Visualizing cellular components and processes at the molecular level is important for understanding the basis of any biological activity. Fluorescent proteins (FPs) are one of the most useful tools for investigating intracellular molecular dynamics. However, FPs have usage limitations for imaging in low pH environments, such as in acidic organelles, including endosomes, lysosomes, and plant vacuoles. In environments of pH less than 6, most FPs lose their brightness and stability due to their neutral pKa. pKa is the measure of acid strength; the smaller the pKa is, the more acidic the substance is. “Although there are reports of several acid-tolerant green FPs (GFPs), most have serious drawbacks. Furthermore, there is a lack of acid-tolerant GFPs that are practically applicable to bioimaging,” says Hajime Shinoda, lead author of an Osaka University study that aimed to design acid-tolerant monomeric GFP that is practically applicable to live-cell imaging in acidic organelles. “In the current study, we developed an acid-tolerant GFP. We called it Gamillus.” Gamillus is a GFP cloned from Olindias formosa (flower hat jellyfish) and exhibits superior acid tolerance (pKa=3.4) and nearly twice as much brightness compared with the reported GFPs. The fluorescence spectrum is constant between pH4.5 and 9.0, which falls between the intracellular range in most cell types. X-ray crystallography (a technique used for determining the atomic and molecular structure of a crystal, in this case, a Gamillus crystal) and point mutagenesis suggest the acid tolerance of Gamillus is attributed to stabilization of deprotonation in its chemical structure. “The applicability of Gamillus as a molecular tag was shown by the correct localization pattern of Gamillus fusions in a variety of cellular structures, including ones that are difficult to target,” corresponding author Takeharu Nagai says. “We believe Gamillus can be a powerful molecular tool for investigating unknown biological phenomena involving acidic organelles, such as autophagy.” Osaka Universityresou.osaka-u.ac.jp/en/research/2017/20171229_1
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:32:182021-01-08 11:08:53New acid-tolerant green fluorescent protein for bioimaging
University of Adelaide researchers have uncovered a genetic signal common to both cerebral palsy and autism. The finding comes from the first large-scale study of gene expression in children with cerebral palsy. The researchers, from the University’s Australian Collaborative Cerebral Palsy Research Group in the Robinson Research Institute, also showed common underlying molecular pathways in clinically diverse cerebral palsy. They say both findings add significantly to the weight of evidence for underlying genetic causes of cerebral palsy. “Cerebral palsy is the most common motor disability of childhood with a frequency of around two in every 1000 live births,” says lead researcher Dr Clare van Eyk, Postdoctoral Research Fellow, Adelaide Medical School, University of Adelaide. “We know that, like autism, it’s a disorder of brain development primarily during pregnancy. But the underlying causes of cerebral palsy are still poorly understood.” In this study, the researchers use new RNA sequencing technology to measure the gene messengers (RNA) in cells from children with cerebral palsy. Cell lines from 182 individuals with cerebral palsy were studied and many showed disruption of cell signalling and inflammatory pathways, as seen in some children with autism. “The results showed that the neurological or signalling pathways being disrupted in children with cerebral palsy overlap with those disruptions seen in autism,” says Dr van Eyk. “This supports a common biological change in both cerebral palsy and autism. Autism and cerebral palsy do sometimes co-exist, which further underlines common causation in some individuals.” This is the latest in a series of studies from the University of Adelaide which have found increasing numbers of genetic mutations that are the likely cause of cerebral palsy. Using this data together with existing DNA sequencing results increases the proportion of individuals with a likely genetic cause to around 25%. The University’s Cerebral Palsy Research Group is led by Emeritus Professor Alastair MacLennan and Professor Jozef Gecz, Channel 7 Children’s Research Foundation Chair for the Prevention of Childhood Disability. They are leading the world in discovering an increasing genetic basis to cerebral palsy. “This research continues to refute the historical assumption that cerebral palsy is often due to difficulties at birth,” says Professor MacLennan.
University of Adelaidewww.adelaide.edu.au/news/news99822.html
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:32:182021-01-08 11:08:42Gene disruption signals cerebral palsy and autism link
Tumour cells circulating throughout the body in blood vessels have long been feared as harbingers of metastasizing cancer — even though most free-floating cancer cells will not go on to establish a new tumour. But if these cast-offs could be accurately counted, they could provide an additional way to track treatment or screen for the disease. New research by University of Wisconsin–Madison School of Pharmacy Professor Seungpyo Hong and his collaborators builds on several years of work in isolating these circulating tumour cells, or CTCs, by demonstrating improved methods for their capture on clinical samples for the first time. By forcing cancer cells to slow down and developing stronger molecular traps specific to CTCs, researchers were able to identify large numbers of the cells in cancer patients undergoing radiation therapy. The number of CTCs dropped during therapy and subsequently rebounded in those patients that ended up requiring additional treatment — suggesting that this technology could supplement other techniques for tracking the progress of treatment. Scientists have recognized CTCs as potentially useful metrics for tracking a patient’s disease for some time. But the cells are the proverbial needle-in-a-haystack, drowned out by billions of ordinary red blood cells and other cells found in the blood. Developing ways to specifically concentrate and trap CTCs has been technically challenging, with existing technologies only identifying a handful of cells from certain patients. Hong’s team was inspired by the behaviour of CTCs in the blood, which attach themselves to blood vessel walls and begin tumbling along looking for suitable places to invade. This behaviour separates them from the oxygen-carrying cells floating by and is mimicked in the CapioCyte technology using an array of sticky proteins that force the CTCs to begin rolling, which slows them down. The cells are then trapped using a series of three cancer-specific antibodies, proteins that tightly bind and hold onto the CTCs. To make the connection even stronger, the researchers developed a nanoscale structure shaped a little like a tree, with each branch tipped with an antibody. As a cancer cell passes nearby, many individual branches can latch on, increasing the strength of the attachment. The cell rolling and multi-tipped branches helped the researchers capture an average of 200 CTCs from each millilitre of a patient’s blood, many times the number of cells captured with previous technology. They identified cancer cells in each of 24 patients undergoing treatment for head-and-neck, prostate, rectal or cervical cancer that enrolled in the study. “The absolute numbers of CTCs don’t represent too much because there’s too much variation individually, but the more important thing we found was the trend — how the CTC numbers change over time upon treatment. So, for example, we’ve shown that the CTCs go down when the patients are responding really well to the radiotherapy,” says Hong. Although the number of cells did not correlate with the stage, and thus severity, of the cancer, the reduction in cells was correlated with successful radiation therapy. In two of the three patients that had recurring or persistent disease, CTC numbers came back up. “Our data suggest that we have a good chance of making CTCs a predictive biomarker or biomarker for surveillance for at least a few cancers, and that’s always exciting,” says Wang. University of Wisconsin – Madisonnews.wisc.edu/improved-capture-of-cancer-cells-in-blood-could-help-track-disease/
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:32:182021-01-08 11:08:48Improved capture of cancer cells in blood could help track disease
When researchers at the University of São Paulo (USP) in Brazil treated human melanoma cell lines with a synthetic compound similar to curcumin, one of the pigments that give turmeric (Curcuma longa) its orange colour, they identified genes with altered expression in potentially invasive tumours and malignant cells resistant to chemotherapy. According to the scientists, if further studies confirm the importance of these genes to disease progression and increasing chemoresistance, it will be possible to explore their future use as biomarkers to assist diagnosis and even as therapeutic targets. “Previous research by collaborators had already shown that DM-1, a compound analogous to curcumin, has anti-tumour activity at low doses. We set out to understand which genes this substance modulates and why it is toxic to melanoma but not to normal cells,” said Érica Aparecida de Oliveira, a postdoctoral scholar at USP’s School of Pharmaceutical Sciences (FCF). As Oliveira explained, there are hundreds of papers attesting to the anti-oxidant, anti-tumoural, anti-microbial and anti-inflammatory properties of curcumin in the scientific literature. However, the therapeutic usefulness of this compound in its natural form is limited owing to poor absorption, rapid metabolization, and water insolubility. To solve this problem, scientists have developed synthetic analogues with minor structural modifications to make the molecule more stable in the organism. DM-1 (sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate) was synthesized some years ago by José Agustín Pablo Quincoces Suárez, a professor at Bandeirantes University (UNIBAN). “Experiments with animals conducted by collaborators showed that treatment with DM-1 can promote a reduction in tumour volume. DM-1 has also proved toxic to chemoresistant melanoma cells,” Oliveira said. To unpack DM-1’s mechanism of action, Oliveira resorted to a toxicogenomics platform developed by the research group of FCF-USP professor Gisele Monteiro, a fellow researcher at the investigation. Such platform is comprised of a collection of 6,000 frozen yeast strains, all mutants of the species Saccharomyces cerevisiae, widely used as baker’s and brewer’s yeast. “This yeast’s genome has 6,000 genes, and a different gene has been knocked out in each of these mutants, so we were able to study the effects of the compound in a highly specific manner, gene by gene,” Oliveira said. The 6,000 mutant yeast strains were thawed, spread on plates with 96 small wells, and treated with DM-1. The strains that did not grow in the presence of the curcumin analogue were discarded, leaving an initial group of 211 genes that were affected by the treatment. The next step was to filter the genes in order to identify those with homologues in the human genome since some might be associated with functions specific to yeast. The researchers came up with a second list containing 79 candidate genes, thanks to the aid from bioinformatics tools and from the expertise of Helder Nakaya , another fellow researcher and also a professor at FCF-USP. “We then began to look at public repositories of genomic data from cancer patients, such as The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO), to understand how these genes talked to each other,” Oliveira said. The analysis showed most to be associated with cell signalling pathways that favoured tumour progression when active. Examples included the pathways mediated by mitogen-activated protein (MAP) kinase and epidermal growth factor receptor (EGFR). The next step was to investigate which genes were important to the progression of melanoma specifically. This entailed using bioinformatics to focus on the analysis of genomic sequences from melanoma patients. “We performed a data mining exercise to find genes with altered expression during melanoma progression,” Oliveira said. “We identified seven genes that appeared to be important, and when we looked at the public databases, we could see that the expression of these genes was indeed altered in many patients.” In vitro tests with non-chemoresistant parent melanoma cells showed that treatment with DM-1 induced cell death, mainly because it increased expression of a gene known as TOP-1. When this gene is active, it leads to DNA transcription errors and hence causes genomic instability in cells. In chemoresistant melanoma cells, cytotoxicity was caused mainly by increased expression of the gene ADK, which is involved in energy production for cells. “Like curcumin, which can interact with multiple cellular targets and modulate multiple signaling pathways, DM-1 also acts in different ways to promote toxicity in both parent and drug-resistant melanoma cells,” Oliveira said.
EurekAlerthttps://tinyurl.com/ya7hhwwk
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:32:182021-01-08 11:08:56Genes associated with progression of melanoma are identified
High levels of cytoskeleton-associated protein 4 (CKAP4) have been identified in the blood of patients with lung cancer. In a novel study investigators found that CKAP4 levels were significantly higher in patients with lung cancer than in healthy individuals. They further determined that CKAP4 levels are already elevated in the blood of patients with stage I disease, making it a potential non-invasive diagnostic marker that could change current practices in the diagnosis and treatment of some types of lung cancer, including non-small-cell lung cancer and squamous cell carcinoma, and improve patient outcomes.
Lung cancer is the leading cause of cancer deaths in both men and women in the United States and worldwide. The disease is associated with a poor prognosis because most lung cancers are only diagnosed at an advanced stage.
"The identification of patients at an early stage of cancer when it can be treated surgically is extremely important to improve prognosis," explained Yuichi Sato, PhD, Department of Molecular Diagnostics, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa, Japan, who led the study. "We need better biomarkers for early diagnosis."
Current biomarkers for lung cancer include carcinoma embryonic antigen (CEA), sialyl Lewis X antigen (SLX), squamous cell carcinoma (SCC) antigen, and cytokeratin fragment (CYFRA) 21-1, but these are not sensitive enough to detect tumors early, according to co-investigator Ryo Nagashio, PhD, from the Kitasato University School of Allied Health Sciences. "The results of our study provide evidence that the CKAP4 protein may be a novel early sero-diagnostic marker for lung cancer."
Researchers performed reverse-phase protein array analysis using a monoclonal antibody designated as KU-Lu-1 antibody on the blood of 271 lung cancer patients and 100 healthy individuals. KU-Lu-1 reacted only with tumor cells and tumor stromal fibroblasts in lung cancer tissues and not with normal lung tissues. Using immunoprecipitation and mass spectrometry, they confirmed that the KU-Lu-1 antibody recognized CKAP4 in lung cancer cells and tissues, and its secretion into the culture supernatant was also confirmed. In addition, a validation set consisting of samples from 100 patients with lung cancer and 38 healthy controls was also studied.
CKAP4 was recently identified as a receptor of Dickkopf1 (DKK1). Expressions of DKK1 and CKAP4 were frequently observed in tumor lesions of human pancreatic and lung cancers, and the simultaneous expression of both proteins in tumor tissues was inversely correlated with prognosis and relapse-free survival.
Across disease stages I-IV, the sensitivities of serum CEA, CYFRA, and SCCA are reported with 30 to 52, 17 to 82, and 24 to 39 percent, respectively. In this study, the sensitivity of serum CKAP4 was 81 percent in the training set and 69 percent in the validation set. These rates are higher than those of the current sero-diagnostic markers. Furthermore, the sensitivity of serum CKAP4 was also high even in stage I non-small-cell lung cancer and squamous cell carcinoma.
"The use of CKAP4 as a biomarker could change current practices regarding the treatment of lung cancer patients, and the diagnostic accuracies may be markedly improved by the combination of CKAP4 and conventional markers," concluded Dr. Sato.
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:32:182021-01-08 11:08:41New biomarker identified for early diagnosis of lung cancer
Two decades ago, oncologists realized that molecular biologists could see medically important differences between tumours that looked identical to pathologists. Molecular biologists could read information in the genome that helped to increase the precision of diagnoses, guide treatment strategies, and improve health outcomes. Now, a research team from Columbia University has taken the first steps toward bringing such a genomic strategy into dermatology. Their findings represent an initial step towards developing a molecular taxonomy for hair disorders. The taxonomy will be useful for diagnostic sequencing of patients with diseases affecting their hair follicles. It will also improve the characterization of hair follicle biology and pave the way for new precision medicine treatments for hair diseases. “Genome sequencing is changing the nature of disease diagnosis, and we saw an opportunity with rare hair diseases, since these disorders tend to be poorly annotated in catalogues of genetic diseases,” says Lynn Petukhova, an assistant professor in the Department of Dermatology at the College of Physicians & Surgeons and an affiliate of the Data Science Institute, where she’s a member of the Health Analytics Center. “We thus started to organize genetic data for diagnostic sequencing in patients with rare diseases involving hair and were excited by what we discovered.” After sifting through several databases the team found more than 600 genes, Petukhova said. Once the team saw all that data, they realized they had an opportunity to gain a deeper understanding of the biology that helps maintain a healthy hair follicle. The team then mined more databases to understand relationships among the genes, collecting data about how the genes function in cells and tissues. In the end, they identified nearly 5,000 biological terms shared by groups of hair genes, amassing a matrix of more than three million data points. Andreas Mueller, a lecturer at the Data Science Institute, guided the team’s analysis of the big data, helping them to understand the underlying causal structure of hair disorders. The researchers discovered that the 684 genes could be grouped into 35 clusters based on their molecular functions. And these genetically-derived biological modules provided a foundation for the development of the new hair-disease taxonomy. Disease classification systems have historically been based solely on disease symptoms. And oncologists have shown that incorporating molecular data into diagnostic algorithms helps to provide better care for cancer patients. Now, the same hope holds forth for the field of dermatology, Petukhova says. “We felt that big data and data science could be used to gain a deeper understanding of the biology that renders hair susceptible to disease,” says Petukhova. “And it’s our hope that this new taxonomy will help scientists, doctors and researchers develop precision-medicine treatments for people with hair disorders.”
Data Science Institutehttps://tinyurl.com/yczd7e6h
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:32:182021-01-08 11:08:44Researcher develops a molecular taxonomy for hair disorders
A group of investigators from Mayo Clinic and multiple academic research centres in Italy have identified a genetic model for predicting outcomes in patients with primary myelofibrosis who are 70 years or younger and candidates for stem cell transplant to treat their disease. “Myelofibrosis is a rare type of chronic leukemia that disrupts the body’s normal production of blood cells,” says Dr. Tefferi. “Prior to this study, the most comprehensive predictive model for outcomes in myelofibrosis, utilized mostly clinical variables, such as age, hemoglobin level, symptoms, white blood cell count and the percentage of immature cells in the peripheral blood.” Dr. Tefferi says he and his colleagues incorporated new genetic tests in the model for gene mutations including JAK2, CALR, and MPL, which are known to drive myelofibrosis. He says the new model also tests for the presence or absence of high-risk mutations such as ASXL1 and SRSF2. “Our model is also unique in that we developed it for patients who are age 70 years or younger who may still be candidates for a stem cell transplant to treat their disease,” Dr. Tefferi says. Researchers studied 805 patients with primary myelofibrosis who were 70 years of age or younger. Patients were recruited from multiple centres in Italy and from Mayo Clinic in Minnesota. The Italian and Minnesota groups formed two independent learning and validation cohorts. “We were surprised by how similar the predictive models performed in two completely separate patient databases,” Dr. Tefferi says. Dr. Tefferi says that genetic information is increasingly being used as a prognostic biomarker in patients with primary myelofibrosis and he anticipates the potential use of such an approach along with relevant clinical, cytogenetic and mutational data for other hematologic and non-hematologic cancers.
Mayo Clinic Cancer Centerhttps://tinyurl.com/y7zlxtqz
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:32:182021-01-08 11:08:51Genetic-based model for predicting outcomes in primary myelofibrosis
Several patients with recurring glioblastoma, a deadly brain cancer, survived for more than a year in a clinical trial believed to be the first to use comprehensive DNA and RNA sequencing of a patient’s tumour to inform treatment for these patients in real-time. The study was led by the Translational Genomics Research Institute (TGen), UC San Francisco (UCSF) and the Ivy Foundation Early Phase Clinical Trials Consortium. "To our knowledge, this is the first report of a prospective profiling study in recurrent glioblastoma to show patients with extended time to progression following treatment with genomics-informed therapy," said Dr. Sara Byron, Research Assistant Professor in TGen’s Integrated Cancer Genomics Division and the study’s lead author. "This is a primary example of the benefits of genomics-driven precision medicine being applied for patients with aggressive and refractory tumours." Fifteen of 16 glioblastoma patients in the study conducted at UCSF received TGen’s genomics-informed treatment recommendations, in which the therapeutics suggested by a medical review panel (UCSF’s Molecular Tumor Board) were matched to each patient’s particular genetic code. Of those 15, seven patients were treated by their physicians using the genomic-based recommendations. Key to this study was the fact that all genomic sequencing (the spelling out of the chemical DNA and RNA bases for more than 20,000 genes in the human genome), genetic analysis, and recommendations for treatment were completed in less than 35 days after surgery, ensuring that suggested therapies could begin within "a clinically acceptable time frame."
Timely administration of therapeutics is critical Glioblastoma is an aggressive disease, with a median overall survival of only 15 months for newly diagnosed patients. One of the major difficulties in treating glioblastoma is its intrusive penetration into adjoining tissues, which prevents the complete surgical removal of the tumours from the brain, even with follow-up radiation and chemotherapy. As a result, nearly all glioblastomas recur. Patients whose brain cancer returns are often encouraged to enter experimental clinical trials. However, even on clinical trials, further progression of the disease is seen, on average, within 4 months. "Notably, two of the patients experienced progression-free survival – meaning their tumour did not return or increase in size – for more than a year, with one of these patients progression-free at 21 months, three times longer than the time to progression on their previous therapy," said Dr. Michael D. Prados, the Charles B. Wilson Endowed Chair in Neurological Surgery at UCSF, and the study’s senior author. Another major challenge in treating brain tumours is finding drugs that can penetrate the blood-brain barrier, which buffers the brain from the rest of the body’s blood-circulatory system. Located along small capillaries, the blood-brain barrier protects the brain from rapid changes in the body’s metabolic conditions and minimizes exposure to large molecules that are toxic to neurons in the brain. The only FDA-approved standard-of-care drugs to treat glioblastoma are temozolomide, nitrosoureas, and bevacizumab. In this study, more than 180 FDA-approved agents were reviewed, including all FDA-approved oncology drugs and a selection of repositioned agents that are approved by the FDA for other indications but show promising activity against cancer pathways. The tumor board considered the drugs supported by the genomic data for each patieunt, and discussed each drug’s ability to penetrate the blood-brain barrier, potential opportunities to combine treatments, drug-to-drug interactions and drug-safety profiles. One of the patients was a 58-year-old woman with recurrent glioblastoma. Genomic sequencing showed several alterations with potential therapeutic relevance. Based on mutations in her NF1 and PALB2 genes, the UCSF Molecular Tumor Board recommended treatment with a combination of trametinib, olaparib and carboplatin. "This patient continued on treatment without disease progression (for more than) 665 days after surgery," according to the new paper, which adds, "Additional preclinical and clinical studies will be needed to determine the role of genomic context and combination therapy in the response observed for this patient." "This precision-medicine study provides one of the first prospective demonstrations of using genome-wide molecular profiling to guide treatment recommendations for patients with recurrent glioblastoma within a clinically actionable time frame," said Dr. Michael Berens, TGen Deputy Director for Research Resources, and Professor and Director of TGen’s Cancer and Cell Biology Division. "These findings provide a rationale and framework for larger prospective studies to further assess the efficacy of employing genomics-guided treatment for patients with recurrent glioblastoma," said Dr. Berens, one of the study’s authors. TGen tgen.org/home/news/2017-media-releases/tgen-ucsf-genomics-guided-brain-tumor-treatment.aspx#.WfJJcGKCxz8
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:32:182021-01-08 11:09:00Genomics to make treatment recommendations for recurrent glioblastoma patients
Scientists have known for decades that the Hox family of transcription factors are key regulators in the formation of blood cells and the development of leukemia. Exactly how this large family of genes, which are distributed in four separate chromosomal clusters named A through D, is regulated has been less clear. Now, new research from the Stowers Institute for Medical Research reveals that a DNA regulatory element within the Hoxb cluster globally mediates signals to the majority of Hoxb genes to control their expression in blood-forming stem cells. “It’s like we found a general control that simultaneously turns the lights on and off in many rooms, rather than having a single switch that controls each individual room,” says Stowers Investigator Linheng Li, PhD, who co-led the study along with Stowers Scientific Director and Investigator Robb Krumlauf, PhD. These findings also help explain why a particular form of leukemia resists treatment and points to potential new therapeutic avenues. In mammals, the blood system contains a number of mature cell types — white blood cells, red blood cells, platelets — that arise from blood-forming, or hematopoietic, stem cells (HSCs). HSCs renew themselves and differentiate into other cells to replenish the body’s blood supply in a process called hematopoiesis. Hox genes, which are well known for their roles in establishing the body plan of developing organisms, are also important for HSCs to maintain their critical balancing act in the adult blood system, and have been implicated in the development of leukemia. In an article Li, Krumlauf, and co-authors including first author Pengxu Qian, PhD, second author Bony De Kumar, PhD, and other collaborators provide new details as to how Hox genes are regulated in HSCs. They report that a single cis-regulatory element, DERARE, works over a long range to control the majority of Hoxb genes in HSCs in a coordinated manner. The researchers found that the loss of the DERARE decreased Hoxb expression and altered the types of blood cells arising from HSCs, whereas “turning on” DERARE allowed Hoxb cluster gene expression in progenitor cells and increased the progression of leukemia. Genes can be regulated by non-coding DNA sequences termed cis-regulatory sequences. These sequences get input from multiple types of molecules, such as transcription factors, histone modifiers, or various morphogens. The DERARE, or distal element RARE (retinoic acid response element), is a cis-regulatory element that responds to signals from the vitamin A derivative retinoic acid and determines the fate of HSCs. Using human leukemia cell lines and mouse models, the Stowers researchers and collaborators have identified a mechanism for how the retinoid-sensitive DERARE maintains normal hematopoiesis and prevents acute myeloid leukemia (AML) by regulating Hoxb cluster genes in a methylation-dependent manner. Methylation is the process of adding methyl groups to the DNA molecule, which can change the activity of the DNA segment. The researchers demonstrated that DNA methyltransferases mediate DNA methylation on DERARE, leading to reduced Hoxb cluster expression. AML patients with mutations in the DNA methyltransferase DNMT3A exhibit reduced DERARE methylation, elevated Hoxb expression, and adverse outcomes. “In two human AML cell lines carrying a DNMT3A mutation, we used an adaptation of genome editing technology called dCas9-DNMT3A to specifically increase the DNA methylation on DERARE. This targeted methylation technique was able to reduce Hoxb cluster expression and alleviate the progression of leukemia,” says Qian. “It is known that Hoxb cluster genes show a dramatic increase in expression in patients with DNMT3A-mutated AML. Our work provides mechanistic insights into the use of DNA methylation on the DERARE as a potential screening tool for therapeutic drugs that target DNMT3A-mutated AML, thus leading to the development of new drugs for treating AML, in which DNA methylation is abnormal.”
Stowers Institutehttps://tinyurl.com/yarf3xfd
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:32:182021-01-08 11:08:39How epigenetic regulation of the Hoxb gene cluster maintains normal blood-forming cells and inhibits leukemia
Newly discovered gene mutations may help explain the cause of a disease that drastically impairs walking and thinking. Mutations have been found in the bassoon (BSN) gene, which is involved with the central nervous system, in patients with symptoms similar to, but different from, a rare brain disorder called progressive supranuclear palsy (PSP). PSP, a form of Parkinson’s disease, is often difficult to diagnose because it can affect people in different ways. Serious problems often include difficulty with walking and balance in addition to a decline in cognitive abilities such as frontal lobe dysfunction. A team of Japanese researchers investigated patients whose symptoms resembled not only PSP but also Alzheimer’s disease. Despite similarities in the symptoms, detailed pathological analyses showed no resemblance to either disease, which prompted the team to further research the new disease’s underlying mechanism. They first analysed the genomes of a Japanese family with several members displaying PSP-like symptoms. They identified a mutation in the BSN gene only in family members with symptoms. These individuals did not have mutations in the 52 other genes associated with PSP and other neurological disorders such as Alzheimer’s and Parkinson’s. This was the first time BSN gene is associated with a neurological disorder. The researchers also detected three other mutations in the BSN gene in four out of 41 other patients displaying sporadic, or non-familial, PSP-like symptoms. None of the BSN mutations were detected in a random sample of 100 healthy individuals, underscoring the strong involvement of BSN mutations in the disease. An autopsy done on one of the family members with the BSN mutation showed an accumulation of a protein called tau in the brain, which is not seen in a normal brain. The researchers believe that the BSN mutation is involved in the tau accumulation, which could cause the development of PSP-like symptoms. An experiment introducing a mutated rat BSN gene to cultured cells also suggested that the mutation causes the accumulation of tau. Communication between nerve fibres could also be affected, as BSN protein play a role in it. ScienceDailywww.sciencedaily.com/releases/2018/03/180323093731.htm
https://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png003wmediahttps://clinlabint.com/wp-content/uploads/sites/2/2020/06/clinlab-logo.png3wmedia2020-08-26 09:32:182021-01-08 11:08:46Mutations of the bassoon gene causing new brain disorder
We may ask you to place cookies on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience and to customise your relationship with our website.
Click on the different sections for more information. You can also change some of your preferences. Please note that blocking some types of cookies may affect your experience on our websites and the services we can provide.
Essential Website Cookies
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to provide the website, refusing them will affect the functioning of our site. You can always block or delete cookies by changing your browser settings and block all cookies on this website forcibly. But this will always ask you to accept/refuse cookies when you visit our site again.
We fully respect if you want to refuse cookies, but to avoid asking you each time again to kindly allow us to store a cookie for that purpose. You are always free to unsubscribe or other cookies to get a better experience. If you refuse cookies, we will delete all cookies set in our domain.
We provide you with a list of cookies stored on your computer in our domain, so that you can check what we have stored. For security reasons, we cannot display or modify cookies from other domains. You can check these in your browser's security settings.
.
Google Analytics Cookies
These cookies collect information that is used in aggregate form to help us understand how our website is used or how effective our marketing campaigns are, or to help us customise our website and application for you to improve your experience.
If you do not want us to track your visit to our site, you can disable this in your browser here:
.
Other external services
We also use various external services such as Google Webfonts, Google Maps and external video providers. Since these providers may collect personal data such as your IP address, you can block them here. Please note that this may significantly reduce the functionality and appearance of our site. Changes will only be effective once you reload the page
Google Webfont Settings:
Google Maps Settings:
Google reCaptcha settings:
Vimeo and Youtube videos embedding:
.
Privacy Beleid
U kunt meer lezen over onze cookies en privacy-instellingen op onze Privacybeleid-pagina.