnson & Johnson acquires Halda Therapeutics for $3.05 billion

Digital edition
All articles Archived issues

Free subscription

View more product news

Get our e-alert

The leading international magazine for Clinical laboratory Equipment for everyone in the Vitro diagnostics

Sign up today
  • News
    • Featured Articles
    • Product News
    • E-News
  • Magazine
    • About us
    • Archived issues
    • Free subscriptions
    • Media kit
    • Submit Press Release
clinlab logo blackbg 1

Prins Hendrikstraat 1
5611HH Eindhoven
The Netherlands
info@clinlabint.com

PanGlobal Media is not responsible for any error or omission that might occur in the electronic display of product or company data.

Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlyCookie settings

Cookie and Privacy Settings



How we use cookies

We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.

Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.

We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.

We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.

.

Google Analytics Cookies

These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.

If you do not want us to track your visit to our site, you can disable this in your browser here:

.

Other external services

We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page

Google Webfont Settings:

Google Maps Settings:

Google reCaptcha settings:

Vimeo and Youtube videos embedding:

.

Privacy Beleid

U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.

Privacy policy
Accept settingsHide notification only

Subscribe now!

Become a reader.

Free subscription